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Applications

Time-harmonic Maxwell’s equations

−iωεE +∇×H− σE = J,

iωµH +∇×E = 0.

Linear elasticity

−∇ · (σ(u)) = f ,

σij(u) = 2µεij(u) + λδij∇ · (u),

εij(u) = 1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
,

µ = E
2(1+ν)

, λ = Eν
(1+ν)(1−2ν)

.
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Applications

Time-harmonic Maxwell’s equations

−iωεE +∇×H− σE = J,

iωµH +∇×E = 0.

Linear elasticity

−∇ · (σ(u)) = f ,

σij(u) = 2µεij(u) + λδij∇ · (u),

εij(u) = 1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
,

µ = E
2(1+ν)

, λ = Eν
(1+ν)(1−2ν)

.

After discretisation ⇒ large linear system Au = b. Matrix A inherits the properties of the underlying PDE

(symmetric, positive definite, indefinite, etc...) A is in general sparse, large and ill conditioned.
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Au = b? Landscape of linear solvers

Direct Solvers
MUMPS (J.Y. L’Excellent), SuperLU (Demmel, . . . ), PastiX, UMFPACK, PARDISO (O. Schenk):

Iterative Methods
• Fixed point iteration: Jacobi, Gauss-Seidel, SSOR
• Krylov type methods: Conjuguate Gradient (Stiefel-Hestenes), GMRES (Y. Saad), QMR (R. Freund), MinRes,
BiCGSTAB (van der Vorst):
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Motivation: pro and cons of direct solvers

Complexity of the Gauss factorisation (sparse linear algebra)
Gauss d = 1 d = 2 d = 3

dense matrix O(n3) O(n3) O(n3)

using band structure O(n) O(n2) O(n7/3)

using sparsity O(n) O(n3/2) O(n2)

As of today: n = 106 (2d) and n = 105 (3d) is ok.

Different sparse direct solvers
• PARDISO (http://www.pardiso-project.org)
• SUPERLU (https://portal.nersc.gov/project/sparse/superlu/)
• MUMPS (http://graal.ens-lyon.fr/MUMPS/)

• UMFPACK, in SuiteSparse (https://people.engr.tamu.edu/davis/suitesparse.html)
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Need & Opportunities for massively parallel computing

Moore’s law: the number of transistors doubles every two years
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Dennard scaling: the power density stays constant

Multicore processors as an alternative way to improve performance.
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Need & Opportunities for massively parallel computing

Parallel computers are more and more available to
scientists and engineers

• Apple, Linux, Windows laptops, 4/8 cores

• Desktop Computers, 64/128 cores

• Laboratory cluster, 300 cores

• University cluster, ∼ 10 000 cores

• Cloud computing on Data Mining machines

• Supercomputers via academic or commercial
providers > 100k cores

All fields of computer science are impacted.
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• Desktop Computers, 64/128 cores
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The First Domain Decomposition Method

The original Schwarz Method (H.A. Schwarz, 1870)

−∆(u) = f in Ω

u = 0 on ∂Ω.

Ω1 Ω2

Schwarz Method : (un1 , u
n
2 )→ (un+1

1 , un+1
2 ) with

−∆(un+1
1 ) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω

un+1
1 = un2 on ∂Ω1 ∩ Ω2.

−∆(un+1
2 ) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

un+1
2 = un+1

1 on ∂Ω2 ∩ Ω1.

Parallel algorithm, converges but very slowly, overlapping subdomains only.
The parallel version is called Jacobi Schwarz method (JSM).
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Continuous ASM and RAS - I

The algorithm acts on the local functions (ui)i=1,2. To make things global, we need:
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Continuous ASM and RAS - I

The algorithm acts on the local functions (ui)i=1,2. To make things global, we need:
• extension operators, Ei, s.t. for a function wi : Ωi 7→ R, Ei(wi) : Ω 7→ R is the extension of wi by
zero outside Ωi.
• partition of unity functions χi : Ωi 7→ R, χi ≥ 0 and χi(x) = 0 for x ∈ ∂Ωi and s.t.

w =

2∑
i=1

Ei(χi w|Ωi
) .

Let un be an approximation to the solution to the global Poisson problem then un+1 is computed by
solving first local subproblems and then gluing them together.
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Continuous ASM and RAS - II

Local problems to solve (i = 1, 2)

−∆(un+1
i ) = f in Ωi

un+1
i = 0 on ∂Ωi ∩ ∂Ω

un+1
i = un on ∂Ωi ∩ Ω3−i.
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Continuous ASM and RAS - II

Local problems to solve (i = 1, 2)

−∆(un+1
i ) = f in Ωi

un+1
i = 0 on ∂Ωi ∩ ∂Ω

un+1
i = un on ∂Ωi ∩ Ω3−i.

Two ways to "glue" solutions
• Using the partition of unity functions

Restricted Additive Schwarz (RAS)

un+1 :=

2∑
i=1

Ei(χi u
n+1
i ) .

• Not based on the partition of unity

Additive Schwarz (ASM)

un+1 :=
2∑
i=1

Ei(u
n+1
i ) .
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Block Jacobi methods

The Jacobi algorithm

Let us consider a linear system:

AU = F

with a matrix A of size m×m, a right handside
F ∈ Rm and a solution U ∈ Rm where m is an
integer. Let D be the diagonal of A:

DUn+1 = DUn + (b−AUn) ,

or equivalently,

Un+1 = Un +D−1(b−AUn) = Un +D−1rn ,

where rn is the residual of the equation.
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integer. Let D be the diagonal of A:

DUn+1 = DUn + (b−AUn) ,

or equivalently,

Un+1 = Un +D−1(b−AUn) = Un +D−1rn ,

where rn is the residual of the equation.

The block-Jacobi algorithm

The set of indices {1, . . . ,m} is partitioned into
two sets

N1 := {1, . . . ,ms} and N2 := {ms + 1, . . . ,m} .

