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Multilevel Solution Methods

Optimisation - Minimization - Solution

o J:H — R (non-)convex functional: stored energy function, loss function, error, ...

@ constraints: u € K: equality/inequality constraints

J(u) = min 7 (v)

JW®) > J') > JW?)>---> J(u), u; €K
gradient methods, sequentiell coordinate minimization, Newton-methods,. . .

necessary conditions:
Fuy=VJu)=0& J(u)(v)=0, veH.

Newton-methods, interior points,penalty,. . .

. Either minimize J or solve F(u) =0
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Nonlinear Problem

Necessary condition of first order for a minimizer

H, W Banach spaces, F: D C H — W, D open, F € C'(D). Find u* € D such that
F(u')=0

Construct sequence if iterates x* € X, in D, k > 0, via

k-1 k k k
u+:u + o C

with u* — u*.
o u* correction or step, a* > 0 steplength
e special case F =V J

e solution may not be unique
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Newton’s method

i

u* € H, Newton's method replaces F by the linear model
F(u*+ ) ~ F(u*) + F' (19" =0
leading to the the Newton correction
= —F'(u*) T F ()

and the Newton update

Ck—|—1 _ Ck _|_ akck7 (1)

o o > 0 damping or line-search parameter for the Newton correction.
o F’'(u*) Fréchet derivative / Jacobian. Here: H = R”"

e |nvariance under affine transformations [Ortega '70, Deuflhard, Heindl '79, Deuflhard ...,
'11]

First linearize, then solve
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From Optimization to Multigrid

Properties of the Newton Direction [Deuflhard '11]

General level set function T (u|A) = Z||AF(u)|l5, A regular:

VT (ulA) = (AF'(u)) (AF(u))
The “natural” choice A = F'(u)™"' leads to

VT (u|F ()Y = —F'(u) " F(v)

For J(u) = 2(Au, u) — (f, u) we get

—F'(u) "t F(u) = =V J(u)VI(u) = A7 (F — Au) = A (Au” — Au)

e The Newton correction is direction of steepest descent for T (u|F'(u)™?)
e Damping strategy for the exact Newton method can be derived using T(-|A)
o J convex and quadratic: Newton step leads to minimizer u* = u + A~ (Au* — Au)

o Isolines of J and T(-|/) will form our energy-landscape
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Newton Path

F@y) = (1-NF@).
TN = (1= 2T (|A)
o = F@TFW),
d[,)_((O) = X%, @(1) =u",
ol = FE)TFW)=C

e connects start value and 'nearest’ solution, or collapses (F’ singular), or ends at
OD[Davidenko '53, Deuflhard '72, '11]

* Newton correction (in the first step) ist tangent to the Newton path



Newton Path: It's the direction

0.4

0.2+

F1 (X1, X2) =
F2(X1, X2) =

The exact solution is u* = [1,1]".

e INB: Inexact Newton with backtracking
o ASPIN: standard ASPIN

o Exact-ASPIN: ASPIN with analytical Jacobian for the preconditioned system

Initial guess: x0=(2,2)
I

/

Contours of ||F(x)||

—o— Newton soln

—4— Newton path for INB

—e— ASPIN soln

—+*— Newton path for ASPIN
Exact-ASPIN soln
Newton path for exact-ASPIN
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. Initial guess: x0=(0,2)
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Contours of ||F(x)
—e— Newton soln
—*— Newton path for INB
—e— ASPIN soln
—+*— Newton path for ASPIN

Exact-ASPIN soln

Newton path for exact-ASPIN
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[Cai, Keyes; 2002; L. Liu, D. Keyes, K’, 2018]
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Outline

Outline:
® Phase-field fracture model

e Affine similar trust-region method

® Pseudo-transient continuation
® Algorithmic design
® Numerical results

o0
® |arge-scale simulation framework for

pressure-induced fracture

A. Kopanicakova

Affine-similar trust-region method with application to phase-field models of brittle fracture



Phase field fracture

LY

Total potential energy:

[Ambrosio, Tortorelli '90]

U(u) = A Pe(u) d9+/ga dr
\I' r
elastic energy fracture energy

[Bourdin et al. '00; Miehe et al. '10]

b0 = [ aoutw+urwan + [ (00 vep)ao

Q Cow

Regularized total potential energy:

elastic energy volumetric approximation of fracture energy

Phase field approach:

® The fracture problem is transformed into a
continuous problem

o0 ® The crack is modeled in a diffused manner

® Transition represented by the phase field
parameter, ¢ € [0, 1]

® [, controls the thickness of the damaged region

A. Kopanicakova Affine-similar trust-region method with application to phase-field models of brittle fracture



Solution strategies ([, 7]

[Dembo et al. '82; Eisenstat and Walker '96]

