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Training of Deep Residual Networks

Convolutional ResNets (Hybrid regime)

Total computational cost of the TR and RMTR methods required for training convolutional

ResNets. The methods employ the L-SR1 scheme in order to approximate Hessian. The result

with the highest validation accuracy is selected from 10 independent runs.

A. Kopanicakova Multilevel minimization in trust-region framework 49



Multilevel Solution Methods
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Constrained Minimization

H = (H1(�))d , H = (W 1,p(�))d , p > d ; d = 2, 3,
J : H �⇤ R (non-)convex functional: stored energy function
constraints: u ⌅ K: equality/inequality constraints

J (u) = min
v⇥K

J (v)

Direct minimization J(u0) ⇥ J(u1) ⇥ J(u2) ⇥ · · · ⇥ J(u), ui ⌅ K
gradient methods, sequentiell coordinate minimization, Newton-methods,. . .

First order necessary condition (non–smooth) :
Quadratic Energy J(v) = 1

2a(v, v)� f (v): variational inequality

u ⌅ H : a(u, v � u) ⇥ f (v � u) v ⌅ K .

Active set strategies, subspace correction methods, multigrid, . . .

First order necessary conditions: solve non–linear equation

J �(u)(v) = 0 , v ⌅ H .

Newton-methods, interior points,penalty,. . .

, loss function, error, …

Constrained Minimization

H = (H1(�))d , H = (W 1,p(�))d , p > d ; d = 2, 3,
J : H �⇤ R (non-)convex functional: stored energy function
constraints: u ⌅ K: equality/inequality constraints

J (u) = min
v⇥K

J (v)

Direct minimization J(u0) ⇥ J(u1) ⇥ J(u2) ⇥ · · · ⇥ J(u), ui ⌅ K
gradient methods, sequentiell coordinate minimization, Newton-methods,. . .

First order necessary condition (non–smooth) :
Quadratic Energy J(v) = 1

2a(v, v)� f (v): variational inequality

u ⌅ H : a(u, v � u) ⇥ f (v � u) v ⌅ K .

Active set strategies, subspace correction methods, multigrid, . . .

First order necessary conditions: solve non–linear equation

J �(u)(v) = 0 , v ⌅ H .

Newton-methods, interior points,penalty,. . .

𝖥(𝗎) = ∇𝖩(𝗎) = 𝟢 ⇔

Dual view: Either minimize J or solve F(u) = 0

Optimisation - Minimization - Solution



5

Non-linear problems

Non-linear problem

H,W Banach spaces, F : D ⇢ H �! W , D open, F 2 C
1(D). Find u

⇤ 2 D such that

F (u⇤) = 0

Construct sequence if iterates xk 2 X , in D, k > 0, via

u
k+1 = u

k + ↵k
c
k

with u
k ! u

⇤.

• u
k correction or step, ↵k > 0 steplength

• special case F = rJ

• solution may not be unique

E�ciency and global convergence?

R. Krause (Università della Svizzera italiana) Nonlinear Domain Decomposition Methods 2

Nonlinear Problem

Necessary condition of first order for a minimizer
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Non-linear problems

Newton’s method

x
k 2 X , Newton’s method replaces F by the linear model

F (uk + c
k) ⇡ F (uk) + F

0(uk)ck = 0

leading to the the Newton correction

c
k = �F

0(uk)�1
F (uk)

and the Newton update
c
k+1 = c

k + ↵k
c
k , (1)

• ↵k � 0 damping or line-search parameter for the Newton correction.

• F
0(uk) Fréchet derivative / Jacobian. Here: H = Rn

• Invariance under a�ne transformations [Ortega ’70, Deuflhard, Heindl ’79, Deuflhard ...,

’11]

First linearize, then solve

R. Krause (Università della Svizzera italiana) Nonlinear Domain Decomposition Methods 3

Newton’s method

Hu



From Optimization to Multigrid
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Non-linear problems

Properties of the Newton Direction [Deuflhard ’11]

General level set function T (u|A) = 1
2kAF (u)k

2
2, A regular:

rT (u|A) = (AF 0(u))T (AF (u))

The “natural” choice A = F
0(u)�1 leads to

�rT (u|F 0(u)�1) = �F
0(u)�1

F (u)

For J(u) = 1
2 (Au, u)� (f , u) we get

�F
0(u)�1

F (u) = �r2
J(u)rJ(u) = A

�1(f � Au) = A
�1(Au⇤ � Au)

