

An introduction to domain decomposition methods for optimal control problems

Gabriele Ciaramella

MOX, Politecnico di Milano

Outline

- 1 Part I: Introduction
- 2 Part II: Parallel Schwarz methods
- 3 Part III: Optimized Schwarz methods
- 4 Part IV: OSM and nonlinear preconditioning

1 Part I: Introduction

Optimal control problems

In these lectures, we consider two stationary/elliptic optimal control problems.

• Parts I, II, III: linear-quadratic control problem:

$$\min_{y,u} J(y,u) := \frac{1}{2} \|y - y_d\|_{L^2}^2 + \frac{\nu}{2} \|u\|_{L^2}^2,$$

s.t.

$$-\Delta y = f + u \text{ in } \Omega,$$

$$y = 0 \text{ on } \partial \Omega.$$

• Part IV: nonlinear and nonsmooth control problem:

$$\min_{y,u} J(y,u) := \frac{1}{2} \|y - y_d\|_{L^2}^2 + \frac{\nu}{2} \|u\|_{L^2}^2 + \beta \|u\|_{L^1},$$

s.t.

$$-\Delta y + cy + b\varphi(y) = f + u \text{ in } \Omega,$$

$$y = 0 \text{ on } \partial\Omega,$$

and

$$u \in U_{\mathrm{ad}} := \{ v \in L^2(\Omega) : u_\ell(x) \le u(x) \le u_u(x) \text{ in } \Omega \}.$$

First-order optimality systems

- First part: linear-quadratic control problem:
 - $-\Delta y = f + u$ in Ω with y = 0 on $\partial \Omega$, $-\Delta p = y_d y$ in Ω with p = 0 on $\partial \Omega$, $\nu u = p$ in Ω .
- Second part: nonlinear and nonsmooth control problem:
 - $\begin{aligned} -\Delta y + cy + b\varphi(y) &= f + u \\ -\Delta p + cp + b\varphi'(y)p &= y_d y \\ \langle \nu u p + \beta \lambda, v u \rangle_{L^2} &\geq 0 \\ \lambda &\in \partial \|u\|_{L^1} \end{aligned}$
- in Ω with y = 0 on $\partial \Omega$, in Ω with p = 0 on $\partial \Omega$, for all $v \in U_{ad}$, $\partial \|u\|_{L^1}$ subdifferential of $\|\cdot\|_{L^1}$ at u.

Parallel Schwarz method (Dirichlet)

We eliminate the equation $\nu u = p$:

$$-\Delta y = f + u \quad \text{in } \Omega \text{ with } y = 0 \text{ on } \partial\Omega, \qquad \qquad -\Delta y = f + \frac{1}{\nu}p \quad \text{in } \Omega \text{ with } y = 0 \text{ on } \partial\Omega, \\ -\Delta p = y_d - y \quad \text{in } \Omega \text{ with } p = 0 \text{ on } \partial\Omega, \qquad \Longrightarrow \qquad -\Delta p = y_d - y \quad \text{in } \Omega \text{ with } p = 0 \text{ on } \partial\Omega. \\ \nu u = p \qquad \text{in } \Omega.$$

Let $\Omega = (0, 1)^2$. Consider an overlapping decomposition $\Omega = \Omega_1 \cup \Omega_2$:

The parallel Schwarz method (PSM) is

$$\begin{aligned} -\Delta y_1^n &= f + p_1^n / \nu & \text{in } \Omega_1, \\ y_1^n &= 0 & \text{on } \partial \Omega \cap \partial \Omega_1, \\ y_1^n &= y_2^{n-1} & \text{on } \Gamma_1, \\ -\Delta p_1^n &= y_d - y_1^n & \text{in } \Omega_1, \\ p_1^n &= 0 & \text{on } \partial \Omega \cap \partial \Omega_1, \\ p_1^n &= p_2^{n-1} & \text{on } \Gamma_1, \end{aligned}$$

0 < a < b < 1L = b - a is the overlap Γ_1 and Γ_2 are the interfaces

1

$$\begin{aligned} -\Delta y_2^n &= f + p_2^n / \nu & \text{in } \Omega_2, \\ y_2^n &= 0 & \text{on } \partial \Omega \cap \partial \Omega_2, \\ y_2^n &= y_1^{n-1} & \text{on } \Gamma_2, \\ -\Delta p_2^n &= y_d - y_2^n & \text{in } \Omega_2, \\ p_2^n &= 0 & \text{on } \partial \Omega \cap \partial \Omega_2, \\ p_2^n &= p_1^{n-1} & \text{on } \Gamma_2. \end{aligned}$$

An introduction to domain decomposition methods for optimal control problems

Optimized Parallel Schwarz method (Robin)

The optimized Schwarz method (OSM) is obtained by Robin transmission conditions:

in Ω_1 , $-\Delta y_1^n = f + p_1^n / \nu$ $-\Delta y_2^n = f + p_2^n / \nu$ in Ω_2 . $y_1^n = 0$ on $\partial \Omega \cap \partial \Omega_1$, $y_{2}^{n} = 0$ on $\partial \Omega \cap \partial \Omega_2$. $\mathcal{B}_1(y_1^n) = \mathcal{B}_1(y_2^{n-1})$ on Γ_1 , $\mathcal{B}_2(y_2^n) = \mathcal{B}_2(y_1^{n-1})$ on Γ_2 , $-\Delta p_1^n = y_d - y_1^n$ in Ω_1 , $-\Delta p_2^n = y_d - y_2^n$ in Ω_2 , $p_1^n = 0$ on $\partial \Omega \cap \partial \Omega_1$, $p_{2}^{n} = 0$ on $\partial \Omega \cap \partial \Omega_2$. $\mathcal{B}_1(p_1^n) = \mathcal{B}_1(p_2^{n-1})$ on Γ_1 , $\mathcal{B}_{2}(p_{2}^{n}) = \mathcal{B}_{2}(p_{1}^{n-1})$ on Γ_{2} ,

where $\mathcal{B}_{j}(v) = \partial_{n_{j}}v + qv$, with q > 0 (original from Lions 1990).

Different possibilities (Benamou 1996):

• Coupled transmission conditions (j = 1, 2 and $\mu < 0$):

$$\partial_{n_j} y_j^n - \frac{\mu}{\sqrt{\nu}} p_j^n = \partial_{n_j} y_{3-j}^{n-1} - \frac{\mu}{\sqrt{\nu}} p_{3-j}^{n-1}$$
 on Γ_j ,
 $\partial_{n_j} p_j^n + \frac{\mu}{\sqrt{\nu}} y_j^n = \partial_{n_j} p_{3-j}^{n-1} + \frac{\mu}{\sqrt{\nu}} y_{3-j}^{n-1}$ on Γ_j .

• General coupled transmission conditions ($j = 1, 2, \mu < 0$ and q > 0):

$$\partial_{n_j} y_j^n + q y_j^n - \frac{\mu}{\sqrt{\nu}} p_j^n = \partial_{n_j} y_{3-j}^{n-1} + q y_{3-j}^{n-1} - \frac{\mu}{\sqrt{\nu}} p_{3-j}^{n-1} \text{ on } \Gamma_j,$$

$$\partial_{n_j} p_j^n + q p_j^n + \frac{\mu}{\sqrt{\nu}} y_j^n = \partial_{n_j} p_{3-j}^{n-1} + q p_{3-j}^{n-1} + \frac{\mu}{\sqrt{\nu}} y_{3-j}^{n-1} \text{ on } \Gamma_j.$$

Schwarz preserves optimization

In general, Schwarz subdomain problems are optimality systems.

• PSM:

$$\begin{aligned} -\Delta y_j^n &= f + p_j^n / \nu & \text{in } \Omega_j, \\ y_1^n &= 0 & \text{on } \partial\Omega \cap \partial\Omega_j, \\ y_j^n &= y_{3-j}^{n-1} & \text{on } \Gamma_j, \\ -\Delta p_j^n &= y_d - y_j^n & \text{in } \Omega_j, \\ p_j^n &= 0 & \text{on } \partial\Omega \cap \partial\Omega_j, \\ p_j^n &= p_{3-j}^{n-1} & \text{on } \Gamma_j. \end{aligned} \qquad \begin{aligned} & \min_{y_j^n, u_j^n} J_j(y_j^n, u_j^n) &:= \frac{1}{2} \int_{\Omega_j} |y_j^n - y_d|^2 + \frac{\nu}{2} \int_{\Omega_j} |u_j^n|^2 + \int_{\Gamma_j} \partial_{n_j} y_j^n p_{3-j}^{n-1}, \\ \text{s.t.} -\Delta y_j^n &= f + u_j^n \text{ in } \Omega_j, \\ y_j^n &= y_{3-j}^{n-1} & \text{on } \Gamma_j, \\ y_j^n &= 0 & \text{on } \partial\Omega \cap \partial\Omega_j, \\ p_j^n &= 0 & \text{on } \partial\Omega \cap \partial\Omega_j. \end{aligned}$$