Inexact Newton's method
Solve coupled problem: Find (u*,¢*) such that

o= (5 2) -o

Inexact Newton's iteration to find coefficients x = ['Z’]
® Find p® by solving F/(x"))p*) = —F(x(¥)), such that
|EG®) + B/ (x8)p® | <9 ()]
® Find o™ using a backtracking algorithm
© x(kt) = x(B) 4 (k) pk

® Far from the solution, avoid solving Newton's equation exactly
® |inear system is solved using preconditioned Krylov method
® Forcing term n®) € [0,1) induces tolerance with which Newton's eq. is solved

H. Kothari et al SPIN preconditioners for phase-field fracture simulations 8



Solution strategies ([, 7]

Properties of (inexact) Newton's methods

® Converges quadratically, if good initial guess is provided

® Typically exhibit very slow convergence until a local neighborhood of a
solution is found

® Slow convergence due to unbalanced and highly localized nonlinearities

® coupling between the displacement and the phase-field
® |ocally varying material stiffness
® steep gradients of the phase-field function

Nonlinear preconditioners can alleviate the aforementioned drawbacks

H. Kothari et al SPIN preconditioners for phase-field fracture simulations 9



Solution strategies ([, 7]

[Cai, Keyes '02; Dolean et al. '16]

Nonlinear preconditioning

Instead of solving F'(x) = 0, we solve

Properties of the preconditioner G :

® 7 should have more balanced nonlinearities

® Solving G(F(x)) = 0 should be easier than solving F(x) = 0

If G(y) =0, theny =0
® (~ F~1 in some sense
® Evaluation of G(F(v)), for some v, should be cheap

® Multiplication of (G(F(v)))" with w should be also easy

H. Kothari et al SPIN preconditioners for phase-field fracture simulations 10



Solution strategies ([, 7]

SPIN method[Cai, Keyes '02; Liu, Keyes '15 '16]

® Employ field-split approach, thus by decomposing x as [u, ], i.e.,

G(F(u,c)) = H(u,c) = {z“((zgﬂ —0

® Explicit knowledge of preconditioner G is typically not available
® Construct H implicitly using knowledge about F' and x

ASPIN: Find H, such that F,(u + Hu,c) =0
Find #H. such that F.(u,c+H.) =0

Hu(u, c)}

= Ha(u,c) = {HC(U,C)

MSPIN: Find H. such that Fy,(u + Hu,c) =0
Find H. such that F.(u + Hy,c+He) =0

Hu(u, c)}

= Hu(u,c) = {Hc(u,c)

H. Kothari et al SPIN preconditioners for phase-field fracture simulations 11



Solution strategies ([, 7]

Jacobian of the preconditioned system (additive)

® Jacobian H’ can be approximated as follows:
F! “Y[F, F,
H,/A‘ ~ uu , ’L;,u 1;,0
FCC FCU, FCC
N———
F/

® The global linear system is solved using Krylov methods, which require product
H', v to be performed efficiently.

H/ v = F1/1,u - F1;u F‘1’LC Vu — F{uz, - Wy
B Fl]  |[Flu Fl]|ve Fi| |we
N——————

F'v=w
/ _ (Fviu)ilwu _ yu
Hav = l:(Fc/c)_lwc - lye

H. Kothari et al SPIN preconditioners for phase-field fracture simulations 13



_Numerical Results _____________________________LJj

Considered solution strategies

AM-ND: Alternate minimization with exact Newton (direct linear solver)

® AM-NK: Alternate minimization with exact Newton (Krylov linear solver)

® AM-INK: Alternate minimization with inexact Newton (Krylov linear solver)
® ASPIN: Additive Schwarz preconditioned inexact Newton
[ ]

MSPIN: Multiplicative Schwarz preconditioned inexact Newton

Implementation details
FEM discretization:

® Finite element framework MQQSE[Permann et al. "20]
Implementation of solution strategies:
4 UtOpia[zu“a"' Kopanicakova et al. "21] (https://bitbucket.org/zulianp/utopia)

® PETSc backend is used for linear algebra and linear solvers (Krylov/direct)

H. Kothari et al SPIN preconditioners for phase-field fracture simulations 16
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umerical Results ([, 7]

Shear test (gradual crack propagation)

u
Q0000000 c
1.0 4
» l
° 0.7 i
. F
_ O 5 0.5 -
e 0.2 L
o
0
§ 0.0 0
| | |
Y I 05 |
3
5 . ) Speedup with respect to |
3 Solver | Time (min) P P P
g
£ Ce . AMLND AM-ND AM-NK_ AM-INK _ ASPIN |
g - - AM-NK AM-ND 5,792.72
k --=- AM-INK AM-NK 3,886.39 - -
E —— ASPIN AM-INK 3,476.33 112
L MSPIN ASPIN 118.56 32.78 29.32
i MSPIN 115.23 | 5027  33.72 30.17 1.03

H. Kothari et al SPIN preconditioners for phase-field fracture simulations 18



Constrained Minimization

o H=(H\(Q)*, H= (W' (@))%, p>d; d =2,3,
o J:H — R (non-)convex functional: stored energy function
o constraints: u € K: equality/inequality constraints

J(u) = min 7 (v)

Direct minimization J(u®) > J(u') > J(u®) > -+ > J(u), u; € K

gradient methods, sequentiell coordinate minimization, Newton-methods,. ..