• The Newton correction is direction of steepest descent for T (u|F 0(u)�1)

• Damping strategy for the exact Newton method can be derived using T (·|A)
• J convex and quadratic: Newton step leads to minimizer u⇤ = u + A

�1(Au⇤ � Au)

• Isolines of J and T (·|I ) will form our energy-landscape

R. Krause (Università della Svizzera italiana) Nonlinear Domain Decomposition Methods 5
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Non-linear problems

Newton Path

F (ū(�)) = (1� �)F (u0),

T (ū(�)|A) = (1� �)2T (u0|A),
dū

d�
= �F

0(ū)�1
F (u0),

x̄(0) = x
0, ū(1) = u

⇤,

dū

d�

���
�=0

= �F
0(u0)�1

F (u0) ⌘ c
0,

• connects start value and ’nearest’ solution, or collapses (F 0 singular), or ends at
@D[Davidenko ’53, Deuflhard ’72, ’11]

• Newton correction (in the first step) ist tangent to the Newton path

R. Krause (Università della Svizzera italiana) Nonlinear Domain Decomposition Methods 8
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Non-linear problems

Newton-Path: DD Examples

F1(x1, x2) = (x1 � x
3
2 + 1)3 � x

3
2 ,

F2(x1, x2) = x1 + 2x2 � 3.

The exact solution is u⇤ = [1, 1]T .
• INB: Inexact Newton with backtracking
• ASPIN: standard ASPIN
• Exact-ASPIN: ASPIN with analytical Jacobian for the preconditioned system

Initial guess: x0=(2,2)
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R. Krause (Università della Svizzera italiana) Nonlinear Domain Decomposition Methods 9[Cai, Keyes; 2002; L. Liu, D. Keyes, K’, 2018]

Newton Path: It's the direction
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Outline:

• Phase-field fracture model

• Affine similar trust-region method
• Pseudo-transient continuation
• Algorithmic design
• Numerical results

• Large-scale simulation framework for
pressure-induced fracture

A. Kopanicakova Affine-similar trust-region method with application to phase-field models of brittle fracture 2
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italiana Phase field fracture

Total potential energy: [Ambrosio, Tortorelli ’90]

Ψ(u) =

∫
Ω\Γ

ψe(u) dΩ︸ ︷︷ ︸
elastic energy

+

∫
Γ

Gc dΓ︸ ︷︷ ︸
fracture energy

Regularized total potential energy: [Bourdin et al. ’00; Miehe et al. ’10]

Ψ̃(u, c) =

∫
Ω

g(c)ψ+
e (u) + ψ−e (u) dΩ︸ ︷︷ ︸
elastic energy

+

∫
Ω

Gc
cw

(
w(c)

ls
+ ls | ∇c |2

)
dΩ︸ ︷︷ ︸

volumetric approximation of fracture energy

Phase field approach:

• The fracture problem is transformed into a
continuous problem

• The crack is modeled in a diffused manner

• Transition represented by the phase field
parameter, c ∈ [0, 1]

• ls controls the thickness of the damaged region

A. Kopanicakova Affine-similar trust-region method with application to phase-field models of brittle fracture 3



Solution strategies
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Inexact Newton’s method[Dembo et al. ’82; Eisenstat and Walker ’96]

Solve coupled problem: Find (u∗, c∗) such that

F (u∗, c∗) =

[
Fu(u

∗, c∗)
Fc(u

∗, c∗)

]
= 0

Inexact Newton’s iteration to find coefficients x =

[
u
c

]
1 Find p(k) by solving F ′(x(k))p(k) = −F (x(k)), such that

‖F (x(k)) + F ′(x(k))p(k)‖ ≤ η(k)‖F (x(k))‖

2 Find α(k) using a backtracking algorithm

3 x(k+1) = x(k) + α(k)pk

• Far from the solution, avoid solving Newton’s equation exactly
• Linear system is solved using preconditioned Krylov method
• Forcing term η(k) ∈ [0, 1) induces tolerance with which Newton’s eq. is solved

H. Kothari et al. SPIN preconditioners for phase-field fracture simulations 8
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Properties of (inexact) Newton’s methods

• Converges quadratically, if good initial guess is provided

• Typically exhibit very slow convergence until a local neighborhood of a
solution is found

• Slow convergence due to unbalanced and highly localized nonlinearities
• coupling between the displacement and the phase-field
• locally varying material stiffness
• steep gradients of the phase-field function