• OSM (Lions,
$$\mathcal{B}_j(v) = \partial_{n_j}v + qv$$
):

$$\begin{aligned} -\Delta y_j^n &= f + p_j^n / \nu & \text{in } \Omega_j, \\ y_1^n &= 0 & \text{on } \partial\Omega \cap \partial\Omega_j, \\ \mathcal{B}_j(y_j^n) &= \mathcal{B}_j(y_{3-j}^{n-1}) & \text{on } \Gamma_j, \\ -\Delta p_j^n &= y_d - y_j^n & \text{in } \Omega_j, \\ p_j^n &= 0 & \text{on } \partial\Omega \cap \partial\Omega_j, \\ \mathcal{B}_j(p_j^n) &= \mathcal{B}_j(p_{3-j}^{n-1}) & \text{on } \Gamma_j. \end{aligned} \qquad \begin{aligned} & \text{s.t.} -\Delta y_j^n &= f + u_j^n \text{ in } \Omega_j, \\ \mathcal{B}_j(y_j^n) &= \mathcal{B}_j(p_{3-j}^{n-1}) & \text{on } \Gamma_j, \\ \mathcal{B}_j(p_j^n) &= \mathcal{B}_j(p_{3-j}^{n-1}) & \text{on } \Gamma_j. \end{aligned} \qquad \begin{aligned} & \text{s.t.} -\Delta y_j^n &= f + u_j^n \text{ in } \Omega_j, \\ \mathcal{B}_j(y_j^n) &= \mathcal{B}_j(p_{3-j}^{n-1}) & \text{on } \Gamma_j. \end{aligned}$$

Remark: use your favorite solver (linear system/root finder or optimization algorithm).

References

- Iterative Methods and Preconditioners for Systems of Linear Equations, Ciaramella and Gander, SIAM Fundamentals of Algorithms (2022)
- On the Schwarz method for unconstrained elliptic optimal control problems, Ciaramella and Kwok, in preparation (2022)
- Nonlinear optimized Schwarz preconditioner for elliptic optimal control problems, Ciaramella, Kwok, Müller, DD26 Proceedings (2022)
- Schwarz methods over the course of time, Gander, ETNA (2008)
- Domain Decomposition Methods Algorithms and Theory, Toselli and Widlund, Springer (2005)
- A domain decomposition method with coupled transmission conditions for the optimal control of systems governed by elliptic partial differential equations, Benamou, SIAM J. Numer. Anal. (1996)
- On the Schwarz alternating method. III, Lions, Third DD Conference Papers (1990)
- On the Schwarz alternating method. I, Lions, First DD Conference Papers (1988)

2 Part II: Parallel Schwarz methods

Expand the errors $y_j^n := y - y_j^n$ and $p_j^n := p - p_j^n$ in Fourier sine series ($k_m = \pi m$):

$$y_j^n(x_1, x_2) = \sum_{m=1}^{\infty} \widehat{y}_j^n(x_1, k_m) \sin(k_m x_2)$$
 and $p_j^n(x_1, x_2) = \sum_{m=1}^{\infty} \widehat{p}_j^n(x_1, k_m) \sin(k_m x_2).$

Then, one can show that (study \hat{y}_j^n and \hat{p}_j^n and use Parseval) there is a C > 0 such that $\max(\|\mathbf{y}_j^n\|_{L^2}, \|\mathbf{p}_j^n\|_{L^2}) \le C \max_{m=1,2,\dots} \rho(k_m, \nu, L)^n \max(\|\mathbf{y}_j^0\|_{L^2}, \|\mathbf{p}_j^0\|_{L^2}),$

where

$$\rho(k_m, \nu, L) = \left| \frac{\sinh(\lambda(1/2 - L))}{\sinh(\lambda(1/2 + L))} \right|,$$

with $\lambda = g_1 + ig_2$, $g_1 = \frac{1}{\sqrt{2}} \sqrt{\sqrt{\frac{1}{\nu} + k_m^4} + k_m^2}$ and $g_2 = \frac{1}{\sqrt{2}} \sqrt{\sqrt{\frac{1}{\nu} + k_m^4} - k_m^2}.$

$$\rho(k_m, \nu, L) = \left| \frac{\sinh(\lambda(1/2 - L))}{\sinh(\lambda(1/2 + L))} \right|$$

Remark:

- In 2D: *m* = 1, 2, ...
- In 1D: m = 0.

Convergence analysis by Fourier series

Consider the following multiple subdomain decomposition $\Omega = \bigcup_{j=1}^{N} \Omega_j$.

The PSM for the solution of this problem is given by

$$\begin{aligned} -\Delta y_{j}^{n} &= f + p_{j}^{n} / \nu \text{ in } \Omega_{j}, \\ y_{j}^{n}(\cdot, 0) &= 0, \ y_{j}^{n}(\cdot, \widehat{L}) = 0, \\ y_{j}^{n}(a_{j}, \cdot) &= y_{j-1}^{n-1}(a_{j}, \cdot), \\ y_{j}^{n}(b_{j}, \cdot) &= y_{j+1}^{n-1}(b_{j}, \cdot), \end{aligned} \qquad \begin{aligned} -\Delta p_{j}^{n} &= y_{d} - y_{j}^{n} \text{ in } \Omega_{j}, \\ p_{j}^{n}(\cdot, 0) &= 0, \ p_{j}^{n}(\cdot, \widehat{L}) = 0, \\ p_{j}^{n}(a_{j}, \cdot) &= p_{j-1}^{n-1}(a_{j}, \cdot), \\ p_{j}^{n}(b_{j}, \cdot) &= y_{j+1}^{n-1}(b_{j}, \cdot), \end{aligned}$$

The errors $y_j^n := y - y_j^n$ and $p_j^n := p - p_j^n$ satisfy the equations

$$\begin{aligned} -\Delta y_{j}^{n} &= p_{j}^{n} / \nu & \text{in } \Omega_{j}, \\ y_{j}^{n}(\cdot, 0) &= 0, \ y_{j}^{n}(\cdot, \widehat{L}) &= 0, \\ y_{j}^{n}(a_{j}, \cdot) &= y_{j-1}^{n-1}(a_{j}, \cdot), \\ y_{j}^{n}(b_{j}, \cdot) &= y_{j+1}^{n-1}(b_{j}, \cdot), \end{aligned} \qquad \begin{aligned} -\Delta p_{j}^{n} &= -y_{j}^{n} & \text{in } \Omega_{j}, \\ p_{j}^{n}(\cdot, 0) &= 0, \ p_{j}^{n}(\cdot, \widehat{L}) &= 0, \\ p_{j}^{n}(a_{j}, \cdot) &= p_{j-1}^{n-1}(a_{j}, \cdot), \\ p_{j}^{n}(b_{j}, \cdot) &= y_{j+1}^{n-1}(b_{j}, \cdot), \end{aligned}$$

Expand the errors
$$y_j^n := y - y_j^n$$
 and $p_j^n := p - p_j^n$ in Fourier sine series $(k_m = \pi m/\hat{L})$:
 $y_j^n(x_1, x_2) = \sum_{m=1}^{\infty} \widehat{y}_j^n(x_1, k_m) \sin(k_m x_2)$ and $p_j^n(x_1, x_2) = \sum_{m=1}^{\infty} \widehat{p}_j^n(x_1, k_m) \sin(k_m x_2)$.

The Fourier coefficients $\widehat{y}_{j}^{n}(\cdot, k_{m})$ and $\widehat{p}_{j}^{n}(\cdot, k_{m})$ satisfy

$$\begin{aligned} -(\widehat{y}_{j}^{n})^{II} + k_{m}^{2}\widehat{y}_{j}^{n} &= \widehat{p}_{j}^{n}/\nu \text{ in } (a_{j}, b_{j}), \\ \widehat{y}_{j}^{n}(a_{j}) &= \widehat{y}_{j-1}^{n-1}(a_{j}), \\ \widehat{y}_{j}^{n}(b_{j}) &= \widehat{y}_{j+1}^{n-1}(b_{j}), \end{aligned} \qquad \begin{aligned} -(\widehat{p}_{j}^{n})^{II} + k_{m}^{2}\widehat{p}_{j}^{n} &= -\widehat{y}_{j}^{n} \text{ in } (a_{j}, b_{j}), \\ \widehat{p}_{j}^{n}(a_{j}) &= \widehat{p}_{j-1}^{n-1}(a_{j}), \\ \widehat{p}_{j}^{n}(b_{j}) &= \widehat{p}_{j+1}^{n-1}(b_{j}). \end{aligned}$$