First order necessary condition (non—smooth) :
Quadratic Energy J(v) = 2a(v,v) — f(v): variational inequality

ucH: aluv—u)>f(lv—u) vek.
Active set strategies, subspace correction methods, multigrid, ...

First order necessary conditions: solve non—linear equation
J'(u)(v) =0, VEH.

Newton-methods, interior points,penalty,. ..



Trust-Region Methods
Trust-Region Methods

Iterative Method, initial iterate can be chosen almost arbitrary

@ Newton-step: Solve
s € R":1(s) = 1(s, Bs) + (VJ(u),s) = min!
such that ||s|| < A, u+seB

where B is a symmetric approximation the Hessian(Quasi-Newton-Method)

u=current iterate

Yh=quadratic approximation

J(u) = min!  ¢(s) = min!

Quadratic approximation to a nonlinear function

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods




Trust-Region Methods I |
Trust-Region Methods

Iterative Method, initial iterate can be chosen almost arbitrary

@ Newton-step: Solve
s € R":1(s) = 1(s, Bs) + (VJ(u),s) = min!
such that ||s|| < A, u+seB

where B is a symmetric approximation the Hessian(Quasi-Newton-Method)

® Acceptance: p = W > n then: u™" = u+ s, otherwise u™" = u, n € (0,1).

® Update of the Trust-Region: A by means of p. Iterate!

Theorem

If 1(s) = min! is solved accurately enough, the gradients and B are bounded on a
compact set, then the method computes a globally converging sequence of iterates

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 3



Trust-Region Methods |

Towards Large-Scale Optimization

Trust-Region (and also Linesearch) methods
e rescale the Newton correction (a priori/a posteriori)

e = only if a sufficient decrease of the objective function can be achieved, the
(scaled) correction will be applied

. 331?3%5
Rescaling 0
400
e depends on the strongest nonlinearity 200
of the objective function 0015047
e might tremendously slow down
convergence Pr

e does not depend on the quality of o2
0.1

search directions s |
0

Aim
Since local nonlinearities govern the whole computation:
define strategies which improve the rates of convergence.

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods




Trust-Region Methods

Towards Large-Scale Problems

Standard Approach
e Linearize Outer nonlinear iteration
e Decompose Parallel solution of the inner linear problem

e Convergence Control Linesearch, Trust region

Alternative
e Nonlinear Decomposition Decompose into many small nonlinear problems
e Nonlinear Solve Solve small nonlinear problems in parallel

e Convergence Control Recombination step

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods



Additive and Multiplicative Trust-Region Methods I |

Nonlinear Domain Decomposition Scheme

Large-scale Nonlinear Programming Problem

S/ 1 N\

Local Nonlinear Programming Problems

~N N L/

Linear/Nonlinear Recombination Step

I S SR

Updated global Iterate

Iterate

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods



Additive and Multiplicative Trust-Region Methods E =&
Concept: APTS

The APTS method
©® Decompose R” into N subsets Dy such that R" = J lkDx C R".
K

® Employ on each Dy a Trust-Region method to solve
sk € By 1 Hi(Peu® + s¢) < Hi(Pxu®) such that |[fisi|| < A®

where
o u® € R" is the current global iterate, A the current global Trust-Region radius,
o By local admissible corrections,
e Hy: Dy — R a particular, local objective function,
o I : Dy — R" (prolongation) and Py : R" — Dy (Projection)

® Combine s, as follows

u® otherwise

G : _ o JO) IO esi)
uene = {” +2hse oA = e A Fwe ) 21
where I, : Dy — R". Update A® by means of pa.

G,new+1 — uG,new + ~

© Compute § employing a Trust-Region method. u 5

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 7



Additive and Multiplicative Trust-Region Methods

The local Objective Function [Nash '00]

Choose the particular nonlinear, local objective function

Hk(uk) = Jk(uk) + (RkVJ(uG) — VJk(PkuG), uk>

e Ji is an a priori given nonlinear function (continuously differentiable)
o Re= ()"

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods




Additive and Multiplicative Trust-Region Methods

The local Objective Function [Nash '00]

Choose the particular nonlinear, local objective function

Hi(uk) = Je(ue) + (ReVI(uC) — VI (Pru®), uy)

e Ji is an a priori given nonlinear function (continuously differentiable)
o R, = (Ik)T

Properties of the coupling term

It holds V Hy(Pxu®) = R«VJ(u®). This yields

J(uC + 30, es) = J(u®)
2ok (Hi(Picu® + si) — Hi(Pu®))

—1 for ||sk|| — O

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods



Additive and Multiplicative Trust-Region Methods E =&

Convergence to First—Order Critical Points

Convergence to first-order critical points

Theorem: If the search directions/corrections are chosen sufficiently well, the norm of
the gradients and of B are either bounded on a compact set, then APTS is globally
convergent.

