An introduction to domain decomposition methods

Victorita Dolean
in collaboration with: F. Nataf, P. Jolivet, P.-H. Tournier

5th September 2022

2 Ers ’ Q SORBONNE “
Universityof <& UN'VERS'TE b UN'VERS'TE

Université

Strathclyde e)
Glasgow COTED’AZUR de Toulouse

Introduction
Connection with the Block-Jacobi algorithm
Discrete setting
Convergence analysis

Algebraic Schwarz Methods

Schwarz methods using Freefem++
Schwarz algorithms as solvers
Schwarz algorithms as preconditioners

Schwarz preconditioners using FreeFEM++

Introduction
Connection with the Block-Jacobi algorithm
Discrete setting
Convergence analysis

Algebraic Schwarz Methods

Intro 0/48

Applications

Linear elasticity

~V - (o(w) =1,
Time-harmonic Maxwell's equations
BT H o3 oij(u) = 2pe;;(u) + Xoi; V - (u),
—tweE+V xXH - cE =J, _ 1 (0u Ou,
gij(u) = 5 ,
iwpH+V x E = 0. il)E2(E’Ij 31;52
K= 5y A = T

Intro 1/48

Intro

Applications

Time-harmonic Maxwell's equations

—iweE+V xXH—-cE=1J,
wpH +V X E = 0.

Linear elasticity

V- (o(w) =1,

oij(u) = 2puei; () + A5 V - (),
du; | Ouj
eij(u) = 3 azu-j BZZ ’

_ B _ E
2= 2(1+u)7)\7 T

(I+v)(1-2v)"
After discretisation = large linear system Au = b. Matrix A inherits the properties of the underlying PDE

(symmetric, positive definite, indefinite, etc...) A is in general sparse, large and ill conditioned.

1/48

Au = b? Landscape of linear solvers

Intro

Direct Solvers
MUMPS (J.Y. L'Excellent), SuperLU (Demmel, ...), PastiX, UMFPACK, PARDISO (O. Schenk):

Iterative Methods
e Fixed point iteration: Jacobi, Gauss-Seidel, SSOR

e Krylov type methods: Conjuguate Gradient (Stiefel-Hestenes), GMRES (Y. Saad), QMR (R. Freund), MinRes,
BiCGSTAB (van der Vorst):

© Robustness
® Parallelizable

DDM
“Hybrid”
lterative Methods mefhods
© Memory consumption _/

® Robustness
© Parallelizable

2/48

Motivation: pro and cons of direct solvers

Complexity of the Gauss factorisation (sparse linear algebra)

Gauss d=1 d=2 d=3

dense matrix O(n?) O(n?) O(n?)
using band structure O(n) O(n?) O(n™/3)
using sparsity O(n) O(n3/?) O(n?)

As of today: n = 10° (2d) and n = 105 (3d) is ok.

Different sparse direct solvers

e PARDISO (http://www.pardiso-project.org)

e SUPERLU (https://portal.nersc.gov/project/sparse/superlu/)
e MUMPS (http://graal.ens-1lyon.fr/MUMPS/)

e UMFPACK, in SuiteSparse (https://people.engr.tamu.edu/davis/suitesparse.html)

Intro 3/48

http://www.pardiso-project.org
https://portal.nersc.gov/project/sparse/superlu/
http://graal.ens-lyon.fr/MUMPS/
https://people.engr.tamu.edu/davis/suitesparse.html

Need & Opportunities for massively parallel computing

Moore’s law: the number of transistors doubles every two years

10T |

100G -

FLOP/s

1G

10k

Credits: http://download. intel . con/
pressroon/kits/IntelProcessorHistory. pdf
100 b T O T e

o 2 Y

a
o
©

1970 1980 1990 2000 2010 2020
Years

Intro

10E grrrrrrrrrr e e e e T

1E
100P
10P

1P
100T
10T
1T
100G
100G

1GEw

o o o lo D D D D D D D L
%% 9. % ¢, g g g g 0, 0, 0,
EIRENE S & R R

Transistor (thousands)

Moore’s law
Frequency (MHz)

Number of cores

I
<
2,
o

10°

107

10°

10°

10'

of processors

4/48

Need & Opportunities for massively parallel computing

Parallel computers are more and more available to
scientists and engineers

e Apple, Linux, Windows laptops, 4/8 cores

e Desktop Computers, 64/128 cores

e Laboratory cluster, 300 cores

e University cluster, ~ 10 000 cores

e Cloud computing on Data Mining machines

e Supercomputers via academic or commercial

providers > 100k cores

All fields of computer science are impacted.