Using the adjoint equation $-(\widehat{y}_{j}^{n})^{II} + k_{m}^{2}\widehat{p}_{j}^{n} = -\widehat{y}_{j}^{n}$, we obtain that \widehat{p}_{j}^{n} solves

$$(\widehat{p}_{j}^{n})^{lV} - 2k_{m}^{2}(\widehat{p}_{j}^{n})^{ll} + (k^{4} + 1/\nu)\widehat{p}_{j}^{n} = 0, \text{ in } (a_{j}, b_{j}),$$

$$\widehat{p}_{j}^{n}(a_{j}) = \widehat{p}_{j-1}^{n-1}(a_{j}),$$

$$\widehat{p}_{j}^{n}(b_{j}) = \widehat{p}_{j+1}^{n-1}(b_{j}),$$

$$(\widehat{p}_{j}^{n})^{ll}(a_{j}) = (\widehat{p}_{j-1}^{n-1})^{ll}(a_{j}),$$

$$(\widehat{p}_{j}^{n})^{ll}(b_{j}) = (\widehat{p}_{j+1}^{n-1})^{ll}(b_{j}).$$

The solution to this fourth-order ODE has the form

$$\widehat{p}_{j}^{n}(x) = A_{j}^{n} \sinh(\lambda_{1}(x - a_{j})) + B_{j}^{n} \sinh(\lambda_{2}(x - a_{j})) + C_{j}^{n} \sinh(\lambda_{1}(x - b_{j})) + D_{j}^{n} \sinh(\lambda_{2}(x - b_{j})),$$

where $\lambda_{1} = g_{1} + ig_{2}, \lambda_{2} = g_{1} - ig_{2}, g_{1} = \frac{1}{\sqrt{2}} \sqrt{\sqrt{\frac{1}{\nu} + k_{m}^{4}} + k_{m}^{2}}$ and $g_{2} = \frac{1}{\sqrt{2}} \sqrt{\sqrt{\frac{1}{\nu} + k_{m}^{4}} - k_{m}^{2}}.$

Using the transmission conditions and defining the vector

$$\mathbf{v}_{k_m}^n := ig[\mathit{A}_1^n$$
 , B_1^n , C_1^n , D_1^n , \cdots , A_N^n , B_N^n , C_N^n , $\mathit{D}_N^n ig]^ op$

we obtain the following equivalent form of the PSM

$$\mathbf{v}_{k_m}^n = G_{k_m} \mathbf{v}_{k_m}^{n-1}$$

Here, the iteration matrix G_{k_m} is given by

$$G_{k_m} := \begin{bmatrix} G_R & & & & \\ G_L & G_R & & & \\ & G_L & G_R & & \\ & & \ddots & \ddots & \\ & & & G_L & G_R \\ & & & & G_L \end{bmatrix},$$

where

$$G_{L} := \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{s_{1}(L+\tilde{L})}{s_{1}(2L+\tilde{L})} & 0 & \frac{s_{1}(L)}{s_{1}(2L+\tilde{L})} & 0 \\ 0 & -\frac{s_{2}(L+\tilde{L})}{s_{2}(2L+\tilde{L})} & 0 & \frac{s_{2}(L)}{s_{2}(2L+\tilde{L})} \end{bmatrix}, \quad G_{R} := \begin{bmatrix} \frac{s_{1}(L+\tilde{L})}{s_{1}(2L+\tilde{L})} & 0 & -\frac{s_{1}(L)}{s_{1}(2L+\tilde{L})} & 0 \\ 0 & \frac{s_{2}(L+\tilde{L})}{s_{2}(2L+\tilde{L})} & 0 & -\frac{s_{2}(L)}{s_{2}(2L+\tilde{L})} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

with $s_{1}(x) = \sinh(\lambda_{1}x)$ and $s_{2}(x) = \sinh(\lambda_{2}x)$.

,

The iteration

$$\mathbf{v}_{k_m}^n = G_{k_m} \mathbf{v}_{k_m}^{n-1}.$$

converges if and only if $\rho(G_{k_m}) < 1$. Thus, we estimate

$$p(G_{k_m}) \leq \|G_{k_m}\|_{\infty} = g_{k_m}(L,\widetilde{L},\nu),$$

where

$$g_{k_m}(L,\widetilde{L},\nu) = \max\left(\frac{|s_1(L+\widetilde{L})|+|s_1(L)|}{|s_1(2L+\widetilde{L})|},\frac{|s_2(L+\widetilde{L})|+|s_2(L)|}{|s_2(2L+\widetilde{L})|}\right).$$

Thus, $g_{k_m}(L, \widetilde{L}, \nu) \leq g_{k_1}(L, \widetilde{L}, \nu) < 1$ and we obtain convergence. Remarks:

- The dependence on the parameters ν and *L* is as in the two-subdomain case.
- The curves in the plot seem to be independent of *N*, the number of subdomains.

Assume that an algorithm converges geometrically and is stopped at a given tolerance Tol:

$$rac{\|e^n\|}{\|e^0\|} \leq \gamma^n$$
 and $rac{\|e^n\|}{\|e^0\|} pprox extsf{Tol}.$

We can then write

$$extsf{Tol} pprox rac{\|e^n\|}{\|e^0\|} \leq \gamma^n$$
,

and estimate

$$n \leq \frac{|\log \operatorname{Tol}|}{|\log \gamma|}.$$

If γ is independent of the number of subdomains *N*, then the method converges, for *N* large, in a number of iterations independent of *N* (weakly scalability).

Remark:

- In our tests the size of the subdomains was kept constant, that is $2L + \tilde{L} = const$, thus Ω grows as *N* grows. In this case, the PSM is weakly scalable (in terms of iterations).
- If we keep constant the size of Ω and increase *N*, then the PSM convergence deteriorates.

This behavior is well understood. See the references:

- Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains: Part I, Ciaramella and Gander, SIAM J. Numer. Anal. (2017)
- Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains: Part II, Ciaramella and Gander, SIAM J. Numer. Anal. (2018)
- Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains: Part III, Ciaramella and Gander, ETNA (2018)
- On the scalability of classical one-level domain-decomposition methods, Chaouqui, Ciaramella, Gander and Vanzan, Vietnam J. Math. (2018)
- On the scalability of the parallel Schwarz method in one-dimension, Ciaramella, Hassan and Stamm, DD25 proceedings (2020)
- On the scalability of the Schwarz method, Ciaramella, Hassan and Stamm, SMAI J. Comp. Math. (2020)
- Analysis of parallel Schwarz algorithms for time-harmonic problems using block Toeplitz matrices, Bootland, Dolean, Kyriakis, Pestana, ETNA (2021)
- On the effect of boundary conditions on the scalability of Schwarz methods, Ciaramella and Mechelli, DD26 proceedings (2022)
- On the Schwarz method for unconstrained elliptic optimal control problems, Ciaramella and Kwok, in preparation (2022)

Restricted additive Schwarz (RAS)

Let us discretize our problem (using, e.g., FD or FE) and write the discrete problem as

 $K_{OC}\mathbf{x} = \mathbf{b},$

where

$$\mathcal{K}_{OC} = \begin{bmatrix} -\frac{1}{\nu} I & A \\ A & I \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} \mathbf{p} \\ \mathbf{y} \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \mathbf{f} \\ \mathbf{y}_d \end{bmatrix}$$

Let us now consider:

- a general domain decomposition,
- R_k and \tilde{R}_k , the usual RAS restriction matrices (with \tilde{R}_k including a partition of unity),
- the matrices

$$\mathbf{R}_{k} := \begin{bmatrix} R_{k} \\ R_{k} \end{bmatrix}, \quad \widetilde{\mathbf{R}}_{k} := \begin{bmatrix} \widetilde{R}_{k} \\ \widetilde{R}_{k} \end{bmatrix}$$

• the local subproblem matrices $K_k := R_k K_{OC} R_k^{\top}$.

The RAS method can be easily generalized to optimal control problems:

$$\mathbf{x}^{n+1} = \mathbf{x}^n + \sum_{k=1}^N \widetilde{\mathbf{R}}_k^\top \mathbf{K}_k^{-1} \mathbf{R}_k (\mathbf{b} - \mathbf{K}_{OC} \mathbf{x}^n).$$

Ω		Ω_k		
	 - -		- r ·	

Gabriele Ciaramella

2 Part II: Parallel Schwarz methods - 2.4 Numerical experiments

An introduction to domain decomposition methods for optimal control problems

References

- Iterative Methods and Preconditioners for Systems of Linear Equations, Ciaramella and Gander, SIAM Fundamentals of Algorithms (2022)
- On the Schwarz method for unconstrained elliptic optimal control problems, Ciaramella and Kwok, in preparation (2022)
- Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains: Part I, Ciaramella and Gander, SIAM J. Numer. Anal. (2017)
- Schwarz methods over the course of time, Gander, ETNA (2008)
- Domain Decomposition Methods Algorithms and Theory, Toselli and Widlund, Springer (2005)

Thank you!