Even more: global convergence can be guaranteed without global smoothing, if an
(overlapping) domain decomposition is employed.

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods



Additive and Multiplicative Trust-Region Methods I |

Nonlinear Domain Decomposition Scheme

Large-scale Nonlinear Programming Problem

/

{ Linear/Nonlinear Recombination Step

Coarse Nonlinear Programming Problems

AN

{ Linear/Nonlinear Recombination Step

N

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 10



Additive and Multiplicative Trust-Region Methods E |E=F

RMTR strategy [Gratton et al. 2008; Gratton et al. 2009; GroB, K’ 2009]

Finest Grid Duchle Values

The RMTR method

@ compute m; pre-smoothing trust—region steps to approximately solve
Hk(uk) < Hk(Pk+1uk+1) w.r.t ux € By, ||Ll/<|| < Ay
@ if (k is not coarsest level)
e Compute By_1, and Hyx_1, ux_1,0 = Pxuk,m,
e call RMTR on level k — 1 and receive a correction s,_1
oms - leasin 1 pw = g SRR
U my otherwise

Uk, m+1 =

e Update trust-region Ay m 41

©® compute m» post—smoothing trust—region steps to approximately solve
Hi(uk) < H(uk,my+1) w.r.t ux € By, |Juk|| < Ak

C. GroB, R. Krause (University of Lugano) Domain D ition Methods




Additive and Multiplicative Trust-Region Methods I

RMTR strategy [Gratton et al. 2008; Gratton et al. 2009; GroB, K’ 2009]

The RMTR method

@ compute m; pre-smoothing trust—region steps to approximately solve
Hk(uk) < Hk(Pk+1uk+1) w.r.t ux € By, ||Ll/<|| < Ay
@ if (k is not coarsest level)
e Compute By_1, and Hyx_1, ux_1,0 = Pxuk,m,
e call RMTR on level k — 1 and receive a correction s,_1
oms - leasin 1 pw = g SRR
U my otherwise

Uk, m+1 =

e Update trust-region Ay m 41

©® compute m» post—smoothing trust—region steps to approximately solve
Hi(uk) < H(uk,my+1) w.r.t ux € By, |Juk|| < Ak

O return final iterate

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 11



Linearization Inside: Multilevel Trust-Region

Projection vs. Restriction

Lol bl

Initial Mesh Fine Grid Solution Projection

Comparison of initial mesh, fine level iterate, L2-projected and restricted iterate — example in 3d

Restriction

Dis&:i) N
-0.155
-0.310
-0.466

-0.621

standard restriction leads to Poor approximation of the fine level iterate

GroB,Krause,Krause Multiscale for Real World




Additive and Multiplicative Trust-Region Methods I
MPTS

MPTS: a generalization of RMTR
Almost arbitrary domain decomposition methods possible:
e Multigrid methods
o Alternating domain decomposition methods and nonlinear Jacobi methods

Convergence to first-order critical points

Theorem: If the search directions/corrections are chosen sufficiently well, the norm of
the gradients and of B are either bounded on a compact set, then MPTS is globally
convergent.

Even more: global convergence can be guaranteed without global smoothing, if an
(overlapping) domain decomposition is employed.

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 12



Numerical Examples - APTS/MPTS

Application: Nonlinear Mechanics of Large Deformations

Dirichlet Values Dirichlet Values

Nonlinear elastic material law Linear elastic material law

Stored energy function for Ogden materials [Ogden '72] (describes soft-tissues and
rubber-like materials)

J(u) = fQ dtr(E) + %(tr(E))2 + (1 — d)tr(E?) — d In(det(/ + Vu))dx
E=1(Vu+Vu" +Vu'Vu),d >0

Barrier function: In(det(/ + Vu)), penalizes element volume decrease.