Intro 5/48

Need & Opportunities for massively parallel computing

Parallel computers are more and more available to
scientists and engineers

e Apple, Linux, Windows laptops, 4/8 cores
e Desktop Computers, 64/128 cores

e Laboratory cluster, 300 cores

e University cluster, ~ 10 000 cores

e Cloud computing on Data Mining machines

e Supercomputers via academic or commercial

providers > 100k cores

All fields of computer science are impacted.

Intro

Hardware news

ARM (Advanced Risc Machines) and Soc

@ AB4FX (Fujitsu), M1 (Apple), Graviton (Amazon)

@ Soc: System on a Chip, HMB: High Bandwidth Memory

o Fugaku HPC exclusively based on A64FX ranks on
TOP500 1st for dense linear algebra, 1st for sparse linear
algebra, 1st for Al and 1st on Graph500)

@ AB4FX > GPU even for Al and ML thanks to its Scalable
Vector Extension SVE

@ Programmable with standard Fortran/C/C++, OpenMP and
MPI

5/48

Need & Opportunities for massively parallel computing

Parallel computers are more and more available to
scientists and engineers

e Apple, Linux, Windows laptops, 4/8 cores

e Desktop Computers, 64/128 cores

e Laboratory cluster, 300 cores

e University cluster, ~ 10 000 cores

e Cloud computing on Data Mining machines

e Supercomputers via academic or commercial

providers > 100k cores

All fields of computer science are impacted.

Intro

Hardware news

ARM (Advanced Risc Machines) and Soc

@ A64FX (Fujitsu), M1 (Apple), Graviton (Amazon)

@ Soc: System on a Chip, HMB: High Bandwidth Memory

@ Fugaku HPC exclusively based on A64FX ranks on
TOP500 1st for dense linear algebra, 1st for sparse linear
algebra, 1st for Al and 1st on Graph500)

@ A64FX > GPU even for Al and ML thanks to its Scalable
Vector Extension SVE

@ Programmable with standard Fortran/C/C++, OpenMP and
MPI

Software news

@ Some New High level languages support natively some
degree of parallelism: Julia, Rust and wrap MP!I library with
a simpler interface

o Parallel linear algebra package: PETSc (USA), Scalapack
(USA), HPDDM (France)

o Free Finite element/volume packages allow for parallel
computing: OpenFoam (UK), FreeFem (France), Firedrake
(UK), Dune (Germany),

5/48

The First Domain Decomposition Method

The original Schwarz Method (H.A. Schwarz, 1870)

Q > Qg
—A(u)=f inQ
u=0 on 0Q.
Schwarz Method : (uf, u%) — (u7™", uj3™") with
AW =f in —A(uy™) = f in Qs
u{”l =0 on 991 N O ug“ =0 on 992 N O
u?“ =wu5 on 0 N Qs. uSH = u?“ on 00 N Q.

Parallel algorithm, converges but very slowly, overlapping subdomains only.
The parallel version is called Jacobi Schwarz method (JSM).

Intro 6/48

Continuous ASM and RAS - |

The algorithm acts on the local functions (u;)i=1,2. To make things global, we need:

Intro 7/48

Continuous ASM and RAS - |

The algorithm acts on the local functions (u;)i=1,2. To make things global, we need:
e extension operators, F;, s.t. for a function w; : ©; — R, E;(w;) : Q — R is the extension of w; by
zero outside ;.

Intro 7/48

Continuous ASM and RAS - |

The algorithm acts on the local functions (u;)i=1,2. To make things global, we need:

e extension operators, Fj, s.t. for a function w; : €; — R, E;(w;) : Q — R is the extension of w; by
zero outside ;.

e partition of unity functions x; : Q; — R, x; > 0 and x;(x) = 0 for x € 9Q; and s.t.

2
w = Z Ei(Xi w|Qi) o
=1

Intro 7/48

Continuous ASM and RAS - |

The algorithm acts on the local functions (u;);=1,2. To make things global, we need:

e extension operators, F;, s.t. for a function w; : Q; — R, F;(w;) : 2 — R is the extension of w; by
zero outside ;.

e partition of unity functions x; : Q; — R, x; > 0 and x;(x) = 0 for z € 9€; and s.t.

2

w = ZEZ(XL ’LU|Qi) .