3 Part III: Optimized Schwarz methods

Nonoverlapping Robin Schwarz method

Let us recall our test problem and the corresponding optimality system:

$$\min_{y,u} J(y,u) := \frac{1}{2} \|y - y_d\|_{L^2}^2 + \frac{\nu}{2} \|u\|_{L^2}^2, \qquad -\Delta y = f + u \quad \text{in } \Omega \text{ with } y = 0 \text{ on } \partial\Omega, \\ \text{s.t.} - \Delta y = f + u \quad \text{in } \Omega, \qquad -\Delta p = y_d - y \quad \text{in } \Omega \text{ with } p = 0 \text{ on } \partial\Omega, \\ \nu u = p \qquad \text{in } \Omega. \end{aligned}$$

We consider a nonoverlapping decomposition of a domain Ω and the OSM:

$$\begin{aligned} -\Delta y_j^n &= f + p_j^n / \nu & \text{in } \Omega_j, \\ y_1^n &= 0 & \text{on } \partial \Omega \cap \partial \Omega_j, \\ \mathcal{B}_j(y_j^n) &= \mathcal{B}_j(y_{3-j}^{n-1}) & \text{on } \Gamma, \\ -\Delta p_j^n &= y_d - y_j^n & \text{in } \Omega_j, \\ p_j^n &= 0 & \text{on } \partial \Omega \cap \partial \Omega_j, \\ \mathcal{B}_j(p_j^n) &= \mathcal{B}_j(p_{3-j}^{n-1}) & \text{on } \Gamma, \end{aligned}$$

where $\mathcal{B}_j(v) = \partial_{n_j}v + qv$, with q > 0.

Convergence analysis by energy estimates

The OSM in weak form is, for j = 1, 2,

$$\int_{\Omega_{j}} \nu \nabla y_{j}^{n} \cdot \nabla v - p_{j}^{n} v \, d\vec{x} - \int_{\Gamma} \nu \partial_{n_{j}} y_{j}^{n} v \, ds = \int_{\Omega_{j}} \nu f v \, d\vec{x}$$

$$\forall v \in H^{1}(\Omega_{j}) \text{ s.t. } v = 0 \text{ on } \partial\Omega_{j} \setminus \Gamma \text{ and } \partial_{n_{j}} y_{j}^{n} + q y_{j}^{n} = \partial_{n_{j}} y_{3-j}^{n-1} + q y_{3-j}^{n-1} \text{ on } \Gamma,$$

$$\int_{\Omega_{j}} \nabla p_{j}^{n} \cdot \nabla v + y_{j}^{n} v \, d\vec{x} - \int_{\Gamma} \partial_{n_{j}} p_{j}^{n} v \, ds = \int_{\Omega_{j}} y_{d} v \, d\vec{x}$$

$$\forall v \in H^{1}(\Omega_{j}) \text{ s.t. } v = 0 \text{ on } \partial\Omega_{j} \setminus \Gamma \text{ and } \partial_{n_{j}} p_{j}^{n} + q p_{j}^{n} = \partial_{n_{j}} p_{3-j}^{n-1} + q p_{3-j}^{n-1} \text{ on } \Gamma.$$

The errors $y_j^n := y_j - y_j^n$ and $p_j^n := p_j - p_j^n$ satisfy, for j = 1, 2,

$$\begin{split} &\int_{\Omega_j} \nu \nabla y_j^n \cdot \nabla v - p_j^n v \, d\vec{x} = \int_{\Gamma} \nu \partial_{n_j} y_j^n v \, ds \\ &\forall v \in H^1(\Omega_j) \text{ s.t. } v = 0 \text{ on } \partial\Omega_j \setminus \Gamma \text{ and } \partial_{n_j} y_j^n + q y_j^n = \partial_{n_j} y_{3-j}^{n-1} + q y_{3-j}^{n-1} \text{ on } \Gamma, \\ &\int_{\Omega_j} \nabla p_j^n \cdot \nabla v + y_j^n v \, d\vec{x} = \int_{\Gamma} \partial_{n_j} p_j^n v \, ds \\ &\forall v \in H^1(\Omega_j) \text{ s.t. } v = 0 \text{ on } \partial\Omega_j \setminus \Gamma \text{ and } \partial_{n_j} p_j^n + q p_j^n = \partial_{n_j} p_{3-j}^{n-1} + q p_{3-j}^{n-1} \text{ on } \Gamma. \end{split}$$

Convergence analysis by energy estimates

Let us define the energy

$$E_{n} := \sum_{j=1}^{2} \nu \|\partial_{n_{j}} \mathbf{y}_{j}^{n}\|_{L^{2}(\Gamma)}^{2} + \nu q^{2} \|\mathbf{y}_{j}^{n}\|_{L^{2}(\Gamma)}^{2} + \|\partial_{n_{j}} \mathbf{p}_{j}^{n}\|_{L^{2}(\Gamma)}^{2} + q^{2} \|\mathbf{p}_{j}^{n}\|_{L^{2}(\Gamma)}^{2}.$$

We can manipulate E_n and use the OSM transmission conditions (and that $n_1 = -n_2$) to get

$$\begin{split} & \mathcal{E}_{n} = \sum_{j=1}^{2} \left[\nu \| \partial_{n_{j}} \mathbf{y}_{j}^{n} + q \mathbf{y}_{j}^{n} \|_{L^{2}(\Gamma)}^{2} - 2q \nu \langle \partial_{n_{j}} \mathbf{y}_{j}^{n}, \mathbf{y}_{j}^{n} \rangle_{L^{2}(\Gamma)} + \| \partial_{n_{j}} \mathbf{p}_{j}^{n} + q \mathbf{p}_{j}^{n} \|_{L^{2}(\Gamma)}^{2} - 2q \langle \partial_{n_{j}} \mathbf{p}_{j}^{n}, \mathbf{p}_{j}^{n} \rangle_{L^{2}(\Gamma)} \right] \\ & = \sum_{j=1}^{2} \left[\nu \| \partial_{n_{j}} \mathbf{y}_{3-j}^{n-1} + q \mathbf{y}_{3-j}^{n-1} \|_{L^{2}(\Gamma)}^{2} - 2q \nu \langle \partial_{n_{j}} \mathbf{y}_{j}^{n}, \mathbf{y}_{j}^{n} \rangle_{L^{2}(\Gamma)} + \| \partial_{n_{j}} \mathbf{p}_{3-j}^{n-1} + q \mathbf{p}_{3-j}^{n-1} \|_{L^{2}(\Gamma)}^{2} - 2q \langle \partial_{n_{j}} \mathbf{p}_{j}^{n}, \mathbf{p}_{j}^{n} \rangle_{L^{2}(\Gamma)} \right] \\ & = \sum_{j=1}^{2} \left[\nu \| \partial_{n_{j}} \mathbf{y}_{3-j}^{n-1} \|_{L^{2}(\Gamma)}^{2} + \nu q^{2} \| \mathbf{y}_{3-j}^{n-1} \|_{L^{2}(\Gamma)}^{2} + \| \partial_{n_{j}} \mathbf{p}_{3-j}^{n-1} \|_{L^{2}(\Gamma)}^{2} + q^{2} \| \mathbf{p}_{3-j}^{n-1} \|_{L^{2}(\Gamma)}^{2} \right] \\ & - 2q \sum_{j=1}^{2} \sum_{m=n-1}^{n} \left[\nu \langle \partial_{n_{j}} \mathbf{y}_{j}^{m}, \mathbf{y}_{j}^{m} \rangle_{L^{2}(\Gamma)} + \langle \partial_{n_{j}} \mathbf{p}_{j}^{m}, \mathbf{p}_{j}^{m} \rangle_{L^{2}(\Gamma)} \right] \\ & = E_{n-1} - 2q \sum_{j=1}^{2} \sum_{m=n-1}^{n} \left[\nu \langle \partial_{n_{j}} \mathbf{y}_{j}^{m}, \mathbf{y}_{j}^{m} \rangle_{L^{2}(\Gamma)} + \langle \partial_{n_{j}} \mathbf{p}_{j}^{m}, \mathbf{p}_{j}^{m} \rangle_{L^{2}(\Gamma)} \right], \end{split}$$

1

3 Part III: Optimized Schwarz methods - 3.2 Convergence analysis by energy estimates

$$E_{n} = E_{n-1} - 2q \sum_{j=1}^{2} \sum_{m=n-1}^{n} \left[\nu \langle \partial_{n_{j}} \mathbf{y}_{j}^{m}, \mathbf{y}_{j}^{m} \rangle_{L^{2}(\Gamma)} + \langle \partial_{n_{j}} \mathbf{p}_{j}^{m}, \mathbf{p}_{j}^{m} \rangle_{L^{2}(\Gamma)} \right]$$

Now, we use the weak forms of the OSM equations,

$$\int_{\Omega_j} \nu \nabla \mathbf{y}_j^n \cdot \nabla \mathbf{v} - \mathbf{p}_j^n \mathbf{v} \, d\vec{x} = \int_{\Gamma} \nu \partial_{n_j} \mathbf{y}_j^n \mathbf{v} \, ds \text{ and } \int_{\Omega_j} \nabla \mathbf{p}_j^n \cdot \nabla \mathbf{v} + \mathbf{y}_j^n \mathbf{v} \, d\vec{x} = \int_{\Gamma} \partial_{n_j} \mathbf{p}_j^n \mathbf{v} \, ds,$$

and test them with $v = y_i^n$ and $v = p_i^n$, respectively, to obtain

$$\nu \langle \partial_{n_j} \mathbf{y}_j^n, \mathbf{y}_j^n \rangle_{L^2(\Gamma)} = \nu \|\nabla \mathbf{y}_j^n\|_{L^2(\Omega_j)}^2 - \langle \mathbf{p}_j^n, \mathbf{y}_j^n \rangle_{L^2(\Omega_j)},$$

$$\langle \partial_{n_j} \mathbf{p}_j^n, \mathbf{p}_j^n \rangle_{L^2(\Gamma)} = \|\nabla \mathbf{p}_j^n\|_{L^2(\Omega_j)}^2 + \langle \mathbf{y}_j^n, \mathbf{p}_j^n \rangle_{L^2(\Omega_j)}.$$

We insert these into the above energy relation and get

$$E_{n} = E_{n-1} - 2q \sum_{j=1}^{2} \sum_{m=n-1}^{n} \left[\nu \| \nabla \mathbf{y}_{j}^{m} \|_{L^{2}(\Omega_{j})}^{2} + \| \nabla \mathbf{p}_{j}^{m} \|_{L^{2}(\Omega_{j})}^{2} \right].$$

Since the second term on the right-hand side is non-negative, we get

$$0 \leq E_n \leq E_{n-1}$$
 for any $n \in \mathbb{N}$

and hence $E_n \to \ell$ as $n \to \infty$, for some real value $0 \le \ell < \infty$.