Let U1 := U|N1
, U2 := U|N2
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F1 := F|N1

, F2 := F|N2
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The Jacobi algorithm

Let us consider a linear system:

AU = F

with a matrix A of size m×m, a right handside
F ∈ Rm and a solution U ∈ Rm where m is an
integer. Let D be the diagonal of A:

DUn+1 = DUn + (b−AUn) ,

or equivalently,

Un+1 = Un +D−1(b−AUn) = Un +D−1rn ,

where rn is the residual of the equation.

The block-Jacobi algorithm

The set of indices {1, . . . ,m} is partitioned into
two sets

N1 := {1, . . . ,ms} and N2 := {ms + 1, . . . ,m} .

Let U1 := U|N1
, U2 := U|N2

and similarly
F1 := F|N1

, F2 := F|N2
.

The linear system has the following block form:(
A11 A12

A21 A22

)(
U1

U2

)
=

(
F1

F2

)

where Aij := A|Ni×Nj
, 1 ≤ i, j ≤ 2.
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The Jacobi algorithm

Let us consider a linear system:

AU = F

with a matrix A of size m×m, a right handside
F ∈ Rm and a solution U ∈ Rm where m is an
integer. Let D be the diagonal of A:

DUn+1 = DUn + (b−AUn) ,

or equivalently,

Un+1 = Un +D−1(b−AUn) = Un +D−1rn ,

where rn is the residual of the equation.

The block-Jacobi algorithm

The set of indices {1, . . . ,m} is partitioned into
two sets

N1 := {1, . . . ,ms} and N2 := {ms + 1, . . . ,m} .

Let U1 := U|N1
, U2 := U|N2

and similarly
F1 := F|N1

, F2 := F|N2
.

The block-Jacobi algorithm reads:(
A11 0

0 A22

)(
Un+1

1

Un+1
2

)
=

(
F1 −A12 U

n
2

F2 −A21 U
n
1

)
.
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Block Jacobi methods

The Jacobi algorithm

Let us consider a linear system:

AU = F

with a matrix A of size m×m, a right handside
F ∈ Rm and a solution U ∈ Rm where m is an
integer. Let D be the diagonal of A:

DUn+1 = DUn + (b−AUn) ,

or equivalently,

Un+1 = Un +D−1(b−AUn) = Un +D−1rn ,

where rn is the residual of the equation.

The block-Jacobi algorithm

The set of indices {1, . . . ,m} is partitioned into
two sets

N1 := {1, . . . ,ms} and N2 := {ms + 1, . . . ,m} .

Let U1 := U|N1
, U2 := U|N2

and similarly
F1 := F|N1

, F2 := F|N2
.

Let Un = (Un
1 ,U

n
2 )T , algorithm becomes(

A11 0

0 A22

)
Un+1 = F−

(
0 A12

A21 0

)
Un .
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Block Jacobi methods

The Jacobi algorithm

Let us consider a linear system:

AU = F

with a matrix A of size m×m, a right handside
F ∈ Rm and a solution U ∈ Rm where m is an
integer. Let D be the diagonal of A:

DUn+1 = DUn + (b−AUn) ,

or equivalently,

Un+1 = Un +D−1(b−AUn) = Un +D−1rn ,

where rn is the residual of the equation.

The block-Jacobi algorithm

The set of indices {1, . . . ,m} is partitioned into
two sets

N1 := {1, . . . ,ms} and N2 := {ms + 1, . . . ,m} .

Let U1 := U|N1
, U2 := U|N2

and similarly
F1 := F|N1

, F2 := F|N2
.

Or equivalently

Un+1 = Un +

(
A11 0

0 A22

)−1

rn

where

rn := F −AUn , rni := rn|Ni
, i = 1, 2 .
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Block-Jacobi compact form

Notations for a compact form
• R1 the restriction operator from N into N1

• R2 the restriction operator from N into N2.
The transpose operator RT1 is an extension operator
from N1 into N and the same holds for RT2 .

Block-Jacobi in compact form

Un+1 = Un+(RT1 A
−1
1 R1+RT2 A

−1
2 R2)rn .

where

rn := F−AUn , rni := rn|Ni
, i = 1, 2 .

Ai = RiAR
T
i , i = 1, 2 .
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Schwarz algorithms as block Jacobi methods

Let Ω := (0, 1) and consider the following BVP

−∆u = f in Ω

u(0) = u(1) = 0 .

discretized by a three point FD on the grid
xj := j h, 1 ≤ j ≤ m where h := 1/(m+ 1).
Let uj ' u(xj), fj := f(xj), 1 ≤ j ≤ m and the
discrete problem

AU = F, U = (uj)1≤j≤m, F = (fj)1≤j≤m.

where Aj j := 2/h2 and
Aj j+1 = Aj+1 j := −1/h2.
Let domains Ω1 := (0, (ms + 1)h) and
Ω2 := (ms h, 1) define an overlapping
decomposition with a minimal overlap of width h.

The discretization of the Jacobi-Schwarz for
domain Ω1 reads
−
un+1

1,j−1 − 2un+1
1,j + un+1

1,j+1

h2
= fj , 1 ≤ j ≤ ms

un+1
1,0 = 0

un+1
1,ms+1 = un2,ms+1

.

Solving for Un+1
1 = (un+1

1,j )1≤j≤ms corre-
sponds to solving a Dirichlet BVP in subdo-
main Ω1 with Dirichlet data taken from the
other subdomain at the previous step.

A11U
n+1
1 +A12U

n
2 = F1,

A22U
n+1
2 +A21U

n
1 = F2 .
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Schwarz as block Jacobi methods - III

The discrete counterpart of the extension operator E1 (resp. E2) is defined by E1(U1) = (U1, 0)T

(resp. E2(U2) = (0, U2)T ).

Ω1 Ω2
xms xms+1

χ1 χ2

then E1(U1) + E2(U2) = E1(χ1U1) + E2(χ2U2) =

(
U1

U2

)
.

When the overlap is minimal, the discrete counterparts of the three Schwarz methods (AS,
RAS, JS) are equivalent to the same block Jacobi algorithm.
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Continuous vs. discrete level

Continuous level

• Domain Ω and an overlapping decomposition

Ω = ∪Ni=1Ωi.