=1

+1

Let ™ be an approximation to the solution to the global Poisson problem then «" " is computed by

solving first local subproblems and then gluing them together.

Intro 7/48

Continuous ASM and RAS - Il

Local problems to solve (i = 1,2)

~A@™ =f in Q

ultt =0 on 0€; NON
u?+l =u” on 0N Q3.

Intro 8/48

Continuous ASM and RAS - Il

Two ways to "glue" solutions

Local problems to solve (i = 1,2) e Using the partition of unity functions
CA@MY =f in Restricted Additive Schwarz (RAS)
ultt =0 on 0Q; NN 2
u?“ = @ on 99N Qs_;. u"t = ZEZ(Xz U?H) .
i=1

Intro 8/48

Continuous ASM and RAS - Il

Two ways to "glue" solutions

e Using the partition of unity functions
p

Restricted Additive Schwarz (RAS)

2
Local problems to solve (i = 1,2) Wt = ZEZ(Xz Wy,
i=1
—A@™ =f in Q

n+l _ P; .)
ui =0 on 92N Qﬂ e Not based on the partition of unity
u?“ =" on 00;NN3_;.

Additive Schwarz (ASM)

2
'U,”H—1 = Z Ei(u;H'I) o
=1

Intro 8/48

Block Jacobi methods

The Jacobi algorithm

Let us consider a linear system:
AU =F

with a matrix A of size m x m, a right handside
F € R™ and a solution U € R™ where m is an
integer. Let D be the diagonal of A:

DU™! = DU™ + (b — AU™),
or equivalently,
Ut =U"+D (b AU") =U"+D 'r",
where r" is the residual of the equation.

Intro 9/48

Block Jacobi methods

The Jacobi algorithm

Let us consider a linear system:

AU =F The block-Jacobi algorithm
with a matrix A of size m x m, a right handside The set of indices {1,...,m} is partitioned into
F € R™ and a solution U € R™ where m is an two sets

integer. Let D be the diagonal of A:
Ni={1,....ms}and No :={ms+1,...,m}.
DU = DU" + (b— AU"),
Let Uy := Uz, Uz := U, and similarly
or equivalently, Fi1:=F,, F2 :=F)y,.

Un+l _ Un + D—l(b . AUn) _ Un + D—lrn7
where r" is the residual of the equation.

Intro 9/48

Block Jacobi methods

The Jacobi algorithm

Let us consider a linear system:
AU =F

with a matrix A of size m x m, a right handside
F € R™ and a solution U € R™ where m is an
integer. Let D be the diagonal of A:

DUrL+1 — DUn + (b o 14-[_]”)7
or equivalently,
Un+l _ Un 4 D—l(b_ AUn) _ Un +D_II‘",

where r" is the residual of the equation.

Intro

The block-Jacobi algorithm

The set of indices {1,...,m} is partitioned into
two sets

Ni={1,...,ms} and No := {ms+1,...,m}.

Let Uy := U, Uz := U, and similarly
F1:=F|n,, F2 :=F|p;,.
The linear system has the following block form:

Ain A U, _ F
Ao1 Aso U F2
where Aij == Ay xn;, 1 <4, < 2.

9/48

Block Jacobi methods

The Jacobi algorithm

Let us consider a linear system: The block-Jacobi algorithm

The set of indices {1,...,m} is partitioned into

AU =F
two sets

with a matrix A of size m x m, a right handside
F € R™ and a solution U € R™ where m is an
integer. Let D be the diagonal of A: Let U, := U}y, Uz := Uy, and similarly
Fi1:=Fn,, F2 :=F,.

The block-Jacobi algorithm reads:

ivalentl
or equivalently, Ay 0 urtt\ [B - A U3
U™ —U" + D '(b— AU™) = U" + D I1", 0 An)\ Uy Fy—AaUY)

where r" is the residual of the equation.

Ni={1,...,ms} and No := {ms +1,...,m}.

DUrL+1 — DUn + (b o 14-[_]”)7

Intro 9/48

Block Jacobi methods

The Jacobi algorithm

. . The block-Jacobi algorithm
Let us consider a linear system:

The set of indices {1,..., is partitioned into
AU=F indices {1, m} is partiti i
two sets

with a matrix A of size m x m, a right handside
F € R™ and a solution U € R™ where m is an
integer. Let D be the diagonal of A: Let U, := U}y, Uz := U}y, and similarly
F1 = F‘Nﬂ F2 = F‘NQ

Let U™ = (U7, U%)%, algorithm becomes

ivalentl
or equivalently, Ay 0 Ut - 0 A U
Un+1 _ Un + D—l(b_ AUn) _ Un +D_11‘n, 0 A22 A21 0

Ni={1,....ms}and No :={ms+1,...,m}.