Now, we use again
$$E_n = E_{n-1} - 2q \sum_{j=1}^2 \sum_{m=n-1}^n \left[\nu \| \nabla \mathbf{y}_j^m \|_{L^2(\Omega_j)}^2 + \| \nabla \mathbf{p}_j^m \|_{L^2(\Omega_j)}^2 \right]$$
 to estimate
$$\sum_{j=1}^2 \left[\nu \| \nabla \mathbf{y}_j^n \|_{L^2(\Omega_j)}^2 + \| \nabla \mathbf{p}_j^n \|_{L^2(\Omega_j)}^2 \right] \le \sum_{j=1}^2 \sum_{m=n-1}^n \left[\nu \| \nabla \mathbf{y}_j^m \|_{L^2(\Omega_j)}^2 + \| \nabla \mathbf{p}_j^m \|_{L^2(\Omega_j)}^2 \right] = \frac{1}{2q} (E_{n-1} - E_n).$$

Summing over n both sides of this inequality, we obtain

$$\sum_{n=1}^{\infty}\sum_{j=1}^{2}\left[\nu\|\nabla y_{j}^{n}\|_{L^{2}(\Omega_{j})}^{2}+\|\nabla p_{j}^{n}\|_{L^{2}(\Omega_{j})}^{2}\right]\leq\frac{1}{2q}\sum_{n=1}^{\infty}(E_{n-1}-E_{n})=\frac{1}{2q}(E_{0}-\ell).$$

Since this series converges the corresponding series converges to zero:

$$\|\nabla \mathbf{y}_j^n\|_{L^2(\Omega_j)} \to 0 \text{ and } \|\nabla \mathbf{p}_j^n\|_{L^2(\Omega_j)} \to 0 \text{ for } j = 1, 2.$$

Using the Poincaré-Friedrichs inequality we get

$$\|y_{j}^{n}\|_{L^{2}(\Omega_{j})} \leq C_{y}\|\nabla y_{j}^{n}\|_{L^{2}(\Omega_{j})} \text{ and } \|p_{j}^{n}\|_{L^{2}(\Omega_{j})} \leq C_{p}\|\nabla p_{j}^{n}\|_{L^{2}(\Omega_{j})},$$

for some constants $C_{\gamma} > 0$ and $C_{\rho} > 0$. Hence, we obtain that

$$\|y_{j}^{n}\|_{L^{2}(\Omega_{j})} \to 0 \text{ and } \|p_{j}^{n}\|_{L^{2}(\Omega_{j})} \to 0 \text{ for } j = 1, 2,$$

which then implies

$$\|\mathbf{y}_{j}^{n}\|_{H^{1}(\Omega_{j})} \to 0 \text{ and } \|\mathbf{p}_{j}^{n}\|_{H^{1}(\Omega_{j})} \to 0 \text{ for } j = 1, 2.$$

Thus, we proved convergence of the OSM in H^1 .

Remarks:

- Convergence is guaranteed also without overlap.
- This analysis was originally proposed by Lions and then used by Benamou for optimal control problems.
- This analysis does not provide information about the speed of convergence of the method.
- A Fourier analysis is also possible (for specific geometries) and
 - it provides information about the convergence of Fourier modes (useful also at the discrete level);
 - Parseval's identity together with the dominated convergence (Lebesgue) theorem need to be used to get convergence in L^2 .
- In general, OSM with overlap converges faster than PSM.
- OSM can be written in a RAS form, known as Optimized Restricted Additive Schwarz (ORAS):

$$\mathbf{x}^{n+1} = \mathbf{x}^n + \sum_{k=1}^N \widetilde{\mathbf{R}}_k^\top (\mathbf{K}_k^{ORAS})^{-1} \mathbf{R}_k (\mathbf{b} - \mathbf{K}_{OC} \mathbf{x}^n),$$

where K_k^{ORAS} are modifications of $K_k = \mathbb{R}K_{OC}\mathbb{R}^{\top}$ to include the Robin transmission conditions.

Numerical experiments

n

A surprising behavior ...

$$\min_{y,u} J(y, u) := \frac{1}{2} \|y - y_d\|_{L^2}^2 + \frac{\nu}{2} \|u\|_{L^2}^2,$$

s.t. $-\Delta y = f + u \text{ in } \Omega,$
 $y = 0 \text{ on } \partial \Omega.$

The parameter ν is a regularization parameter: it makes the problem "more convex" and in general "better conditioned". Thus, we expect that (linear) solvers behave better for ν large, but we have that

GMRES seems to converge faster when the regularization parameter ν becomes smaller!

A surprising behavior ... and its explanation (C.,Gander 2022)

Consider the matrix $K_{OC} := \begin{bmatrix} -\frac{1}{\nu}I & A \\ A & I \end{bmatrix}$ with $\nu > 0$. The eigenvalues of K_{OC} are

$$\lambda_{j,\pm}(K_{OC}) = \frac{\nu - 1}{2\nu} \pm \sqrt{\left(\frac{\nu - 1}{2\nu}\right)^2 + \frac{1}{\nu} + \lambda_j(A)^2}$$
 for $j = 1, \dots, m$,

where $\lambda_j(A)$, j = 1, ..., m, are the eigenvalues of A.

If we consider now $\lambda_{j,\pm}(K_{OC})$ as a function of ν and expand it around zero, we get

$$\lambda_{j,+}(K_{OC}) = 1 + O(\nu),$$

 $\lambda_{j,-}(K_{OC}) = -\frac{1}{\nu} + O(\nu).$

Thus:

- As $\nu \to 0$, $\lambda_{j,\pm}(K_{OC})$ tend to be split into two clusters:
 - one cluster accumulating around 1,
 - one cluster moving indefinitely toward $-\infty$ and accumulating around $-\frac{1}{\nu}$.
- This explain the observed convergence: the GMRES residual decays very fast in the first two iterations and then the convergence becomes slower again.

References

- Iterative Methods and Preconditioners for Systems of Linear Equations, Ciaramella and Gander, SIAM Fundamentals of Algorithms (2022)
- A complex homographic best approximation problem. Application to optimized Robin–Schwarz algorithms, and optimal control problems, Delourme and Halpern, SIAM J. Numer. Anal. (2021)
- Optimized RAS Methods, Cyr, Gander and Thomas, DD16 Proceedings (2005)
- Schwarz methods over the course of time, Gander, ETNA (2008)
- A domain decomposition method with coupled transmission conditions for the optimal control of systems governed by elliptic partial differential equations, Benamou, SIAM J. Numer. Anal. (1996)
- On the Schwarz alternating method. III, Lions, Third DD Conference Papers (1990)

4 Part IV: OSM and nonlinear preconditioning

Nonlinear preconditioning

Consider a linear system of equations

$$F(\mathbf{x}) = A\mathbf{x} - \mathbf{b} = 0.$$

A domain decomposition method (like RAS and ORAS) corresponds to a preconditioner *M*. Preconditioning consists in transforming $F(\mathbf{x}) = 0$ into

$$T(F(\mathbf{x})) = M^{-1}F(\mathbf{x}) = M^{-1}A\mathbf{x} - M^{-1}\mathbf{b},$$

in a way that the properties of $M^{-1}A$ make a Krylov method converge faster ($M \approx A$).

Nonlinear preconditioning follows the same idea, just recognize the "correspondences":

System $F(\mathbf{x}) = 0$: linear \leftrightarrow nonlinear Transformation : linear dd \leftrightarrow nonlinear dd Solver : Krylov \leftrightarrow Newton

For a nonlinear problem $F(\mathbf{x}) = 0$, we look for a transformation $T \approx F^{-1}$ such that $T(F(\mathbf{x})) = 0$ has the same solution to $F(\mathbf{x}) = 0$ and it guarantees a better behavior of the Newton solver.