• A function u : Ω→ R.
• Restriction of u : Ω→ R to Ωi, 1 ≤ i ≤ N .
• The extension operator Ei of a function

ui : Ωi → R

to a function Ω→ R.
• Partition of unity functions χi, 1 ≤ i ≤ N .
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Continuous vs. discrete level

Continuous level

• Domain Ω and an overlapping decomposition

Ω = ∪Ni=1Ωi.

• A function u : Ω→ R.
• Restriction of u : Ω→ R to Ωi, 1 ≤ i ≤ N .
• The extension operator Ei of a function

ui : Ωi → R

to a function Ω→ R.
• Partition of unity functions χi, 1 ≤ i ≤ N .

Discrete level

• A set of d.o.f. N and a decomposition

N = ∪Ni=1Ni.

• A vector U ∈ R#N .
• Restriction Ri - #Ni ×#N boolean matrix
• The extension matrix RTi .
• Partition of unity diagonal matrices with pos-
itive entries, of size #Ni ×#Ni s. t.

Id =

N∑
i=1

RTi DiRi.
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Restrictions operators

Let (Th,i)1≤i≤N define an overlapping mesh decomposition of Th and Ωi := ∪K∈Th,iK.
Define Vh,i the finite element space on Th,i.
Let Th be a mesh of a domain Ω and uh some discretization of a function u which is the solution of an
elliptic Dirichlet BVP.

Find U ∈ R#N s.t. AU = F .

Define the restriction operator ri = ETi :

ri : uh 7→ uh|Ωi

Ri boolean matrix corresponding to ri:

Ri :=


1 0 0 0 0 0 0 0 0 . . .

0 0 1 0 0 0 0 0 0 . . .

0 1 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 1 . . .


Ri : R#N 7−→ R#Ni
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Partition of unity

Restriction operator

Ri : R#N 7−→ R#Ni
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Partition of unity

Restriction operator

Ri : R#N 7−→ R#Ni

Prolongation operator

RTi : R#Ni 7−→ R#N .

Local Dirichlet matrices

Ai := RiAR
T
i .
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Partition of unity

Restriction operator

Ri : R#N 7−→ R#Ni

Prolongation operator

RTi : R#Ni 7−→ R#N .

Local Dirichlet matrices

Ai := RiAR
T
i .

Partition of unity defined by matrices Di

Di : R#Ni 7−→ R#Ni

N∑
i=1

RTi DiRi = Id
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Examples. Two subdomain case: 1d algebraic setting

Let N := {1, . . . , 5} be partitioned into

N1 := {1, 2, 3} and N2 := {4, 5} .

N1 N2

1 2 3 4 5
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Examples. Two subdomain case: 1d algebraic setting

Let N := {1, . . . , 5} be partitioned into

N1 := {1, 2, 3} and N2 := {4, 5} .

N1 N2

1 2 3 4 5

Restriction/partition of unity matrices R1, R2, D1 and D2:

R1 =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 and R2 =

(
0 0 0 1 0

0 0 0 0 1

)
.

D1 =

1 0 0

0 1 0

0 0 1

 and D2 =

(
1 0

0 1

)
.
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Two subdomain case: 1d algebraic setting II

An overlapping case

N δ=1
1 := {1, 2, 3, 4} and N δ=1

2 := {3, 4, 5} .

N δ=1
1

N δ=1
2

1 2 3 4 5
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Two subdomain case: 1d algebraic setting II

An overlapping case

N δ=1
1 := {1, 2, 3, 4} and N δ=1

2 := {3, 4, 5} .

N δ=1
1

N δ=1
2

1 2 3 4 5

Restriction/partition of unity matrices R1, R2, D1 and D2:

R1 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 and R2 =

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 .

D1 =


1 0 0 0

0 1 0 0

0 0 1/2 0

0 0 0 1/2

 and D2 =

1/2 0 0

0 1/2 0

0 0 1

 .

Intro 17/48



Two subdomain case: 1d finite element decomposition

Partition of the 1D mesh corresponds to an ovr. decomp. of N :

N1 := {1, 2, 3} and N2 := {3, 4, 5} .

Ω1 Ω2

1 2 3 4 5
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Partition of the 1D mesh corresponds to an ovr. decomp. of N :

N1 := {1, 2, 3} and N2 := {3, 4, 5} .

Ω1 Ω2

1 2 3 4 5

Restriction/partition of unity matrices R1, R2, D1 and D2:

R1 =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 and R2 =

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 .

D1 =

1 0 0

0 1 0

0 0 1/2

 and D2 =

1/2 0 0

0 1 0

0 0 1


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Two subdomain case: 1d finite element decomposition - II

An overlapping partition.

N δ=1
1 := {1, 2, 3, 4} and N δ=1

2 := {2, 3, 4, 5} .

Ωδ=1
1 Ωδ=1

2

1 2 3 4 5
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Two subdomain case: 1d finite element decomposition - II

An overlapping partition.

N δ=1
1 := {1, 2, 3, 4} and N δ=1

2 := {2, 3, 4, 5} .

Ωδ=1
1 Ωδ=1

2

1 2 3 4 5

Restriction/partition of unity matrices R1, R2, D1 and D2:

R1 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 and R2 =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 .

D1 =


1 0 0 0

0 1/2 0 0

0 0 1/2 0

0 0 0 1/2

 and D2 =


1/2 0 0 0

0 1/2 0 0

0 0 1/2 0

0 0 0 1

 .
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Multi-D and many subdomains: General procedure

The set of indices N can be partitioned by an automatic graph partitioner such as METIS or SCOTCH.
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Multi-D and many subdomains: General procedure

The set of indices N can be partitioned by an automatic graph partitioner such as METIS or SCOTCH.
• From the input matrix A, a connectivity graph is created.
• Two indices i, j ∈ N are connected if the matrix coefficient Aij 6= 0.
• Even if matrix A is not symmetric, the connectivity graph is symmetrized.
• Algorithms that find a good partitioning of highly unstructured graphs are used.
• This distribution must be done so that the number of elements assigned to each processor is roughly the same
(balance the computations among the processors).
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The set of indices N can be partitioned by an automatic graph partitioner such as METIS or SCOTCH.
• From the input matrix A, a connectivity graph is created.
• Two indices i, j ∈ N are connected if the matrix coefficient Aij 6= 0.
• Even if matrix A is not symmetric, the connectivity graph is symmetrized.
• Algorithms that find a good partitioning of highly unstructured graphs are used.
• This distribution must be done so that the number of elements assigned to each processor is roughly the same
(balance the computations among the processors).