Nonlinear preconditioners can alleviate the aforementioned drawbacks

H. Kothari et al. SPIN preconditioners for phase-field fracture simulations 9
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Nonlinear preconditioning[Cai, Keyes ’02; Dolean et al. ’16]

Instead of solving F (x) = 0, we solve

H(x) = G(F (x)︸ ︷︷ ︸
y

) = 0

Properties of the preconditioner G :

• H should have more balanced nonlinearities

• Solving G(F (x)) = 0 should be easier than solving F (x) = 0

• If G(y) = 0, then y = 0

• G ≈ F−1 in some sense

• Evaluation of G(F (v)), for some v, should be cheap

• Multiplication of (G(F (v)))′ with w should be also easy

H. Kothari et al. SPIN preconditioners for phase-field fracture simulations 10



Solution strategies
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SPIN method[Cai, Keyes ’02; Liu, Keyes ’15 ’16]

• Employ field-split approach, thus by decomposing x as [u, c]>, i.e.,

G(F (u, c)) := H(u, c) :=

[
Hu(u, c)
Hc(u, c)

]
= 0

• Explicit knowledge of preconditioner G is typically not available
• Construct H implicitly using knowledge about F and x

ASPIN: Find Hu such that Fu(u+Hu, c) = 0

Find Hc such that Fc(u, c+Hc) = 0

=⇒ HA(u, c) =

[
Hu(u, c)
Hc(u, c)

]

MSPIN: Find Hu such that Fu(u+Hu, c) = 0

Find Hc such that Fc(u+Hu, c+Hc) = 0

=⇒ HM (u, c) =

[
Hu(u, c)
Hc(u, c)

]
H. Kothari et al. SPIN preconditioners for phase-field fracture simulations 11
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Jacobian of the preconditioned system (additive)

• Jacobian H′ can be approximated as follows:

H′
A ≈

[
F ′
uu

F ′
cc

]−1 [
F ′
uu F ′

uc

F ′
cu F ′

cc

]
︸ ︷︷ ︸

F ′

• The global linear system is solved using Krylov methods, which require product
H′

Av to be performed efficiently.

H′
Av =

[
F ′
uu

F ′
cc

]−1 [
F ′
uu F ′

uc

F ′
cu F ′

cc

] [
vu

vc

]
︸ ︷︷ ︸

F ′v=w

=

[
F ′
uu

F ′
cc

]−1 [
wu

wc

]

H′
Av =

[
(F ′

uu)
−1wu

(F ′
cc)

−1wc

]
=

[
yu

yc

]

H. Kothari et al. SPIN preconditioners for phase-field fracture simulations 13



Numerical Results
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Considered solution strategies
• AM-ND: Alternate minimization with exact Newton (direct linear solver)
• AM-NK: Alternate minimization with exact Newton (Krylov linear solver)
• AM-INK: Alternate minimization with inexact Newton (Krylov linear solver)
• ASPIN: Additive Schwarz preconditioned inexact Newton
• MSPIN: Multiplicative Schwarz preconditioned inexact Newton

Implementation details
FEM discretization:

• Finite element framework MOOSE[Permann et al. ’20]

Implementation of solution strategies:
• Utopia[Zulian, Kopanicakova et al. ’21] (https://bitbucket.org/zulianp/utopia)

• PETSc backend is used for linear algebra and linear solvers (Krylov/direct)

H. Kothari et al. SPIN preconditioners for phase-field fracture simulations 16

https://bitbucket.org/zulianp/utopia


Numerical Results
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Shear test (gradual crack propagation)

H. Kothari et al. SPIN preconditioners for phase-field fracture simulations 18



Constrained Minimization

H = (H1(Ω))d , H = (W 1,p(Ω))d , p > d ; d = 2, 3,
J : H −→ R (non-)convex functional: stored energy function
constraints: u ∈ K: equality/inequality constraints

J (u) = min
v∈K

J (v)

Direct minimization J(u0) ≥ J(u1) ≥ J(u2) ≥ · · · ≥ J(u), ui ∈ K
gradient methods, sequentiell coordinate minimization, Newton-methods,. . .

First order necessary condition (non–smooth) :
Quadratic Energy J(v) = 1

2a(v, v)− f (v): variational inequality

u ∈ H : a(u, v − u) ≥ f (v − u) v ∈ K .

Active set strategies, subspace correction methods, multigrid, . . .