Nonsmooth optimal control problems governed by nonlinear PDEs

Consider the nonsmooth optimal control problem

$$\min_{y,u} J(y,u) := \frac{1}{2} \|y - y_d\|_{L^2}^2 + \frac{\nu}{2} \|u\|_{L^2}^2 + \beta \|u\|_{L^1},$$

subjected to

$$-\Delta y + cy + b\varphi(y) = f + u \text{ in } \Omega,$$

$$y = 0 \text{ on } \partial\Omega,$$

and

$$u \in U_{\mathrm{ad}} := \{ v \in L^2(\Omega) : u_\ell(x) \le u(x) \le u_u(x) \text{ in } \Omega \}.$$

Under appropriate regularity assumptions there exists a minimizer $(y, u) \in X \times U_{ad}$, where $X := H_0^1(\Omega) \cap L^{\infty}(\Omega)$ (Casas et al. 2012, Tröltzsch 2010).

Solution for b = 10, $\nu = 10^{-7}$, $\bar{u} = 10^3$ and $\beta = 10^{-2}$:

First-order optimality systems

Let $(y, u) \in X \times L^2(\Omega)$ be a minimizer, there exist an adjoint variable $p \in X$ and a subgradient

$$\lambda \in \partial \|u\|_{L^1} := \{ w \in L^2(\Omega) \ : \ \|v\|_{L^1} - \|u\|_{L^1} \ge \langle w, v - u \rangle_{L^2} \text{ for all } v \in L^2(\Omega) \}$$

such that the quadruple (y, u, p, λ) satisfies the system (Casas et al. 2012, Tröltzsch 2010)

$$\begin{aligned} -\Delta y + cy + b\varphi(y) &= f + u & \text{in } \Omega \text{ with } y = 0 \text{ on } \partial\Omega, \\ -\Delta p + cp + b\varphi'(y)p &= y - y_d & \text{in } \Omega \text{ with } p = 0 \text{ on } \partial\Omega, \\ \langle \nu u + p + \beta\lambda, v - u \rangle_{L^2} &\geq 0 & \text{for all } v \in U_{ad}. \end{aligned}$$

This optimality system can be formulated as (Stadler 2009)

$$-\Delta y + cy + b\varphi(y) = f + u \qquad \text{in } \Omega \text{ with } y = 0 \text{ on } \partial\Omega,$$

$$-\Delta p + cp + b\varphi'(y)p = y - y_d \qquad \text{in } \Omega \text{ with } p = 0 \text{ on } \partial\Omega,$$

$$u = \mu(p),$$

where

$$\mu(p) := \max(0, (-\beta - p)/\nu) + \min(0, (\beta - p)/\nu) - \max(0, -u_u + (-p - \beta)/\nu) - \min(0, -u_\ell + (-p + \beta)/\nu).$$

Replacing the last equation into the first, we get

$$-\Delta y + cy + b\varphi(y) = f + \mu(p) \qquad \text{in } \Omega \text{ with } y = 0 \text{ on } \partial\Omega,$$

$$-\Delta p + cp + b\varphi'(y)(p) = y - y_d \qquad \text{in } \Omega \text{ with } p = 0 \text{ on } \partial\Omega.$$

This nonlinear and nonsmooth system admits a solution $(y, p) \in X^2$.

Optimality system as a root problem

Let us consider the space $Y := H_0^1(\Omega)^*$ and define the operators

$$\begin{split} A: H_0^1(\Omega) \to Y, & A(y)(v) = \int_{\Omega} \nabla y \cdot \nabla v + cyv \, dx & \forall y, v \in H_0^1(\Omega), \\ B: H_0^1(\Omega) \to Y, & B(y)(v) = \int_{\Omega} yv \, dx & \forall y, v \in H_0^1(\Omega), \\ C: L^{\infty}(\Omega) \to Y, & C(p)(v) = \int_{\Omega} \mu(p)v \, dx & \forall p \in L^{\infty}(\Omega), v \in H_0^1(\Omega), \\ \Phi: L^{\infty}(\Omega) \to Y, & \Phi(y)(v) = \int_{\Omega} b\varphi(y)v \, dx & \forall y \in L^{\infty}(\Omega), v \in H_0^1(\Omega), \\ \Psi: (L^{\infty}(\Omega))^2 \to Y, & \Psi(y, p)(v) = \int_{\Omega} b\partial_y \varphi(y)pv \, dx & \forall y, p \in L^{\infty}(\Omega), v \in H_0^1(\Omega), \\ \ell_f: L^2(\Omega) \to Y, & \ell_f(v) = \int_{\Omega} fv \, dx & \forall v \in H_0^1(\Omega), \\ \ell_{y_d}: L^2(\Omega) \to Y, & \ell_{y_d}(v) = \int_{\Omega} y_d v \, dx & \forall v \in H_0^1(\Omega). \end{split}$$

If one introduces the map $\mathcal{F}: X^2 \to Y^2$,

$$\mathcal{F}(y,p) = \begin{bmatrix} A(y) + \Phi(y) - C(p) - \ell_f \\ A(p) + \Psi(y,p) - B(y) - \ell_{y_d} \end{bmatrix},$$

then the (weak form of the) optimality system is equivalent to

$$\mathcal{F}(\boldsymbol{y},\boldsymbol{p})=0.$$

Semismooth Newton method

For a given initialization $(y_0, p_0) \in X^2$, we consider the Newton-type method

solve
$$D\mathcal{F}(y_k, p_k)(dy, dp) = -\mathcal{F}(y_k, p_k),$$
update
$$(y_{k+1}, p_{k+1}) = (y_k, p_k) + (dy, dp),$$

for k = 0, 1, 2, ..., where

$$D\mathcal{F}(y,p)(\widetilde{y},\widetilde{p}) = \begin{bmatrix} A(\widetilde{y}) + \Psi(y,\widetilde{y}) - \widetilde{C}(p)(\widetilde{p}) \\ A(\widetilde{p}) + D_{y}\Psi(y,p)(\widetilde{y}) + D_{p}\Psi(y,p)(\widetilde{p}) - B(\widetilde{y}) \end{bmatrix},$$

for any $(\widetilde{y}, \widetilde{p}) \in X^2$, where

$$D_{y}\Psi(y,p)(\widetilde{y})(v) = \int_{\Omega} \varphi''(y)[p,\widetilde{y}](v) \text{ for any } v \in H^{1}_{0}(\Omega)$$

and $D_{p}\Psi(y,p)(\widetilde{p}) = \Psi(y,\widetilde{p}).$

We must discuss the term $\widetilde{C}(p)(\widetilde{p})$, since it represents the generalized derivative of

$$C(p)(v) = \int_{\Omega} \mu(p) v \, dx,$$

where

$$\mu(p) := \max(0, (-\beta - p)/\nu) + \min(0, (\beta - p)/\nu) - \max(0, -u_u + (-p - \beta)/\nu) - \min(0, -u_\ell + (-p + \beta)/\nu).$$

Generalized derivatives

Consider the operators

$$\mathcal{F}_{\max}, \mathcal{F}_{\min} : L'(\Omega) \to L^{s}(\Omega),$$
$$\mathcal{F}_{\max}(v) := \max(0, v) \text{ and } \mathcal{F}_{\min}(v) := \min(0, v).$$

For any $1 \le s < r \le \infty$, these are slanty differentiable with generalized derivatives

$$\mathcal{G}_{\max}(v)(x) = \begin{cases} 1 & \text{if } v(x) > 0, \\ 0 & \text{if } v(x) \le 0, \end{cases} \qquad \mathcal{G}_{\min}(v)(x) = \begin{cases} 1 & \text{if } v(x) \le 0, \\ 0 & \text{if } v(x) > 0. \end{cases}$$

Hence

$$D\mu(p)(\widetilde{p}) = \frac{1}{\nu} \Big[-\mathcal{G}_{\max}(-\beta - p) - \mathcal{G}_{\min}(\beta - p) + \mathcal{G}_{\max}(-p - \beta - \nu u_u) + \mathcal{G}_{\min}(-p + \beta - \nu u_\ell) \Big] \widetilde{p},$$

or equivalently (using a characteristic function $\chi_{\mathcal{A}(p)}$)

$$D\mu(p)(\widetilde{p})(x) = -\frac{1}{\nu}\chi_{\mathcal{A}(p)}(x)\widetilde{p}(x)$$
 a.e. in Ω .

Therefore, the operator $\widetilde{C}(p) : L^{\infty}(\Omega) \to L^{2}(\Omega)$ is

$$\widetilde{C}(p)(\widetilde{p})(v) = \int_{\Omega} -\frac{1}{\nu} \chi_{\mathcal{A}(p)}(x) \widetilde{p}(x) v(x) \, dx,$$

for any $v \in L^2(\Omega)$.