• The number of adjacent elements assigned to different processors is minimized (minimize the communication

between different processors).
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Multi-D algebraic setting

Extend each disjoint subset Ni with its direct neighbors to form N δ=1
i .

N := ∪Ni=1Ni, Ni ∩Nj = ∅ for i 6= j .

N δ=1
2

N δ=1
1

N δ=1
3N2

N1

N3

Ri be the restriction matrix from set N to the subset N δ=1
i .

Partition of unity: Di a diagonal matrix of size #N δ=1
i ×#N δ=1

i , 1 ≤ i ≤ N such that

(Di)jj := 1/#Mj ,Mj := {1 ≤ i ≤ N | j ∈ N δ=1
i } .
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Multi-D algebraic finite element (FE) decomposition

Computational domain
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Multi-D algebraic finite element (FE) decomposition

Computational domain

Create overlapping subdomains resolved by the finite
element meshes:

Ωi =
⋃

τ∈Ti,h

τ for 1 ≤ i ≤ N . (1)
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Multi-D algebraic finite element (FE) decomposition

Computational domain

Let {φk}k∈N be a basis of the finite element space.

Ni := {k ∈ N : supp(φk) ∩ Ωi 6= ∅} .

For all degree of freedom k ∈ N , define

µk := # {j : 1 ≤ j ≤ N and supp(φk) ∩ Ωj 6= ∅} .
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Multi-D algebraic finite element (FE) decomposition

Computational domain Let {φk}k∈N be a basis of the finite element space.

Ni := {k ∈ N : supp(φk) ∩ Ωi 6= ∅} .

For all degree of freedom k ∈ N , define

µk := # {j : 1 ≤ j ≤ N and supp(φk) ∩ Ωj 6= ∅} .

Ri be the restriction matrix from N to Ni.

Partition of unity Di: diagonal matrix of size
#Ni ×#Ni, 1 ≤ i ≤ N s.t.

(Di)kk := 1/µk, k ∈ Ni.
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Summary: Additive Schwarz

Let the discretised Poisson problem: AU = F ∈ Rn.

Given a decomposition of J1;nK, (N1,N2), define:
the restriction operator Ri from RJ1;nK into RNi , RTi as the extension by 0 from RNi into RJ1;nK.
Find Um −→ Um+1 by solving concurrently:

Um+1
j = Um

j +A−1
j Rj(F−AUm), j = 1, 2

where Um
i = RiU

m and Ai := RiAR
T
i .

Ω
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An introduction to Additive Schwarz II

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

I =

N∑
i=1

RTi DiRi.

Then, Um+1 =

N∑
i=1

RTi DiU
m+1
i . M−1

RAS =

N∑
i=1

RTi DiA
−1
i Ri.

RAS algorithm (Cai & Sarkis, 1999)

1
2

1

1
2 1
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Algebraic formulation - RAS and ASM

Schwarz algorithm iterates on a pair of local functions (u1
m, u

2
m)

RAS algorithm iterates on the global function um

Schwarz and RAS (Efstathiou and Gander, 2002)
Discretization of the classical Schwarz algorithm and the iterative RAS algorithm:

Un+1 = Un +M−1
RASr

n , rn := F−AUn.

are equivalent
Un = RT1 D1U

n
1 +RT2 D2U

n
2 .

Operator M−1
RAS is used as a preconditioner in Krylov methods for non symmetric problems.
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ASM: a symmetrized version of RAS

M−1
RAS :=

N∑
i=1

RTi DiA
−1
i Ri . (1)

A symmetrized version: Additive Schwarz Method (ASM),

M−1
ASM :=

N∑
i=1

RTi A
−1
i Ri (2)

are used as a preconditioner for the conjugate gradient (CG) method. Later on, we introduce

M−1
SORAS :=

N∑
i=1

RTi DiB
−1
i DiRi (3)

where (Bi)1≤i≤N are some local invertible matrices.
Although RAS is more efficient, ASM is amenable to theory.
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Geometrical analysis in 1d

Let L > 0, Ω = (0, L) be decomposed into two
subodmains Ω1 := (0, L1) and Ω2 := (l2, L) with
l2 ≤ L1.
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Geometrical analysis in 1d

Let L > 0, Ω = (0, L) be decomposed into two
subodmains Ω1 := (0, L1) and Ω2 := (l2, L) with
l2 ≤ L1.
The error eni := uni − u|Ωi

, i = 1, 2 satisfies

−
d2en+1

1

dx2
= 0, x ∈ (0, L1)

en+1
1 (0) = 0

en+1
1 (L1) = en2 (L1)
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Geometrical analysis in 1d

Let L > 0, Ω = (0, L) be decomposed into two
subodmains Ω1 := (0, L1) and Ω2 := (l2, L) with
l2 ≤ L1.
The error eni := uni − u|Ωi

, i = 1, 2 satisfies

−
d2en+1

2

dx2
= 0, x ∈ (l2, L)

en+1
2 (l2) = en+1

1 (l2)

en+1
2 (L) = 0 .
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Geometrical analysis in 1d

Let L > 0, Ω = (0, L) be decomposed into two
subodmains Ω1 := (0, L1) and Ω2 := (l2, L) with
l2 ≤ L1.
Errors are affine functions in each subdomain:

en+1
1 (x) = en2 (L1) x

L1

en+1
2 (x) = en+1

1 (l2) L−x
L−l2

.