C. GroB, R. Krause (University of Lugano) i Domain D ition Methods 13




Numerical Examples - APTS/MPTS |

Cylinder Contact Problem

{ Displacements { Displacements

8500
|

18500
®

7.5000 7.5000
ls.ooon [ls.0000

2.5000

IO.DOOD

2.5000

ID.OOOD

e Energy optimal displacements
o Bifurcation: energy functional is nonconvex and has at least these two solutions!
e 323,994 unknowns

e 8 processors

C. GroB, R. Krause (University of Lugano) Nonli Domain D ition Methods 14



Numerical Examples - APTS/MPTS E |=F
Cylinder Contact Problem - Performance of Trust-Region Methods

1 oispiacements

First-Order Sufficiency Condition - 10% deformation nPa
i

1 T T T T
TrustRegion Strategy —+—

APTS 70

Ismm

25000

ln 0000

74

1 oispiacements

1 \

0.001 frd

DUGOi*"W f ?‘
1e-05 | :

1e-06
0

11D}V Jiujliz

v
i

75000
Js0o0

25000

ln 0000

e Energy optimal displacements

o First-order sufficiency conditions ||VJ(u)||2 after each Trust-Region step;
Comparison between seq. Trust-Region, APTS, MPTS, combined APTS/MPTS =

AMPTS
(F = 4 local Trust-Region steps on each Dy, 4 global Trust-Region steps in order to

20 a0 60 80 100 120 140

v - Outer lterations

15

P N

C. GroB, R. Krause (University of Lugano) Nonli Domain D ition Methods




Numerical Examples - APTS/MPTS |

Cylinder Contact Problem - Performance of Trust-Region Methods

Newton it. parallel cg it. Time
seq. Trust-Region 137 54,800 1.0
APTS 112 44,800 1.10
MPTS 73 29,200 0.61
AMPTS 45 18,000 0.50

e Energy optimal displacements

e runtime comparison (F = 4 local Trust-Region steps on each Dx, 4 global
Trust-Region steps in order to compute 3)

e time is measured relatively to the sequential Trust-Region method
e 323,994 unknowns
e 8 processors

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 16



Nonlinear Preconditioning - ASPIN I | =
ASPIN Method [Cai, Keyes '00]

ASPIN

® (Local solution phase) On each processor k = 1,..., \/, approximately solve
sk € R™ : VH(Peu' + ) =0
@ (Global solution phase) Then compute the actual Newton correction s':

s eR": (CYIVPI()s' =D lesk ~ —(C) TV I(u)
k
Here C,_1 is the additive Schwarz preconditioning matrix

6= 3 [ (v n) ]
(V2 J(u")oo)~*
(Vz./(u")/\//v)_1

and [, prolongation operators.

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 17



Globalization of ASPIN [GroBK’ 2011]
Globalized ASPIN — Overview

The Algorithm

e In parallel:

e Compute s, € R : Hy (Pyu' + si) = min!
o Compute g', the preconditioned gradient (based on

Zk lesk)

e Solve an QP problem in order to obtain the global
correction s’

o If'J(u") = J(qi + s') decreases sufficiently, then
ul+1 = + s

o |terate!

C. GroB, R. Krause (University of Lugano) Nonli Domain D

ition Methods

256

200



Globalization of ASPIN [GroBK’ 2011] S

The preconditioned Trust-Region model

We compute the global correction as the solution of s € R"™:

P(s) = %(s, Bis)+ (s,8') = minl  w.rt. |s|| < AS
where
é‘i (just for;his slide) —Ci Zk Lesi

o C'is the inverse of the additive Schwarz preconditioning matrix eg
= SQP version of ASPIN

Preconditioned model
The preconditioned model can be considered as a perturbed Trust-Region model.
e Perturbed Trust-Region methods are well known [Toint 1988; Carter 1993; Conn et al.
1993]
e Applications for these methods: numerical differentiation and constrained
optimization
e Here: perturbation resulting from the nonlinear, additive solution process

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods



Globalization of ASPIN [GroBK’ 2011]

Handling the Perturbation

Modified Sufficient Decrease Condition

In order to prove a sufficient decrease:

e a constraint on &: ||&' — g'|| < Al < Af where gi = VJ(u;)

o Al will be adaptively updated

C. GroB, R. Krause (University of Lugano) Nonli Domain D

ition Methods

20



Globalization of ASPIN [GroBK’ 2011] E =
Globalized ASPIN

The Algorithm

e In parallel:
e Compute s € R" : Hk(Pkui + sx) = min! ) )
o Compute g’ based on C'- 3", Iksi and g’ such that ||&" — g'|| < Al

e Solve _ o '
s eR":Y(s) =mint  wrt. s <A
in order to obtain the global correction s’
o If the modified sufficient decrease condition holds: increase AL otherwise decrease it

o If _ : .
JW') —J(u' +s") >

—i(s')
increase AC and vt = u' 4§

otherwise: decrease A’G+1 and vt = o

o |terate!

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 21



G-ASPIN Convergence Analysis [GroBK’ 2011] I I

Convergence to a First-Order Critical Point

e For the given initial iterate u® € R" in the Algorithm we assume that the level set
L={ueR"|Ju) < I}

is compact.

e We assume that J is continuously differentiable on £. Then we have that the norms
of the gradients are bounded by a constant C; > 0, i.e., ||VJ(u)|| < G for all
ue L.

e There exists a constant Cg > 0 such that for all iterates u € L and for each
symmetric matrix B' employed in each ' the inequality ||B'|| < Cg is satisfied.