First order necessary conditions: solve non–linear equation

J
�(u)(v) = 0 , v ∈ H .

Newton-methods, interior points,penalty,. . .



Trust-Region Methods

Trust-Region Methods

Iterative Method, initial iterate can be chosen almost arbitrary

1 Newton-step: Solve

s ∈ Rn : ψ(s) = 1
2 �s,Bs�+ �∇J(u), s� = min!

such that �s� ≤ ∆, u + s ∈ B
where B is a symmetric approximation the Hessian(Quasi-Newton-Method)

Quadratic approximation to a nonlinear function

2 Acceptance: ρ = J(u+s)−J(u)
ψ(s) ≥ η then: unew = u + s, otherwise u

new = u, η ∈ (0, 1).

3 Update of the Trust-Region: ∆ by means of ρ. Iterate!

Theorem

If ψ(s) = min! is solved accurately enough, the gradients and B are bounded on a
compact set, then the method computes a globally converging sequence of iterates

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 3
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Trust-Region Methods

Towards Large-Scale Optimization

Trust-Region (and also Linesearch) methods

• rescale the Newton correction (a priori/a posteriori)

• ⇒ only if a sufficient decrease of the objective function can be achieved, the
(scaled) correction will be applied

Rescaling

• depends on the strongest nonlinearity
of the objective function

• might tremendously slow down
convergence

• does not depend on the quality of
search directions s

Aim

Since local nonlinearities govern the whole computation:
define strategies which improve the rates of convergence.

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 4



Trust-Region Methods

Towards Large-Scale Problems

Standard Approach

• Linearize Outer nonlinear iteration

• Decompose Parallel solution of the inner linear problem

• Convergence Control Linesearch, Trust region

Alternative

• Nonlinear Decomposition Decompose into many small nonlinear problems

• Nonlinear Solve Solve small nonlinear problems in parallel

• Convergence Control Recombination step

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 5



Additive and Multiplicative Trust-Region Methods

Nonlinear Domain Decomposition Scheme

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 6



Additive and Multiplicative Trust-Region Methods

Concept: APTS

The APTS method

1 Decompose Rn into N subsets Dk such that Rn =
�
k

IkDk ⊂ Rn.

2 Employ on each Dk a Trust-Region method to solve

sk ∈ Bk : Hk(Pku
G + sk) < Hk(Pku

G ) such that �Iksk� ≤ ∆G

where
• u

G ∈ Rn is the current global iterate, ∆G the current global Trust-Region radius,
• Bk local admissible corrections,
• Hk : Dk → R a particular, local objective function,
• Ik : Dk → Rn (prolongation) and Pk : Rn → Dk (Projection)

3 Combine sk as follows

u
G ,new =

�
u
G +

�
k
Iksk if ρA = J(uG )−J(uG+

�
k
Ik sk )�

k
(Hk (Pku

G )−Hk (Pku
G+sk ))

≥ η

u
G otherwise

where Ik : Dk → Rn. Update ∆G by means of ρA.

4 Compute s̃ employing a Trust-Region method. uG ,new+1 = u
G ,new + s̃

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 7



Additive and Multiplicative Trust-Region Methods

The local Objective Function [Nash ’00]

Choose the particular nonlinear, local objective function

Hk(uk) = Jk(uk) + �Rk∇J(uG )−∇Jk(Pku
G ), uk�

• Jk is an a priori given nonlinear function (continuously differentiable)

• Rk = (Ik)
T

Properties of the coupling term

It holds ∇Hk(Pku
G ) = Rk∇J(uG ). This yields

J(uG +
�

k
Iksk)− J(uG )�

k
(Hk(Pku

G + sk)− Hk(Pku
G ))

→ 1 for �sk� → 0

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 8
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Additive and Multiplicative Trust-Region Methods

Convergence to First–Order Critical Points

Convergence to first-order critical points

Theorem: If the search directions/corrections are chosen sufficiently well, the norm of
the gradients and of B are either bounded on a compact set, then APTS is globally
convergent.

Even more: global convergence can be guaranteed without global smoothing, if an
(overlapping) domain decomposition is employed.