Thus, we have

en+1
2 (L1) = en+1

1 (l2)
L− L1

L− l2
= en2 (L1)

l2

L1

L− L1

L− l2
.
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Geometrical analysis in 1d

Let L > 0, Ω = (0, L) be decomposed into two
subodmains Ω1 := (0, L1) and Ω2 := (l2, L) with
l2 ≤ L1.
Errors are affine functions in each subdomain:

en+1
1 (x) = en2 (L1) x

L1

en+1
2 (x) = en+1

1 (l2) L−x
L−l2

.

Thus, we have

en+1
2 (L1) = en+1

1 (l2)
L− L1

L− l2
= en2 (L1)

l2

L1

L− L1

L− l2
.

Let δ := L1 − l2 (overlap). Interface iteration

en+1
2 (L1) = l2

l2+δ
L−l2−δ
L−l2

en2 (L1)

=
1−δ/(L−l2)

1+δ/l2
en2 (L1) .

It is clear that δ > 0 is sufficient and necessary to have
convergence.

Intro 27/48



Geometrical analysis in 1d

Let L > 0, Ω = (0, L) be decomposed into two
subodmains Ω1 := (0, L1) and Ω2 := (l2, L) with
l2 ≤ L1.
Errors are affine functions in each subdomain:

en+1
1 (x) = en2 (L1) x

L1

en+1
2 (x) = en+1

1 (l2) L−x
L−l2

.

Thus, we have

en+1
2 (L1) = en+1

1 (l2)
L− L1

L− l2
= en2 (L1)

l2

L1

L− L1

L− l2
.

Let δ := L1 − l2 (overlap). Interface iteration

en+1
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L−l2

en2 (L1)

=
1−δ/(L−l2)

1+δ/l2
en2 (L1) .

It is clear that δ > 0 is sufficient and necessary to have
convergence.

L1l2 L
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1 e1

2

e2
1

e2
2

e3
1

0

x

δ

e0
2
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Fourier analysis in 2d

Let R2 decomposed into two half-planes
Ω1 = (−∞, δ)× R and Ω2 = (0,∞)× R with an
overlap of size δ > 0 and the problem

(η −∆)(u) = f in R2,

u is bounded at infinity ,
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Ω1 = (−∞, δ)× R and Ω2 = (0,∞)× R with an
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(η −∆)(u) = f in R2,
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Fourier analysis in 2d

Let R2 decomposed into two half-planes
Ω1 = (−∞, δ)× R and Ω2 = (0,∞)× R with an
overlap of size δ > 0 and the problem

(η −∆)(u) = f in R2,

u is bounded at infinity ,

Partial Fourier transform of the equation in the y
direction:(

η −
∂2

∂x2
+ k2

)
(ên+1
j (x, k)) = 0 in Ωj .

Intro 28/48



Fourier analysis in 2d

Let R2 decomposed into two half-planes
Ω1 = (−∞, δ)× R and Ω2 = (0,∞)× R with an
overlap of size δ > 0 and the problem

(η −∆)(u) = f in R2,

u is bounded at infinity ,

Partial Fourier transform of the equation in the y
direction:(

η −
∂2

∂x2
+ k2

)
(ên+1
j (x, k)) = 0 in Ωj .

Intro 28/48



Fourier analysis in 2d

Let R2 decomposed into two half-planes
Ω1 = (−∞, δ)× R and Ω2 = (0,∞)× R with an
overlap of size δ > 0 and the problem
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u is bounded at infinity ,

Partial Fourier transform of the equation in the y
direction:(

η −
∂2

∂x2
+ k2

)
(ên+1
j (x, k)) = 0 in Ωj .

For a given k, solutions

ên+1
j (x, k) = γn+1

+ (k)λ
+(k)x + γn+1

− (k)eλ
−(k)x),

must be bounded at x = ∓∞.
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Fourier analysis in 2d

Let R2 decomposed into two half-planes
Ω1 = (−∞, δ)× R and Ω2 = (0,∞)× R with an
overlap of size δ > 0 and the problem

(η −∆)(u) = f in R2,

u is bounded at infinity ,

Partial Fourier transform of the equation in the y
direction:(

η −
∂2

∂x2
+ k2

)
(ên+1
j (x, k)) = 0 in Ωj .

For a given k, solutions

ên+1
j (x, k) = γn+1

+ (k)λ
+(k)x + γn+1

− (k)eλ
−(k)x),

must be bounded at x = ∓∞.

This implies

ên+1
1 (x, k) = γn+1

+ (k)eλ
+(k)x

ên+1
2 (x, k) = γn+1

− (k)eλ
−(k)x
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Fourier analysis in 2d

Let R2 decomposed into two half-planes
Ω1 = (−∞, δ)× R and Ω2 = (0,∞)× R with an
overlap of size δ > 0 and the problem

(η −∆)(u) = f in R2,

u is bounded at infinity ,

Partial Fourier transform of the equation in the y
direction:(

η −
∂2

∂x2
+ k2

)
(ên+1
j (x, k)) = 0 in Ωj .

For a given k, solutions

ên+1
j (x, k) = γn+1

+ (k)λ
+(k)x + γn+1

− (k)eλ
−(k)x),

must be bounded at x = ∓∞.

From the interface conditions we get

γn+1
+ (k) = γn−(k) eλ

−(k)x, γn+1
− (k) = γn+(k)e−λ

+(k)x.

Combining these two and denoting
λ(k) = λ+(k) = −λ−(k), we get for i = 1, 2,

γn+1
± (k) = ρ(k; η, δ)2 γn−1

± (k)

The convergence factor ρ is given by:

ρ(k; η, δ) = e−λ(k)δ, λ(k) =
√
η + k2
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Fourier analysis in 2d

The convergence factor ρ is given by:

ρ(k; η, δ) = e−λ(k)δ, λ(k) =
√
η + k2

Properties
• For all k ∈ R, ρ(k) < e−

√
η δ < 1 so that

γnj (k)→ 0 uniformly as n goes to infinity.
• ρ → 0 as k tends to infinity, high frequency
modes of the error converge very fast.
• When there is no overlap (δ = 0), ρ = 1 and
there is stagnation of the method.
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Outline

Introduction

Schwarz methods using Freefem++

Schwarz algorithms as solvers

Schwarz algorithms as preconditioners

Schwarz preconditioners using FreeFEM++
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About FreeFem++ (survival kit)

FreeFem++ allows a very simple and natural way to solve a great variety of variational problems.