Theorem

Let the assumptions on J and on B hold. In this case we obtain that the sequence of
iterates generated by the globalized ASPIN algorithms has the property
IVJ(u)] =0

lim
i—o00

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 22



Numerical Results - GASPIN |

Deformation of a Semi-Sphere

e pushing a sphere in direction of a small

obstacle Pa
?48133,8
e 881,280 unknowns £100000
=10000
e No bifurcations in the simulations 1000
We will see :180
o (highly) nonlinear behavior of the 3212091
objective function
e but: exactly the same solution
e QP solver:
o Steihaug-Toint CG ?48?33,8
e Monotone Multigrid Smoother =100000
o Fine grid smoother: symmetric -10000
projected GauB-Seidel 2830
o Coarse grid smoother: additive 10
Schwarz 3.212091

o and Cauchy point computation +
comparison

Reference geometry and deformed
e computations carried out at CSCS, geometry (according to the solution)
Switzerland
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Numerical Results - GASPIN

Comparisons — 240 Cores

Objective Function

First-Order Sufficiency Conditions

25 100
Globalized Aspin === Globalized Aspin s
Trust-Region e Trust-Fegion s
245
24 1 1 1
235 8
0.01 y
23 4 5
g
_ 225 1 o
) 2 o000t | -
22 1 =
E
215 1 2
1608 - 8
21 1
205 8 1008 | 1
s 1
195 L H H L L L L 1610 L L L L H L L L
0 10 20 30 40 50 60 70 %0 0 10 20 30 40 50 60 70 80 %0

Performed Nonlinear Iterations

Performed Nonlinear lterations

Evolution of the objective function J(u') and the norm of the gradient ||g’| for
Trust-Region and globalized Aspin computations with 240 processors

Trust-Region | G-ASPIN
Overall Time 460.13 196.49
Solver global QP Problem 328.15 70.72
Solver local QP Problem — 4.43
Assembling 65.08 66.39

Computation times with 240 cores in seconds

C. GroB, R. Krause (University of Lugano)
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Numerical Results - GASPIN

Comparisons — 1920 Cores

Objective Function

First-Order Sufficiency Conditions

Globalized Aspin s
Trust

Norm of the Gradient

2r S N—

195 - -

100

00001 -

1608 -

1608 [

Performed Nonlinear Iterations

Evolution of the objective function J(u') and the norm of the gradient ||g’| for

0 5 10 15 20 25 30

1e-10 L -
0

Globalized Aspin s
Trust-Region s

5 10 15 20 25 30

Performed Nonlinear lterations

Trust-Region and globalized Aspin computations with 1920 processors

Overall Time

Assembling

Solver global QP Problem
Solver local QP Problem

Trust-Region | G-ASPIN
61.58 44.50
52.48 22.26

— 0.30
6.32 13.89

Computation times with 1920 cores in seconds

C. GroB, R. Krause (University of Lugano)
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Numerical Results - GASPIN |

Comparisons

Objective Function First-Order Suffiency Conditions

0.0001

S

1605

1608

195 - 1e-10
12 14 15 18 0 2 4 6

e 1
Performed Nonlinear

3
Performed Nonii

Evolution of the objective function J(u') and the norm of the gradient ||g’|| for globalized
Aspin employing different numbers of processors

240 cores | 480 cores | 960 cores | 1920 cores
Overall Time 196.49 105.98 57.24 44.50
Solver global TR problem 70.72 40.43 25.25 22.26
Solver local QP Problem 4.43 1.82 0.43 0.30
Assembling 66.39 40.17 19.32 13.89
Nonlinear lterations 17 16 14 14

Computation time in seconds.
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Fault Tolerance I | ==

Fault Tolerance of the APLS/APTS Strategies

o . [ Large-scale Nonlinear Problem |
Possible fault scanarios
Node dies | :

e during submission to the processor: can be = .,n.iZ: -l T
caught and submission can be tried to another
node

Iterate

D S A

e during local solution: will yield no local [ G/ Nontoer Recombindion i
correction = equivalent to s, = 0 and thus | | | |

Fu®)=u®+ O‘Z Ipsp
p#k (

C. GroB, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 27
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Nonlinearly preconditioned training

BROWN

Nonlinearly preconditioned training via DNN decomposition

A. Kopani¢ékova et al. Enhancing Training of Deep Neural Networks Using Multilevel and Domain Decomposition Methods



Nonlinearly preconditioned training

BROWN

L7

Nonlinear preconditioning framework[©2"

Keyes '02; Dolean '16,... ]

® Consider the framework of nonlinear system of equations

VL) =0

® Instead of solving VL(0) = 0, our goal is to construct and solve nonlinearly preconditioned system
of equations
H(B) =0,

where

® 7{ has same solution as an original system
® 7{ should be easier to solve (have more balanced nonlinearities)
® Numerical computations with H should be computationally trackable

A. Kopani¢akova et al. Enhancing Training of Deep Neural Networks Using Multilevel and Domain Decomposition Methods



Nonlinearly preconditioned training &

BROWN

L]

Decomposition of DNN

— Cj

Example of the horizontal decomposition of network.