DUrL+1 — DUn + (b o 14-[_]”)7

where r" is the residual of the equation.

Intro 9/48

Block Jacobi methods

The Jacobi algorithm The block-Jacobi algorithm

Let us consider a linear system: The set of indices {1,...,m} is partitioned into
two sets
AU =F
Ni={1,...,ms} and Na := {ms +1,...,m}.
with a matrix A of size m x m, a right handside
F € R™ and a solution U € R™ where m is an Let Uy := Uz, Uz := U, and similarly
integer. Let D be the diagonal of A: Fi1:=Fny, F2i=Fas,.
Or equivalently
DU = DU" + (b— AU"),

-1

A 0
n41 n 11 n
or equivalently, Ut =u +(0 A) "
n+l _ n —1 ny __ n —-1.n
U" =U"+D" (b-AU")=U"+D" 1", where

where r" is the residual of the equation. "= F— AU" xf =y, i = 1,2.

Intro 9/48

Block-Jacobi compact form

Block-Jacobi in compact form

Notations for a compact form U™ = U"+(RTAT'Ri+ R} Ay ' Ro)r™.
e R; the restriction operator from A into N

e Ry the restriction operator from A into Na.

The transpose operator RY is an extension operator
from N1 into A and the same holds for RZ.

where
r":=F — AU" r] :=r[},, i =1,2.

A= R,ART, i=1,2.

Intro 10/48

Schwarz algorithms as block Jacobi methods

Let © := (0,1) and consider the following BVP The discretization of the Jacobi-Schwarz for
domain Qi reads

—Au=finQ
n+1 n—+1 n+1
— — ul Tt —2uy T T
u(0) = u(1) = 0. _ % f;ﬂ LIt — 1< <ms
discretized by a three point FD on the grid “TBI =0
xj:=7h, 1 <j<mwhere h:=1/(m+1). U?’Llﬁl = U, 41

Let uj >~ u(z;), f; := f(z;), 1 <j < m and the
discrete problem

; 1 1
Solving for UTT! = (u?}L)i<j<m, Corre-

AU = F, U = (u;)1<j<m, F = (f;)1<j<m. sponds to solving a Dirichlet BVP in subdo-
main ; with Dirichlet data taken from the
where A;; :=2/h? and other subdomain at the previous step.

Ajjr = Ajrj = —1/R%
Let domains ©; := (0, (ms + 1) h) and
Q2 := (ms h, 1) define an overlapping

A UTT 4+ AU = Fy,
AUl + A5 UY = Fy.

decomposition with a minimal overlap of width h.

Intro 11/48

Schwarz as block Jacobi methods - IlI

The discrete counterpart of the extension operator I (resp. E2) is defined by Ey(U1) = (Uy,0)”
(resp. E2(Uz) = (0,U2)7T).

Ql Tmg, Tmo+1 QQ

U
then E1(Uy) + Ex2(Uz2) = E1(x1U1) + Eax(x2Uz) = (Ul >
2

When the overlap is minimal, the discrete counterparts of the three Schwarz methods (AS,
RAS, JS) are equivalent to the same block Jacobi algorithm.

Intro 12/48

Continuous vs. discrete level

Continuous level
e Domain Q2 and an overlapping decomposition
QO =uN,0..

e A function u: Q — R.
e Restrictionof u: Q) -+ Rto Q;, 1 <: < N.
e The extension operator E; of a function

ui:Qi—>R

to a function Q — R.
e Partition of unity functions y;, 1 <i < N.

Intro 13/48

Continuous vs. discrete level

Continuous level Discrete level

e Domain © and an overlapping decomposition ¢ A set of d.o.f. A/ and a decomposition

Q=uN, 0. N =UN NG
e A function u : 2 — R. e A vector U € R*N .
o Restriction of u: Q = Rto Q;, 1 <i<N. ¢ Restriction R; - #N; x #N boolean matrix
e The extension operator E; of a function e The extension matrix RZ.
e Partition of unity diagonal matrices with pos-
Uj - Qi — Ry & P
itive entries, of size #N; X #N s. t.
to a function Q — R. N
e Partition of unity functions y;, 1 <7 < N. Id = Z RY D; R;.
i=1

Intro 13/48

Restrictions operators

Let (7h,i)1<i<n define an overlapping mesh decomposition of 75, and €; := UI(67h7iK.
Define V4,,; the finite element space on 74 ;.
Let 7. be a mesh of a domain Q and u;, some discretization of a function u which is the solution of an
elliptic Dirichlet BVP.
Find Ue R*Vst. AU=F.