Nonlinear optimized Schwarz method

$$-\Delta y + cy + b\varphi(y) = f + \mu(p) \qquad \text{in } \Omega \text{ with } y = 0 \text{ on } \partial\Omega,$$

$$-\Delta p + cp + b\varphi'(y)(p) = y - y_d \qquad \text{in } \Omega \text{ with } p = 0 \text{ on } \partial\Omega.$$

Consider a non-overlapping decomposition $\overline{\Omega} = \overline{\Omega}_1 \cup \overline{\Omega}_2$ (with interface Γ) and a parameter q > 0. The OSM is

$$\begin{aligned} -\Delta y_1^k + c y_1^k + b \varphi(y_1^k) &= f + \mu(p_1^k) & \text{in } \Omega \\ y_1^k &= 0 & \text{on} \\ \partial_{n_1} y_1^k + q \, y_1^k &= \partial_{n_1} y_2^{k-1} + q \, y_2^{k-1} & \text{on} \\ -\Delta p_1^k + c p_1^k + b \varphi'(y_1^k)(p_1^k) &= y_1^k - y_d & \text{in } \Omega \\ p_1^k &= 0 & \text{on} \\ \partial_{n_1} p_1^k + q \, p_1^k &= \partial_{n_1} p_2^{k-1} + q \, p_2^{k-1} & \text{on} \end{aligned}$$

in Ω_1 , on $\partial \Omega_1 \setminus \Gamma$, on Γ , in Ω_1 , on $\partial \Omega_1 \setminus \Gamma$, on Γ ,

and

$$\begin{aligned} -\Delta y_2^k + c y_2^k + b \varphi(y_2^k) &= f + \mu(p_2^k) \\ y_2^k &= 0 \\ \partial_{n_2} y_2^k + q \, y_2^k &= \partial_{n_2} y_1^{k-1} + q \, y_1^{k-1} \\ -\Delta p_2^k + c p_2^k + b \varphi'(y_2^k)(p_2^k) &= y_2^k - y_d \\ p_2^k &= 0 \\ \partial_{n_2} p_2^k + q \, p_2^k &= \partial_{n_2} p_1^{k-1} + q \, p_1^{k-1} \end{aligned}$$

in Ω_2 , on $\partial \Omega_2 \setminus \Gamma$, on Γ , in Ω_2 , on $\partial \Omega_1 \setminus \Gamma$, on Γ .

Nonlinear OSM preconditioner

Let $\mathbf{y}_1 := (y_1, p_1)$ and $\mathbf{y}_2 := (y_2, p_2)$. The nonlinear OSM subproblems are in the limit given by $\mathcal{F}_1(\mathbf{y}_1, \mathbf{y}_2) := \begin{bmatrix} A_1(y_1) + \Phi_1(y_1) - C_1(p_1) + G_L(y_1, y_2) - \ell_{f,1} \\ A_1(p_1) + \Psi_1(y_1, p_1) - B_1(y_1) + G_L(p_1, p_2) - \ell_{y_d,1} \end{bmatrix} = 0,$ $\mathcal{F}_2(\mathbf{y}_2, \mathbf{y}_1) := \begin{bmatrix} A_2(y_2) + \Phi_1(y_2) - C_2(p_2) + G_R(y_2, y_1) - \ell_{f,2} \\ A_2(p_2) + \Psi_1(y_2, p_2) - B_2(y_2) + G_R(p_2, p_1) - \ell_{y_d,2} \end{bmatrix} = 0,$

where G_L and G_R are

$$G_L(y_1, y_2)(v) = \int_{\Gamma} (-qy_1 + \partial_{n_1}y_2 + qy_2)v,$$

and

$$G_R(y_2, y_1)(v) = \int_{\Gamma} (-qy_2 + \partial_{n_2}y_1 + qy_1)v.$$

If we introduce the (local) solution mappings

 $S_1(\mathbf{y}_2) := \mathbf{y}_1$ solution of $\mathcal{F}_1(\mathbf{y}_1, \mathbf{y}_2) = 0$ for given \mathbf{y}_2 , $S_2(\mathbf{y}_1) := \mathbf{y}_2$ solution of $\mathcal{F}_2(\mathbf{y}_2, \mathbf{y}_1) = 0$ for given \mathbf{y}_1 .

Hence, we can rewrite the above system as (" $T(F(\mathbf{x})) = 0$ ")

$$\mathcal{F}_{\mathsf{P}}(\mathbf{y}_1, \mathbf{y}_2) := \begin{bmatrix} \mathbf{y}_1 - S_1(\mathbf{y}_2) \\ \mathbf{y}_2 - S_2(\mathbf{y}_1) \end{bmatrix} = 0.$$

Preconditioned Newton

The Newton method for $\mathcal{F}_{P}(\mathbf{y}_{1}, \mathbf{y}_{2}) = 0$ is given by

$$D\mathcal{F}_{\mathsf{P}}(\mathbf{y}_{1}^{k}, \mathbf{y}_{2}^{k})(\mathbf{d}_{1}, \mathbf{d}_{2}) = -\mathcal{F}_{\mathsf{P}}(\mathbf{y}_{1}^{k}, \mathbf{y}_{2}^{k}),$$
$$(\mathbf{y}_{1}^{k+1}, \mathbf{y}_{2}^{k+1}) = (\mathbf{y}_{1}^{k}, \mathbf{y}_{2}^{k}) + (\mathbf{d}_{1}, \mathbf{d}_{2}).$$

Here, we have

$$D\mathcal{F}_{\mathsf{P}}(\mathbf{y}_1^k, \mathbf{y}_2^k)(\mathbf{d}_1, \mathbf{d}_2) = \begin{bmatrix} \mathbf{d}_1 - DS_1(\mathbf{y}_2^k)(\mathbf{d}_2) \\ \mathbf{d}_2 - DS_2(\mathbf{y}_1^k)(\mathbf{d}_1) \end{bmatrix}$$
,

where $DS_2(\mathbf{y}_1)(\mathbf{d}_1) = (\widetilde{y}_2, \widetilde{p}_2)$ solves

$$\begin{split} -\Delta \widetilde{y}_{2} + c \widetilde{y}_{2} + b \varphi'(y_{2}) \widetilde{y}_{2} + \chi_{\mathcal{A}(p_{2})} \widetilde{p}_{2} &= 0 & \text{in } \Omega_{2}, \\ \widetilde{y}_{2} &= 0 & \text{on } \partial \Omega_{2} \setminus \Gamma, \\ \partial_{n_{2}} \widetilde{y}_{2} + q \widetilde{y}_{2} &= \partial_{n_{2}} d_{1,y} + q d_{1,y} & \text{on } \Gamma, \\ -\Delta \widetilde{p}_{2} + c \widetilde{p}_{2} + b \varphi''(y_{2}) [p_{2}, \widetilde{y}_{2}] &= \widetilde{y}_{2} & \text{in } \Omega_{2}, \\ \widetilde{p}_{2} &= 0 & \text{on } \partial \Omega_{2} \setminus \Gamma, \\ \partial_{n_{2}} \widetilde{p}_{2} + q \widetilde{p}_{2} &= \partial_{n_{2}} d_{1,p} + q d_{1,p} & \text{on } \Gamma, \end{split}$$

and similarly for $DS_1(\mathbf{y}_2)(\mathbf{d}_2) = (\widetilde{y}_1, \widetilde{p}_1)$.

Overall algorithm

Require: Initial guess y^0 , tolerance ϵ , maximum number of iterations k_{max} .

- 1: Compute $S_1(\mathbf{y}_2^0)$ and $S_2(\mathbf{y}_1^0)$.
- 2: Set k = 0 and assemble $\mathcal{F}_{\mathsf{P}}(\mathbf{y}^0)$.
- 3: while $\|\mathcal{F}_{\mathsf{P}}(\mathbf{y}^k)\| \ge \epsilon$ and $k \le k_{\max}$ do
- 4: Compute \mathbf{d}^k by solving $D\mathcal{F}_{\mathsf{P}}(\mathbf{y}^k)(\mathbf{d}^k) = -\mathcal{F}_{\mathsf{P}}(\mathbf{y}^k)$ using a matrix-free Krylov method, where the action of $D\mathcal{F}_{\mathsf{P}}(\mathbf{y}^k)$ on a vector \mathbf{d} is computed as above.
- 5: Update $y^{k+1} = y^k + d^k$.
- 6: Set k = k + 1.
- 7: Compute $S_1(\mathbf{y}_2^k)$ and $S_2(\mathbf{y}_1^k)$.
- 8: Assemble $\mathcal{F}_{\mathsf{P}}(\mathbf{y}^k)$.
- 9: end while

Remarks:

- At each Newton step, one must evaluate $\mathcal{F}_{P}(\mathbf{y}^{k}) \Longrightarrow$ solve subdomain problems.
- The linearized BVPs needed for the action of $D\mathcal{F}_{P}(\mathbf{y}^{k})$, are the same as the ones that appear in the inner Newton iterations of the subdomain solves.
- What we hope to gain from OSM preconditioner:
 - Easier subdomain solves (fewer degrees of freedom).
 - "Less nonlinearity" in the coupling between subdomains.
 - Fast convergence in the Krylov method (for well chosen parameter q).