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 9



Additive and Multiplicative Trust-Region Methods

Nonlinear Domain Decomposition Scheme

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 10



Additive and Multiplicative Trust-Region Methods

RMTR strategy [Gratton et al. 2008; Gratton et al. 2009; Groß, K’ 2009]

The RMTR method

1 compute m1 pre–smoothing trust–region steps to approximately solve
Hk(uk) < Hk(Pk+1uk+1) w.r.t uk ∈ Bk , �uk� ≤ ∆k

2 if (k is not coarsest level)
• Compute Bk−1, and Hk−1, uk−1,0 = Pkuk,m1
• call RMTR on level k − 1 and receive a correction sk−1

uk,m1+1 =





uk,m1 + Ik−1sk−1 if ρM =

Hk (uk,m1
)−Hk (uk,m1

+Ik−1sk−1)

Hk−1(Pkuk,m1
)−Hk−1(Pkuk,m1

+sk−1)
≥ η

uk,m1 otherwise

• Update trust-region ∆k,m1+1

3 compute m2 post–smoothing trust–region steps to approximately solve
Hk(uk) < H(uk,m1+1) w.r.t uk ∈ Bk , �uk� ≤ ∆k

4 return final iterate

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 11
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Linearization Inside: Multilevel Trust-Region

Projection vs. Restriction

Comparison of initial mesh, fine level iterate, L
2-projected and restricted iterate – example in 3d

standard restriction leads to Poor approximation of the fine level iterate

Groß,Krause,Krause Multiscale for Real World 30



Additive and Multiplicative Trust-Region Methods

MPTS

MPTS: a generalization of RMTR

Almost arbitrary domain decomposition methods possible:

• Multigrid methods

• Alternating domain decomposition methods and nonlinear Jacobi methods

Convergence to first-order critical points

Theorem: If the search directions/corrections are chosen sufficiently well, the norm of
the gradients and of B are either bounded on a compact set, then MPTS is globally
convergent.

Even more: global convergence can be guaranteed without global smoothing, if an
(overlapping) domain decomposition is employed.

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 12



Numerical Examples - APTS/MPTS

Application: Nonlinear Mechanics of Large Deformations

Stored energy function for Ogden materials [Ogden ’72] (describes soft-tissues and
rubber-like materials)

J(u) =
�
Ω
dtr(E) + λ

2 (tr(E))
2 + (µ− d)tr(E 2)− d ln(det(I +∇u))dx

E = 1
2 (∇u+∇uT +∇uT∇u), d > 0

Barrier function: ln(det(I +∇u)), penalizes element volume decrease.

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 13



Numerical Examples - APTS/MPTS

Cylinder Contact Problem

• Energy optimal displacements

• Bifurcation: energy functional is nonconvex and has at least these two solutions!

• 323,994 unknowns

• 8 processors

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 14



Numerical Examples - APTS/MPTS

Cylinder Contact Problem - Performance of Trust-Region Methods

• Energy optimal displacements
• First-order sufficiency conditions �∇J(u)�2 after each Trust-Region step;
Comparison between seq. Trust-Region, APTS, MPTS, combined APTS/MPTS =
AMPTS
(F �= 4 local Trust-Region steps on each Dk , 4 global Trust-Region steps in order to
compute s̃)

• 323,994 unknowns
• 8 processors

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 15



Numerical Examples - APTS/MPTS

Cylinder Contact Problem - Performance of Trust-Region Methods

Newton it. parallel cg it. Time
seq. Trust-Region 137 54,800 1.0
APTS 112 44,800 1.10
MPTS 73 29,200 0.61
AMPTS 45 18,000 0.50

• Energy optimal displacements

• runtime comparison (F �= 4 local Trust-Region steps on each Dk , 4 global
Trust-Region steps in order to compute s̃)

• time is measured relatively to the sequential Trust-Region method

• 323,994 unknowns

• 8 processors

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 16



Nonlinear Preconditioning - ASPIN

ASPIN Method [Cai, Keyes ’00]

ASPIN

1 (Local solution phase) On each processor k = 1, . . . ,N , approximately solve

sk ∈ Rnk : ∇Hk(Pku
i + sk) = 0

2 (Global solution phase) Then compute the actual Newton correction s
i :

s
i ∈ Rn : (C i )−1∇2

J(ui )s i =
�

k

Iksk ≈ −(C i )−1∇J(ui )

Here C
−1
i

is the additive Schwarz preconditioning matrix

C
−1
i

=
�

k

�
Ik

�
Rk(∇2

J(ui ))Ik
�−1

Rk

�

=




(∇2

J(ui )00)−1

. . .