It is possible to have access to the underlying linear algebra such as the stiffness or mass matrices.

A very detailed documentation of FreeFem++ is available on the official website
http://www.freefem.org/
Codes and lecture notes for the domain decomposition part available here:
http://www.victoritadolean.com/p/book.html
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Let a homogeneous Dirichlet boundary value problem for a Laplacian defined on a unit square
Ω =]0, 1[2: {

−∆u = f dans Ω

u = 0 sur ∂Ω
(4)

The variational formulation of the problem

Find u ∈ H1
0 (Ω) := {w ∈ H1(Ω) : w = 0, on Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4}

such that ∫
Ω

∇u.∇vdx−
∫

Ω

f v dx = 0, ∀v ∈ H1
0 (Ω) .

Feature of Freefem++: penalization of Dirichlet BC. Let TGV (Très Grande Valeur in French) be a
very large value, the above variational formulation is approximated by
Find u ∈ H1(Ω) such that∫

Ω

∇u.∇vdx+ TGV

∫
∪i=1,...,4Γi

u v −
∫

Ω

fv dx = 0, ∀v ∈ H1(Ω) .
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The following FreeFem++ script is solving this problem

// Number o f mesh p o i n t s i n x and y d i r e c t i o n s
i n t Nbnoeuds=10;

The text after // symbols are comments ignored by the FreeFem++ language.

Each new variable must be declared with its type (here int designs integers).

//Mesh d e f i n i t i o n
mesh Th=s qu a r e ( Nbnoeuds , Nbnoeuds , [ x , y ] ) ;

The function square returns a structured mesh of the square, the sides of the square are labelled from
1 to 4 in trigonometrical sense.

Intro 32/48



Define the function representing the right hand side

// Funct i on o f x and y
f un c f=x∗y ;

and the P1 finite element space Vh over the mesh Th.

// F i n i t e e l ement space on the mesh Th
f e s p a c e Vh (Th , P1 ) ;
//uh and vh a r e o f type Vh
Vh uh , vh ;

The functions uh and vh belong to the P1 finite element space Vh which is an approximation to H1(Ω).

// v a r i a t i o n a l problem d e f i n i t i o n
prob lem hea t ( uh , vh , s o l v e r=LU)=

i n t 2 d (Th ) ( dx ( uh )∗dx ( vh )+dy ( uh )∗dy ( vh ) )
− i n t 2 d (Th ) ( f ∗vh )
+on ( 1 , 2 , 3 , 4 , uh=0) ;
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The keyword problem allows the definition of a variational problem (without solving it)∫
Ω

∇uh.∇vhdx+ TGV

∫
∪i=1,...,4Γi

uh vh −
∫

Ω

fvhdx = 0, ∀vh ∈ Vh .

where TGV is equal to 1030.
The parameter solver sets the method that will be used to solve the resulting linear system. To solve
the problem we need

// So l v i n g the problem
hea t ;
// P l o t t i n g the r e s u l t
p l o t ( uh , wa i t =1) ;

The Freefem++ script can be saved with your favourite text editor (e.g. under the name heat.edp).
In order to execute the script write the shell command

FreeFem++ hea t . edp

The result will be displayed in a graphic window.
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Solve Neumann or Fourier boundary conditions such as
−∆u+ u = f dans Ω
∂u
∂n

= 0 sur Γ1

u = 0 sur Γ2

∂u
∂n

+ αu = g sur Γ3 ∪ Γ4

(5)

The new variational formulation consists in determining uh ∈ Vh such that∫
Ω

∇uh.∇vhdx+

∫
Γ3∪Γ4

αuhvh + TGV

∫
Γ2

uh.vh

−
∫

Γ3∪Γ4

gvh −
∫

Ω

fvhdx = 0, ∀vh ∈ Vh.

The Freefem++ definition of the problem

prob lem hea t ( uh , vh )=
i n t 2 d (Th ) ( dx ( uh )∗dx ( vh )+dy ( uh )∗dy ( vh ) )
+i n t 1 d (Th , 3 , 4 ) ( a l p h a ∗uh∗vh )
− i n t 1 d (Th , 3 , 4 ) ( g∗vh )
− i n t 2 d (Th ) ( f ∗vh )
+on (2 , uh=0) ;
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In order to use some linear algebra package, we need the matrices. The keyword varf allows the
definition of a variational formulation

v a r f hea t ( uh , vh )=
i n t 2 d (Th ) ( dx ( uh )∗dx ( vh )+dy ( uh )∗dy ( vh ) )
+i n t 1 d (Th , 3 , 4 ) ( a l p h a ∗uh∗vh )
− i n t 1 d (Th , 3 , 4 ) ( g∗vh )
− i n t 2 d (Th ) ( f ∗vh )
+on (2 , uh=0) ;

mat r i x Ag l o b a l ; // s t i f f n e s s s p a r s e mat r i x
Ag l o b a l = hea t (Vh , Vh , s o l v e r=UMFPACK) ; // UMFPACK s o l v e r
Vh r h s g l o b a l ; // r i g h t hand s i d e v e c t o r
r h s g l o b a l [ ] = hea t (0 ,Vh ) ;

Here rhsglobal is a FE function and the associated vector of d.o.f. is rhsglobal[].
The linear system is solved by using UMFPACK

// So l v i n g the problem by a s p a r s e LU so v e r
uh [ ] = Ag l o b a l^−1∗ r h s g l o b a l [ ] ;
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Decomposition into overlapping domains

To build the overlapping decomposition and the associated algebraic call the routine
SubdomainsPartitionUnity.
Output:
• overlapping meshes aTh[i]
• the restriction/interpolation operators Rih[i] from the local finite element space Vh[i] to the
global one Vh
• the diagonal local matrices Dih[i] from the partition of unity.

i n c l u d e " . / data . edp"
i n c l u d e " . / decomp . i dp "
i n c l u d e " . / c r e a t e P a r t i t i o n . i dp "
Subd oma i n sP a r t i t i o nUn i t y (Th , p a r t [ ] , s i z e o v r , aTh , Rih , Dih , Ndeg , AreaTh i ) ;
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RAS and ASM: global /localdata

We first need to define the global data.