® Decompose the network into S subdomains
® Transfer operators
® Restriction operator R : R" — R™* extracts the parameters associated with subdomain s, i.e.,

0, =R.,0, fors=1,...,5
® Extension operator E, : R"s — R™ extends quantities related to subdomain s to the whole DNN, i.e.,

S
9 - ZEaee

s=1

A. Kopani¢akova et al. Enhancing Training of Deep Neural Networks Using Multilevel and Domain Decomposition Methods
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Local solves

Nonlinearly preconditioned training

BROWN

Tj, —

Lj, —

® et GG, : R™ — R™s be a local solution operator for 1 < s < .S, such that
RVL(E,G,(0)+ (I — E;R,)0)=0

® This corresponds to minimizing £ wrt. 8, thus

s

12
min £(0 gz:: (fim(z;,0),¢5),

where 8 = [01,...,0,,...,05]T, while parameters of all other subdomains are kept fixed

A. Kopani¢akova et al. Enhancing Training of Deep Neural Networks Using Multilevel and Domain Decomposition Methods



Nonlinearly preconditioned training

BROWN

%

Preconditioned nonlinear systems

® Using subdomain solution operators, we define nonlinear additive domain decomposition method as
s
0k+1 _ ZESGH(ek)a
s=1
which allows us to formulate the nonlinearly preconditioned system of equations as follows
s
H(0)=6-> E.G.(0)=0,
s=1

® We can solve the nonlinearly preconditioned system of equations #(8) using XYZ algorithm, where
XYZ can be Newton's method (ASPIN/ASPEN/RASPEN), but also (S)GD method, Adam,...

A. Kopani¢akova et al. Enhancing Training of Deep Neural Networks Using Multilevel and Domain Decomposition Methods



Nonlinearly preconditioned training

BROWN

%

Pseudo-algorithm

@ For a given 8%, perform local step:
Find 6% such that VL,(60%) =0, fors=1,...,5

@ Evaluate preconditioned gradient as H(6%) = >°°_| E,(R.0% — 67)

© Perform global parameter update by performing one step of XYZ method

A. Kopani¢akova et al. Enhancing Training of Deep Neural Networks Using Multilevel and Domain Decomposition Methods
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BROWN
Preconditioned SGD - image classification with ResNets-101
CIFAR10 CIFAR100 e
95 I : -
QF-------- -
ol
(o (o)
sol WMo —— PSGD(5) 50| -- -t —— PSGD(5)
| PSGD(10) PSGD(10)
| —— PSGD(20) —— PSGD(20)
75 1 40 LN
0 20 40 60 0 20 40 60 80

# its.

Validation accuracy as function of training steps for ResNet-101 and CIFAR10/CIFAR100 datasets. The results obtained for SGD and
preconditioned SGD (PSGD) with varying number of subdomains. Local solves performed using GD method with 3 local steps.

A. Kopani¢akova et al Enhancing Training of Deep Neural Networks Using Multilevel and Domain Decomposition Methods



Nonlinearly preconditioned training
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Physics informed neural networks®

2.50e-01
Minimal surface equation: | 2.000-1
F(u) =V (Vu/(]_—i—‘V’u,F)l/z) =0 on (07]_)27 1.50e-1 .
u = 07 on [07 $2)7 1.00e-1
u = 07 on [1, 332), 5.00e-2
u==1(l—x1), on (z1,0], | 0.000+00
u=2xz1(1—z1), on (x1,1],
1
£(8) := ) Z |F(unn(z;,0))[?
‘ int‘ 2. €D;
J int
T 1 ,
s unN +7"Db | > lunn(=;,0) —gjl?,
Ty ! (@,9;)€Dpe

where g; denotes value of u on I' for a given

x; = (z1,5,22,5)7

5Raissi et al., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations, Journal of Computational physics, 2019

A. Kopanitékové et al Enhancing Training of Deep Neural Networks Using Multilevel and Domain Decomposition Methods



Nonlinearly preconditioned training
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Preconditioned Adam and PINN (Minimal surface equation)

Sensitivity wrt. # subdomains Sensitivity wrt. # local iterations
10! T T T
: : : —— Adam e Adam
! ! ! PAdam (2) PAdam (5)
10t 7777:777777:777777:7—PAdam(3) —— PAdam (10)
. ! ! || =— PAdam (6) —— PAdam (20)
% | | |

7 its. 104 7 its. .10

Convergence history of Adam (Ir=10"*) and preconditioned Adam (PADAM) for PINN-minimal surface example. PADAM method
employed Adam both, locally and globally (Ir:1074). Left: Experiment performed with varying number of subdomains, while number of
local iterations is set to 20. Right: Experiment performed with varying number of local iterations, while number of subdomains is set to 6.