(∇2
J(ui )NN)

−1





and Ik prolongation operators.
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Globalization of ASPIN [GroßK’ 2011]

Globalized ASPIN – Overview

The Algorithm

• In parallel:
• Compute sk ∈ Rnk : Hk (Pku

i + sk ) = min!
• Compute g̃

i , the preconditioned gradient (based on�
k
Ik sk )

• Solve an QP problem in order to obtain the global
correction s

i

• If J(ui )− J(ui + s
i ) decreases sufficiently, then

u
i+1 = u

i + s
i

• Iterate!

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 18



Globalization of ASPIN [GroßK’ 2011]

The preconditioned Trust-Region model

We compute the global correction as the solution of s ∈ Rn:

�ψi (s) =
1
2
�s,B i

s�+ �s, g̃ i � = min! w.r.t. �s� ≤ ∆G

i

where

• g̃
i (just for this slide)

= −C
i
�

k
Iksk

• C
i is the inverse of the additive Schwarz preconditioning matrix eg

⇒ SQP version of ASPIN

Preconditioned model

The preconditioned model can be considered as a perturbed Trust-Region model.

• Perturbed Trust-Region methods are well known [Toint 1988; Carter 1993; Conn et al.

1993]

• Applications for these methods: numerical differentiation and constrained
optimization

• Here: perturbation resulting from the nonlinear, additive solution process

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 19



Globalization of ASPIN [GroßK’ 2011]

Handling the Perturbation

Modified Sufficient Decrease Condition

In order to prove a sufficient decrease:

• a constraint on g̃i : �g̃ i − g
i� ≤ ∆L

i ≤ ∆G

i where gi = ∇J(ui )

• ∆L

i will be adaptively updated

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 20



Globalization of ASPIN [GroßK’ 2011]

Globalized ASPIN

The Algorithm

• In parallel:
• Compute sk ∈ Rnk : Hk (Pku

i + sk ) = min!
• Compute g̃

i based on C
i ·

�
k
Ik sk and g

i such that �g̃ i − g
i� ≤ ∆L

i

• Solve
s
i ∈ Rn : �ψi (s i ) = min! w.r.t. �s i� ≤ ∆G

i

in order to obtain the global correction s
i

• If the modified sufficient decrease condition holds: increase ∆L

i otherwise decrease it

• If
J(ui )− J(ui + s

i )

− �ψi (s i )
≥ η

increase ∆G

i and u
i+1 = u

i + s
i

otherwise: decrease ∆i+1
G

and u
i+1 = u

i

• Iterate!
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G-ASPIN Convergence Analysis [GroßK’ 2011]

Convergence to a First-Order Critical Point

• For the given initial iterate u
0 ∈ Rn in the Algorithm we assume that the level set

L = {u ∈ Rn | J(u) ≤ J(u0)}

is compact.

• We assume that J is continuously differentiable on L. Then we have that the norms
of the gradients are bounded by a constant Cg > 0, i.e., �∇J(u)� ≤ Cg for all
u ∈ L.

• There exists a constant CB > 0 such that for all iterates ui ∈ L and for each
symmetric matrix B

i employed in each �ψi the inequality �B i� ≤ CB is satisfied.

Theorem

Let the assumptions on J and on B hold. In this case we obtain that the sequence of
iterates generated by the globalized ASPIN algorithms has the property

lim
i→∞

�∇J(ui )� = 0

C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 22



Numerical Results - GASPIN

Deformation of a Semi-Sphere

• pushing a sphere in direction of a small
obstacle

• 881,280 unknowns

• No bifurcations in the simulations
We will see

• (highly) nonlinear behavior of the
objective function

• but: exactly the same solution

• QP solver:
• Steihaug-Toint CG
• Monotone Multigrid Smoother
• Fine grid smoother: symmetric

projected Gauß-Seidel
• Coarse grid smoother: additive

Schwarz
• and Cauchy point computation +

comparison

• computations carried out at CSCS,
Switzerland

Reference geometry and deformed
geometry (according to the solution)
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Numerical Results - GASPIN

Comparisons – 240 Cores

Evolution of the objective function J(ui ) and the norm of the gradient �g i� for
Trust-Region and globalized Aspin computations with 240 processors

Trust-Region G-ASPIN
Overall Time 460.13 196.49
Solver global QP Problem 328.15 70.72
Solver local QP Problem — 4.43
Assembling 65.08 66.39

Computation times with 240 cores in seconds
C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 24