Ag l o b a l = v a g l o b a l (Vh , Vh , s o l v e r = UMFPACK) ; // g l o b a l mat r i x
r h s g l o b a l [ ] = v a g l o b a l (0 ,Vh ) ; // g l o b a l r h s
ug l ob [ ] = Ag l o b a l^−1∗ r h s g l o b a l [ ] ;
p l o t ( ug lob , v a l u e =1, f i l l =1, wa i t =1,cmm=" So l u t i o n by a d i r e c t method" , dim=3) ;

And then the local problems

f o r ( i n t i = 0 ; i<npa r t ;++ i )
{

cout << " Domain : " << i << "/" << npa r t << e nd l ;
mat r i x aT = Ag l o b a l ∗Rih [ i ] ’ ;
aA [ i ] = Rih [ i ]∗ aT ;
s e t (aA [ i ] , s o l v e r = UMFPACK) ; // d i r e c t s o l v e r s

}
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RAS and ASM : Schwarz iteration

o f s t r e am f i l e i ( "Conv .m" ) ;
Vh un = 0 ; // i n i t i a l gue s s
Vh rn = r h s g l o b a l ;
f o r ( i n t i t e r = 0 ; i t e r <max i t ;++ i t e r )

{ r e a l e r r = 0 , r e s ;
Vh e r = 0 ;
f o r ( i n t i = 0 ; i<npa r t ;++ i )

{ r e a l [ i n t ] b i = Rih [ i ]∗ rn [ ] ; // r e s t r i c t i o n to the l o c a l domain
r e a l [ i n t ] u i = aA [ i ] ^−1 ∗ b i ; // l o c a l s o l v e
b i = Dih [ i ]∗ u i ;
// b i = u i ; // uncomment t h i s l i n e to t e s t the ASM method as a s o l v e r
e r [ ] += Rih [ i ] ’∗ b i ; }

un [ ] += e r [ ] ; // b u i l d new i t e r a t e
rn [ ] = Ag l o b a l ∗un [ ] ; // computes g l o b a l r e s i d u a l
rn [ ] = rn [ ] − r h s g l o b a l [ ] ;
rn [ ] ∗= −1;
e r r = s q r t ( e r [ ] ’ ∗ e r [ ] ) ;
r e s = s q r t ( rn [ ] ’ ∗ rn [ ] ) ;
cout << " I t e r a t i o n : " << i t e r << " Co r r e c t i o n = " << e r r << " Re s i d u a l = " << r e s << e nd l ;
p l o t ( un , wa i t =1, v a l u e =1, f i l l =1,dim=3,cmm="Approx imate s o l u t i o n at s t ep " + i t e r ) ;
i n t j = i t e r +1;
// Sto r e the e r r o r and the r e s i d u a l i n Matlab / S c i l a b /Octave form
f i l e i << " Convh i s t ( "+ j+" , : ) =[" << e r r << " " << r e s <<" ] ; " << e nd l ;
i f ( e r r < t o l ) b r eak ; }

p l o t ( un , wa i t =1, v a l u e =1, f i l l =1,dim=3,cmm=" F i n a l s o l u t i o n " ) ;
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Convergence

Convergence history of the RAS solver for different values of the overlapping parameter.
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Note that this convergence, not very fast even in a simple configuration of 4 subdomains.
The iterative version of ASM does not converge. For this reason, the ASM method is always used a
preconditioner for a Krylov method such as CG, GMRES or BiCGSTAB.
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Schwarz algorithms as preconditioners

Fixed point method

Consider the linear system

Ax = b

A possible iterative method is a fixed point algorithm

xn+1 = xn +B−1(b−Axn)

and x is a fixed point of the operator:

x 7−→ x+B−1(b−Ax) .

Let r0 := b−Ax0 and C := B−1 A, then

xn =
n∑
i=0

(Id − C)iB−1r0 + x0 .

We have convergence iff the spectral radius of the
matrix Id − C is smaller than one.

Krylov method

Consider a preconditioned linear system:

B−1 Ax = B−1 b

Let x0 an initial guess and r0 := B−1 b− C x0 the
initial residual. Then y := x− x0 solves

C y = r0 .

The basis for Krylov methods is the following

Lemma
Let C be an invertible matrix of size N ×N .
Then, there exists a polynomial P of degree
p < N such that

C−1 = P(C) .
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Why Krylov methods

By a constructive proof

x = x0 +
d∑
i=1

(
−
ai

a0

)
Ci−1 r0 .

Thus, it makes sense to introduce Krylov spaces,
Kn(C, r0)

Kn(C, r0) := Span{r0, Cr0, . . . , Cn−1r0}, n ≥ 1.

to seek yn an approximation to y.
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Why Krylov methods

By a constructive proof

x = x0 +
d∑
i=1

(
−
ai

a0

)
Ci−1 r0 .

Thus, it makes sense to introduce Krylov spaces,
Kn(C, r0)

Kn(C, r0) := Span{r0, Cr0, . . . , Cn−1r0}, n ≥ 1.

to seek yn an approximation to y.

Example: The CG methods applies to symmetric
positive definite (SPD) matrices and minimizes the
A−1-norm of the residual when solving Ax = b:

CG

{
Find yn ∈ Kn(A, r0) such that
‖Ayn − r0‖A−1 = min

w∈Kn(A,r0)
‖Aw − r0‖A−1 .
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Why Krylov methods

By a constructive proof

x = x0 +
d∑
i=1

(
−
ai

a0

)
Ci−1 r0 .

Thus, it makes sense to introduce Krylov spaces,
Kn(C, r0)

Kn(C, r0) := Span{r0, Cr0, . . . , Cn−1r0}, n ≥ 1.

to seek yn an approximation to y.