A. Kopanitékové et al Enhancing Training of Deep Neural Networks Using Multilevel and Domain Decomposition Methods
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Thank you for your attention.
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Fault Tolerance of the APLS/APTS Strategies

Large-scale Nonlinear Problem
Possible fault scanarios 4{
|

Node dies |
e in recombination step = |
o while submitting si: will yield sy = 0 and thus

|

Iterate

]-'(uG):uGJraZIpsp X
pk [ urnr/E\Im RemTimiu.. STp

o while solving for a: can be caught and yields a ( Updated global lierate
recomputation of the backtracking step on

different nodes

Nonli Domain D ition Methods 28
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Fault Tolerance I

Fault Tolerance of the APLS/APTS Strategies

[ Large scale Nonlinear Problem |
L |

cal Nonlincar ing Problems

Possible fault scanarios

Node dies
e in (optional) global smoothing step i \ \\ 1 /
o while computing a search direction: must be P
dealt with by the linear solver ] I I I

e while solving for a: can be caught and yields a ( Updated gobal Tterate
recomputation of the backtracking step on
different nodes

Updated global iterate in particular stands
for the global smoothing step.

29
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Fault Tolerance I

Fault Tolerance of the APLS/APTS Strategies

Severeness of possible fault scanarios

Node dies
e during local solution: having s, = 0 is integral concept of APLS/APTS — almost the
same convergence theory applies

e in recombination step
o while submitting si: will yield s, = 0 (see above)
o while solving for a: might spoil the convergence and must be dealt with as described
on the previous slides.
e in global smoothing step:

o this step is optional (might slow down convergence)
o if the step is computed and accepted, convergence must be ensured.
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Efficient Solution Techniques

Parallel non-linear multiscale methods

2y
T
i

v
i

',

o domain decomposition Q = Jp Qp
o master-nodes m at the “processor interfaces” have several copies C(m)

@ non-linear synchronization: solve non-linear problems along the processor boundaries

Linear parallel multigrid [adams ‘os; Bastian, Birken, Lang, Wieners ‘06, ..]



Efficient Solution Techniques I |

Parallel Multigrid for Frictional Contact

Exploit strong locality of constraints and friction law J = J + ¢

For level £=1L,...,0do
@ Approximate minimization of Qﬁzﬂ on each subdomain

@ take meanvalue 7 of the linear residual f(-) — a(x, -) along the processor boundaries
(requires communication)

@ for all nodes at the processor boundaries solve in parallel the non-linear local
problems: find wg € V4 = spann)q

0 € a(wg, v) — F(v) + 8¢ (x* + wg)(v) veV,

@ Local update

k+1 _  k
Xg = Wq

Aq: basis function C(m) = {copies of the node m}
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Parallel Multigrid for Frictional Contact

Exploit strong locality of constraints and friction law J = J + ¢

For level £=1L,...,0do
@ Approximate minimization of Qﬁzﬂ on each subdomain

@ take meanvalue 7 of the linear residual f(-) — a(x, -) along the processor boundaries
(requires communication)

@ for all nodes at the processor boundaries solve in parallel the non-linear local
problems: find wg € V4 = spann)q

0 € a(wg, v) — F(v) + 8¢ (x* + wg)(v) veV,

@ Local update

k+1 _  k
Xg = Wq

Aq: basis function C(m) = {copies of the node m}




Efficient Solution Techniques

Parallel efficiency: model problem 112 processors

level | no. of no. of no of.
contact dof iter
1 69 5.907 11
2 277 42.819 11
3 1.085 325.635 11
4 42.65 2.539.011 11
5 16.877 | 16.858752 9

Good weak scalability, strong scalability depends on surface/volume ratio of the partition
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Conclusion

e The following multiplicative and additive Trust-Region

strategies: o, 1
o APTS e
o MPTS =
-
o A globalization for ASPIN was presented bcr
o extension to ASPIN: reduces to ASPIN if “iterates are Fero eplacements
sufficiently close to local solution” N
o Convergence can be proven due to interpretation as o |
perturbed Trust-Region approach - "
fosso
e Application to NLPs from nonlinear mechanics: solution  oas
is bier
o efficient Zer isplacements
o reliable
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Conclusion

e The following multiplicative and additive Trust-Region
strategies:

o APTS
e MPTS
o A globalization for ASPIN was presented
o extension to ASPIN: reduces to ASPIN if “iterates are
sufficiently close to local solution”
o Convergence can be proven due to interpretation as
perturbed Trust-Region approach
e Application to NLPs from nonlinear mechanics: solution
IS
o efficient
o reliable

Thank you for your attention.

C. GroB, R. Krause (University of Lugano)
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