Numerical Results - GASPIN

Comparisons – 1920 Cores

Evolution of the objective function J(ui ) and the norm of the gradient �g i� for
Trust-Region and globalized Aspin computations with 1920 processors

Trust-Region G-ASPIN
Overall Time 61.58 44.50
Solver global QP Problem 52.48 22.26
Solver local QP Problem — 0.30
Assembling 6.32 13.89

Computation times with 1920 cores in seconds
C. Groß, R. Krause (University of Lugano) Nonlinear Domain Decomposition Methods 25



Numerical Results - GASPIN

Comparisons

Evolution of the objective function J(ui ) and the norm of the gradient �g i� for globalized
Aspin employing different numbers of processors

240 cores 480 cores 960 cores 1920 cores
Overall Time 196.49 105.98 57.24 44.50
Solver global TR problem 70.72 40.43 25.25 22.26
Solver local QP Problem 4.43 1.82 0.43 0.30
Assembling 66.39 40.17 19.32 13.89
Nonlinear Iterations 17 16 14 14

Computation time in seconds.
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Fault Tolerance

Fault Tolerance of the APLS/APTS Strategies

Possible fault scanarios

Node dies

• during submission to the processor: can be
caught and submission can be tried to another
node

• during local solution: will yield no local
correction ⇒ equivalent to sk = 0 and thus

F(uG ) = u
G + α

�

p �=k

Ipsp
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Nonlinearly preconditioned training via DNN decomposition
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italiana Nonlinearly preconditioned training

Nonlinear preconditioning framework[Cai, Keyes ’02; Dolean ’16,. . . ]

• Consider the framework of nonlinear system of equations

∇L(θ) = 0

• Instead of solving ∇L(θ) = 0, our goal is to construct and solve nonlinearly preconditioned system
of equations

H(θ) = 0,

where
• H has same solution as an original system
• H should be easier to solve (have more balanced nonlinearities)
• Numerical computations with H should be computationally trackable

A. Kopaničáková et al. Enhancing Training of Deep Neural Networks Using Multilevel and Domain Decomposition Methods 36
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Decomposition of DNN

xj1

xj2

cj

Example of the horizontal decomposition of network.

• Decompose the network into S subdomains
• Transfer operators

• Restriction operator Rs : Rn → Rns extracts the parameters associated with subdomain s, i.e.,
θs = Rsθ, for s = 1, . . . , S

• Extension operator Es : Rns → Rn extends quantities related to subdomain s to the whole DNN, i.e.,

θ =

S∑
s=1

Esθs

A. Kopaničáková et al. Enhancing Training of Deep Neural Networks Using Multilevel and Domain Decomposition Methods 37
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Local solves

xj1

xj2

cj

• Let Gs : Rn → Rns be a local solution operator for 1 ≤ s ≤ S, such that

Rs∇L(EsGs(θ) + (I −EsRs)θ) = 0,

• This corresponds to minimizing L wrt. θs, thus

min
θs

L(θ) := 1

p

p∑
j=1

`(fm(xj ,θ), cj),

where θ = [θ1, . . . ,θs, . . . ,θS ]
T , while parameters of all other subdomains are kept fixed
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Preconditioned nonlinear systems

• Using subdomain solution operators, we define nonlinear additive domain decomposition method as

θk+1 =
S∑

s=1

EsGs(θ
k),

which allows us to formulate the nonlinearly preconditioned system of equations as follows

H(θ) = θ −
S∑

s=1

EsGs(θ) = 0,

• We can solve the nonlinearly preconditioned system of equations H(θ) using XYZ algorithm, where
XYZ can be Newton’s method (ASPIN/ASPEN/RASPEN), but also (S)GD method, Adam,. . .

A. Kopaničáková et al. Enhancing Training of Deep Neural Networks Using Multilevel and Domain Decomposition Methods 39
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Pseudo-algorithm

1 For a given θk, perform local step:
Find θ∗

s such that ∇Ls(θ
∗
s) = 0, for s = 1, . . . , S

2 Evaluate preconditioned gradient as H(θk) =
∑S

s=1 Es(Rsθ
k − θ∗

s)

3 Perform global parameter update by performing one step of XYZ method

A. Kopaničáková et al. Enhancing Training of Deep Neural Networks Using Multilevel and Domain Decomposition Methods 40
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Preconditioned SGD - image classification with ResNets-101
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Validation accuracy as function of training steps for ResNet-101 and CIFAR10/CIFAR100 datasets. The results obtained for SGD and
preconditioned SGD (PSGD) with varying number of subdomains. Local solves performed using GD method with 3 local steps.
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Physics informed neural networks5