Numerical experiments

Test case: two subdomains (for multisubdomain see C., Müller, Kwok 2022):

- Constraint PDE: $-\Delta y + cy + b\varphi(y) = u$ in $\Omega = (0, 1)^2$.
- Nonlinear term $\varphi(y) = y + \exp(y)$ to be turned on or off (b = 10 or b = 0).
- Study convergence by varying β (L^1 reg.) and ν (L^2 reg.) and \bar{u} (control bound).
- Solution for b = 10, $\nu = 10^{-7}$, $\bar{u} = 10^3$ and $\beta = 10^{-2}$:

Nonlinear solution strategies

We compare

- Semismooth Newton on the optimized Schwarz-preconditioned fixed point equation,
- Semismooth Newton on the global (unpreconditioned) system.
- Each method is executed
- without continuation on ν ,
- with continuation:
 - Start with $\nu = 0.1$.
 - Solve Jacobian system once and update solution; DO NOT iterate to convergence.
 - Replace ν by $\nu/4$ and repeat the process, until the desired ν is reached.
Outer Newton iterations

				2					
				$\bar{u} = 10^{3}$		$ar{u}=\infty$			
	q	b	$ u = 10^{-3} $	$ u = 10^{-5} $	$ u = 10^{-7} $	$ u = 10^{-3} $	$ u = 10^{-5} $	$ u = 10^{-7} $	
$\beta = 0$	1	0	4-5-2-4	6-9-11-11	4 -11-41-12	3-5-2-4	3-9-2-9	3-12-3-12	
	10	0	4-5-2-4	6-9-11-11	8 - 11 - 41 - 12	3-5-2-4	3-8-2-9	3-11-3-12	
	100	0	3-5-2-4	6-9-11-11	× -11-41-12	3-5-2-4	3-9-2-9	3-11-3-12	
	1	10	6-6-4-7	×-10-12-12	× -12-38-16	6-6-4-7	×-10-22-23	×-15-×-15	
	10	10	5-6-4-7	7-10-12-12	× -12-38-16	5-6-4-7	×-10-22-23	×-14-×-15	
	100	10	4-6-4-7	6-10-12-12	× -13-38-16	4-6-4-7	6-10-22-23	×-13-×-15	
	1	0	5-5-3-6	6-9-8-11	× -12-43-13	4-5-3-6	5-9-6-10	×-12-8-15	
-2	10	0	4-5-3-6	6-9-8-11	×-11-43-13	4-5-3-6	4-9-6-10	×-12-8-15	
$\beta = 10$	100	0	4-5-3-6	6-10-8-11	11-12-43-13	4-5-3-6	5-9-6-10	7-12-8-15	
	1	10	6-6-4-6	×-11-10-12	× -12- × -17	6-6-4-6	×-10-18- ×	×-13-×-15	
	10	10	5-6-4-6	×-11-10-12	imes -13- $ imes$ -17	5-6-4-6	×-10-18- ×	×-14-×-15	
	100	10	4-6-4-6	6-11-10-12	9 -13- × -17	4-6-4-6	6-10-18-×	×-13-×-15	

Legend: OSM Prec. (no cont. - cont.) - Global Newton (no cont. cont.)

Inner Newton iterations

				$\bar{u} = 10^3$		$\bar{u} = \infty$		
	q	b	$\nu = 10^{-3}$	$ u = 10^{-5} $	$\nu = 10^{-7}$	$\nu = 10^{-3}$	$ u = 10^{-5} $	$\nu = 10^{-7}$
$\beta = 0$	1	0	6 - 5	31 - 12	× - 18	2 - 5	3 - 8	3 - 11
	10	0	5 - 5	26 - 11	96 - 19	2 - 5	3 - 8	3 - 11
	100	0	2 - 5	18 - 13	× - 19	2 - 5	2 - 8	3 - 11
	1	10	× - 17	× - 35	× - 47	27 - 17	× - 34	× - 60
	10	10	21 - 14	× - 31	103 - 43	21 - 14	× - 32	× - 53
	100	10	8 - 14	26 - 32	× - 43	8 - 14	45 - 30	× - 47
${\cal B}=10^{-2}$	1	0	13 - 8	32 - 16	84 - 25	8 - 8	10 - 14	× - 25
	10	0	10 - 8	22 - 17	33 - 23	7 - 8	11 - 15	× - 24
	100	0	7 - 6	15 - 15	104 - 20	7 - 6	12 - 13	× - 22
	1	10	× - 17	× - 33	× - 45	28 - 17	× - 32	× - 47
	10	10	20 - 14	× - 33	× - 48	20 - 14	× - 30	× - 46
	100	10	10 - 14	23 - 30	125 - 44	10 - 14	40 - 26	× - 44

Legend: OSM Prec. (no cont. - cont.)

GMRES iterations

- Global Newton system preconditioned by $-\Delta + cI$ on state and adjoint.
- No need of OSM prec. in "easy" cases ($\nu = 10^{-3}$ and $\beta = b = 0$).
- For harder cases, OSM prec. with q = 10 is almost always best!

				$\bar{u} = 10^{3}$		$\bar{u} = \infty$		
	q	b	$ u = 10^{-3} $	$ u = 10^{-5} $	$ u = 10^{-7} $	$ u = 10^{-3} $	$ u = 10^{-5} $	$ u = 10^{-7} $
$\beta = 0$	1	0	143 - 128 - 26 - 17	279 - 163 -303- <mark>123</mark>	139- 175 -1255-155	100 - 128 - 26 - 17	170-140 - <mark>69</mark> - 46	× - 149 -371- 66
	10	0	90-75-26-17	179 - 101 -303-123	254- <mark>108</mark> -1255-155	64-75-26- <mark>17</mark>	114- 88 - <mark>69</mark> - 46	× - 92 -371-66
	100	0	73-90-26-17	177 - <mark>114</mark> -303-123	× - 125 -1255-155	73-90-26-17	60 - 88 - <mark>69</mark> - 46	54 - 93 -371- <mark>66</mark>
	1	10	266 - 204 - <mark>49</mark> - 66	× - 251 -397-255	× - 268 -1479-457	256 - 204 - <mark>49</mark> - 66	× - 240 -2000-1172	× - 379 - × -928
	10	10	124 - 88 - <mark>49</mark> - 66	226 - 129 -397-255	× - 168 -1479-255	117 - 88 - <mark>49</mark> - 66	× - 152 -2000-1172	× - 190 - × -928
	100	10	122 - 155 - <mark>49</mark> - 66	139 - 239 -397-255	× - 274 -1479-457	122 - 155 - <mark>49</mark> - 66	161 - 234 -2000-1172	× - 250 - × -928
$eta=10^{-2}$	1	0	226 - 164 - <mark>31</mark> - 42	290 - 198 -187- <mark>123</mark>	× - 223 -1065-168	188 - 164 - <mark>31</mark> - 42	246- 168 - 183 - 109	× - 218 -522-380
	10	0	111 - 95 - <mark>31</mark> - 42	178 - 121 -187-123	× - 130 -1065-168	115-95- <mark>31</mark> -42	143- 124 - 183 - <mark>109</mark>	× - 145 -522-380
	100	0	135 - 118 - <mark>31</mark> - 42	179 - 158 -187- <mark>123</mark>	333- 175 -1065- <mark>168</mark>	135 - 118 - <mark>31</mark> - 42	145- 147 - 183 - <mark>109</mark>	165- 173 -522-380
	1	10	273 - 235 - <mark>49</mark> - 54	× - 238 - 299 - 233	× - 228 - × -416	261 - 235 - <mark>49</mark> - 54	× - 254 -1362- ×	× - 311 - × -752
	10	10	139 - 124 - <mark>49</mark> - 54	× - 158 -299-233	× -164 - × -416	138 - 124 - <mark>49</mark> - 54	× - 161 -1362- ×	× - 179 - × -752
	100	10	122 - 162 - <mark>49</mark> - 54	141 - 251 -299-233	215 - 300 - × -416	122 - 162 - <mark>49</mark> - 54	167 - 219 -1362- ×	× - 303 - × -752

Legend: OSM Prec. (no cont. - cont.) - Global Newton (no cont. cont.)

References

- Nonlinear optimized Schwarz preconditioner for elliptic optimal control problems, Ciaramella, Kwok, Müller, DD26 Proceedings (2022)
- Nonlinear Preconditioning: how to use a Nonlinear Schwarz Method to Precondition Newton's Method, Dolean, Gander, Kheriji, Kwok and Masson, SIAM J. Sci. Comp. (2016)
- Optimality Conditions and Error Analysis of Semilinear Elliptic Control Problems with L1 Cost Functional, Casas, Herzog and Wachsmuth, SIAM J. Optim. (2012)
- Optimal Control of Partial Differential Equations: Theory, Methods, and Applications, Tröltzsch, American Mathematical Society (2010)
- Elliptic optimal control problems with L1-control cost and applications for the placement of control devices, Stadler, Comput. Optim.Appl. (2006)

Thank you!