A detailed analysis reveals that xn = yn + x0 can be
obtained by the quite cheap recursion formula:

for i = 1, 2, . . . do
ρi−1 = (ri−1, ri−1)2

if i = 1 then
p1 = r0

else
βi−1 = ρi−1/ρi−2

pi = ri−1 + βi−1pi−1

end if
qi = Api−1

αi =
ρi−1

(pi, qi)2
xi = xi−1 + αipi
ri = ri−1 − αiqi
check convergence; continue if necessary

end for
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Preconditioned Krylov - general framework

By solving an optimization problem:

GMRES

 Find yn ∈ Kn(C, r0) such that
‖C yn − r0‖2 = min

w∈Kn(C,r0)
‖C w − r0‖2
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Preconditioned Krylov - general framework

By solving an optimization problem:

GMRES

 Find yn ∈ Kn(C, r0) such that
‖C yn − r0‖2 = min

w∈Kn(C,r0)
‖C w − r0‖2

a preconditioned Krylov solve will generate an optimal xnK in

Kn(C,B−1r0) := x0 + Span{B−1r0, C B
−1r0, . . . , C

n−1 B−1r0} .
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Preconditioned Krylov - general framework

By solving an optimization problem:

GMRES

 Find yn ∈ Kn(C, r0) such that
‖C yn − r0‖2 = min

w∈Kn(C,r0)
‖C w − r0‖2

a preconditioned Krylov solve will generate an optimal xnK in

Kn(C,B−1r0) := x0 + Span{B−1r0, C B
−1r0, . . . , C

n−1 B−1r0} .

Remark. This minimization problem is of size n. When n is small w.r.t. N , its solving
has a marginal cost. Thus, xnK has a computing cost similar to that of xn. But, since xn ∈
Kn(B−1A,B−1r0) as well but with “frozen” coefficients, we have that xn is less optimal (actually
much much less) than xnK .
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Schwarz methods as preconditioners

In the previous Krylov methods we can use as preconditioner
• RAS (in conjunction with BiCGStab or GMRES)

B−1 := M−1
RAS =

N∑
i=1

RTi Di (RiAR
T
i )−1 Ri

• ASM (in a CG methods)

B−1 := M−1
ASM =

N∑
i=1

RTi (RiAR
T
i )−1 Ri
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Preconditioner in CG

• M−1
ASM as a preconditioner

• a Krylov method: conjugate gradient since M−1
ASM

and A are symmetric.

At iteration m the error for the PCG method is
bounded by:

||x̄− xm||
M

− 1
2

ASM
AM

− 1
2

ASM

≤

2
[√

κ−1√
κ+1

]m
||x̄− x0||

M
− 1

2
ASM

AM
− 1

2
ASM

.

where κ is the condition number of M−1
ASMA and x̄ is

the exact solution.
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Preconditioner in CG

• M−1
ASM as a preconditioner

• a Krylov method: conjugate gradient since M−1
ASM

and A are symmetric.

At iteration m the error for the PCG method is
bounded by:

||x̄− xm||
M

− 1
2

ASM
AM

− 1
2

ASM

≤

2
[√

κ−1√
κ+1

]m
||x̄− x0||

M
− 1

2
ASM

AM
− 1

2
ASM

.

where κ is the condition number of M−1
ASMA and x̄ is

the exact solution.

The CG with the ASM preconditioner becomes:

for i = 1, 2, . . . do
ρi−1 = (ri−1,M

−1
ASMri−1)2

if i = 1 then
p1 = M−1

ASMr0
else
βi−1 = ρi−1/ρi−2

pi = M−1
ASMri−1 + βi−1pi−1

end if
qi = Api−1

αi =
ρi−1

(pi, qi)2
xi = xi−1 + αipi
ri = ri−1 − αiqi
check convergence; continue if necessary

end for
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Action of the preconditioner

The action of the global matrix and preconditioner

f un c r e a l [ i n t ] A( r e a l [ i n t ] &x )
{

// Mat r i x v e c t o r p roduc t w i th the g l o b a l mat r i x
Vh Ax ;
Ax [ ]= Ag l o b a l ∗x ;
r e t u r n Ax [ ] ;

}
// and the a p p l i c a t i o n o f the p r e c o n d i t i o n e r
f un c r e a l [ i n t ] AS( r e a l [ i n t ] & l )
{

// App l i c a t i o n o f the ASM p r e c o n d i t i o n e r
// M^{−1}∗y = sum Ri^T∗Ai^{−1}∗Ri∗y
// Ri r e s t r i c t i o n ope r a t o r s , Ai =Ri∗A∗Ri^T l o c a l ma t r i c e s
Vh s = 0 ;
f o r ( i n t i =0; i<npa r t ;++ i )

{
r e a l [ i n t ] b i = Rih [ i ]∗ l ; // r e s t r i c t s r h s
r e a l [ i n t ] u i = aA [ i ] ^−1 ∗ b i ; // l o c a l s o l v e s
s [ ] += Rih [ i ] ’∗ u i ; // p r o l o n g a t i o n

}
r e t u r n s [ ] ;

}
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The Krylov method applied in this case is the CG. The performance is now less sensitive to the overlap
size.

IsoValue
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We can also use RAS as a preconditioner, by taking into account the partition of unity

f un c r e a l [ i n t ] RAS( r e a l [ i n t ] & l )
{

// App l i c a t i o n o f the RAS p r e c o n d i t i o n e r
// M^{−1}∗y = \sum Ri^T∗Di∗Ai^{−1}∗Ri∗y
// Ri r e s t r i c t i o n ope r a t o r s , Ai =Ri∗A∗Ri^T l o c a l ma t r i c e s
Vh s = 0 ;
f o r ( i n t i =0; i<npa r t ;++ i ) {

r e a l [ i n t ] b i = Rih [ i ]∗ l ; // r e s t r i c t s r h s
r e a l [ i n t ] u i = aA [ i ] ^−1 ∗ b i ; // l o c a l s o l v e s
b i = Dih [ i ]∗ u i ; // p a r t i t i o n o f u n i t y
s [ ] += Rih [ i ] ’∗ b i ; // p r o l o n g a t i o n

}
r e t u r n s [ ] ;

}

this time in conjuction with BiCGStab since we deal with non-symmetric problems.
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