Minimal surface equation:
F (u) := ∇ ·

(
∇u/(1 + |∇u|2)1/2

)
= 0 on (0, 1)2,

u = 0, on [0, x2),

u = 0, on [1, x2),

u = x1(1− x1), on (x1, 0],

u = x1(1− x1), on (x1, 1],

x1

x2

uNN

L(θ) := 1

|Dint|
∑

xj∈Dint

|F
(
uNN (xj ,θ)

)
|2

+
1

|Dbc|
∑

(xj ,gj)∈Dbc

|uNN (xj ,θ)− gj |2,

where gj denotes value of u on Γ for a given
xj = (x1,j , x2,j)

T .
5Raissi et al., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, Journal of Computational physics, 2019
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Preconditioned Adam and PINN (Minimal surface equation)
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Convergence history of Adam (lr=10−4) and preconditioned Adam (PADAM) for PINN-minimal surface example. PADAM method
employed Adam both, locally and globally (lr=10−4). Left: Experiment performed with varying number of subdomains, while number of
local iterations is set to 20. Right: Experiment performed with varying number of local iterations, while number of subdomains is set to 6.
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Thank you for your attention.
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Fault Tolerance

Fault Tolerance of the APLS/APTS Strategies

Possible fault scanarios

Node dies
• in recombination step

• while submitting sk : will yield sk = 0 and thus

F(uG ) = u
G + α

�

p �=k

Ipsp

• while solving for α: can be caught and yields a
recomputation of the backtracking step on
different nodes
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Fault Tolerance

Fault Tolerance of the APLS/APTS Strategies

Possible fault scanarios

Node dies
• in (optional) global smoothing step

• while computing a search direction: must be
dealt with by the linear solver

• while solving for α: can be caught and yields a
recomputation of the backtracking step on
different nodes

Updated global iterate in particular stands
for the global smoothing step.
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Fault Tolerance

Fault Tolerance of the APLS/APTS Strategies

Severeness of possible fault scanarios

Node dies

• during local solution: having sk = 0 is integral concept of APLS/APTS – almost the
same convergence theory applies

• in recombination step
• while submitting sk : will yield sk = 0 (see above)
• while solving for α: might spoil the convergence and must be dealt with as described

on the previous slides.

• in global smoothing step:
• this step is optional (might slow down convergence)
• if the step is computed and accepted, convergence must be ensured.
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Efficient Solution Techniques

Parallel non-linear multiscale methods

domain decomposition Ω =
S

P ΩP

master-nodes m at the “processor interfaces” have several copies C(m)

non-linear synchronization: solve non-linear problems along the processor boundaries

Linear parallel multigrid [Adams ’06; Bastian, Birken, Lang, Wieners ’96,. . . ]



Efficient Solution Techniques

Parallel Multigrid for Frictional Contact

Exploit strong locality of constraints and friction law J = J + φ

For level � = L, . . . , 0 do
1 Approximate minimization of Q�

ū�+1 on each subdomain
2 take meanvalue r̄ of the linear residual f (·)− a(x , ·) along the processor boundaries

(requires communication)
3 for all nodes at the processor boundaries solve in parallel the non-linear local

problems: find wq ∈ Vq = spannλq

0 ∈ a(wq, v)− r̄(v) + ∂φ�(xk + wq)(v) v ∈ Vq

4 Local update
xk+1
q = wk

q

λq: basis function C(m) = {copies of the node m}
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Efficient Solution Techniques

Parallel efficiency: model problem 112 processors

level no. of no. of no of.
contact dof iter

1 69 5.907 11
2 277 42.819 11
3 1.085 325.635 11
4 42.65 2.539.011 11
5 16.877 16.858752 9

Good weak scalability, strong scalability depends on surface/volume ratio of the partition



Fault Tolerance

Conclusion

• The following multiplicative and additive Trust-Region
strategies:

• APTS
• MPTS

• A globalization for ASPIN was presented
• extension to ASPIN: reduces to ASPIN if “iterates are

sufficiently close to local solution”
• Convergence can be proven due to interpretation as

perturbed Trust-Region approach

• Application to NLPs from nonlinear mechanics: solution
is

• efficient
• reliable

Thank you for your attention.
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