Define the restriction operator r; = E} :

Ti D Uh F7 Uh|Q;

R, boolean matrix corresponding to r;:

o O o =
e = e @
S O = O

e e e
o O O O
e e e @
S O O O
o O O O
= o O O

Ri: R¥N — R#N:
Intro 14/48

Partition of unity

Restriction operator

Ri : R*M oy R#V:

Intro 15/48

Partition of unity

Restriction operator
Ri : R*N y RPN
Prolongation operator

RT . R#¥Ni \, R#N |

Intro 15/48

Partition of unity

Restriction operator
R; : R*N s R#N:
Prolongation operator
RT . R*Ni 5 R#N |
Local Dirichlet matrices

Intro 15/48

Partition of unity

Restriction operator
R : R#N — R#Mﬁ
Prolongation operator
RT . R*Ni o R#N
Local Dirichlet matrices
A; := R;AR} .
Partition of unity defined by matrices D;

D; : R*Ni o R#N:

N
ZRiTDiRi =1Id

=l

Intro 15/48

Examples. Two subdomain case: 1d algebraic setting

Let N :={1,...,5} be partitioned into
N7 :={1,2,3} and N3 := {4,5}.

\/
A
4

Intro 16/48

Examples. Two subdomain case: 1d algebraic setting

Let NV :={1,...,5} be partitioned into

N1 :={1,2,3} and N2 := {4,5}.

\/
A
4

Restriction/partition of unity matrices R1, R2, D1 and Da:

1 0 0 0 O 0 0

Ri=[(0 1 0 0 O andR2=<O 0
0O 0 1 0 O

1 0 O
D1 = 0 1 0 and D2 = ([1) ?) o
0 0 1

o O
@ =
= O
R

Intro 16/48

Two subdomain case: 1d algebraic setting Il

An overlapping case

./\/'16:] = {172737 4} and NZL;:] = {3’4’ 5}

1 2 3 4 5

o o o o ©
5=1 5=1

Nl N2

Intro 17/48

Two subdomain case: 1d algebraic setting Il

Intro

An overlapping case

NP=1 = {1,2,3,4} and N§=! := {3,4,5}.

1 2 3 4 5

(@] (@] (@] (@] (@)
1 5=1

NO=L NG

Restriction/partition of unity matrices R1, R2, D1 and Da:

Loeen e
R; = andRo={0 0 0 1 0O].
00100 0O 0 0 0 1

o 0 0 1 0

(1) (1) 8 g 12 0 0
Dy = 0 0 1/2 0 and Dy = 8 1(/)2 (1] .

00 0 1/2

Two subdomain case: 1d finite element decomposition

Partition of the 1D mesh corresponds to an ovr. decomp. of N:

N1 = {1,2,3} and N3 := {3,4,5}.

Intro 18/48

Two subdomain case: 1d finite element decomposition

Partition of the 1D mesh corresponds to an ovr. decomp. of N:

Ni:={1,2,3} and N2 :={3,4,5}.

Ql QZ

Restriction/partition of unity matrices R1, Ra, D1 and Da:

1 0 0 0 O 0 0 1 0 O
Ri=|0 1 0 0 0)andR2=[(0 0 0 1 O
0 0 1 0 O 0 0 0 0 1

o =

0 0 1/2 0 0
1 0 and Dy = 0 0
0 1/2 0 1

18/48

Intro

Two subdomain case: 1d finite element decomposition - Il

An overlapping partition.

NI = (1,2,3,4) and WE= 1= {2,3,4,5)

1 2 3 4)

o=1 -

Intro 19/48

Two subdomain case: 1d finite element decomposition - Il

Intro

Dy

An overlapping partition.

NI = (1,2,3,4) and WE=) 1= {2,3,4,5)

Restriction/partition of unity matrices R1, R2, D1 and Da:

1 0 01 0 0 0
01 0 0 0 00 1 0 0
Bi=10 0 1 0 of™M%=|0 0 0 1 o0
000 1 0 000 0 1
1 0 0 0 /2 0 0 0
0 1/2 0 0 0 1/2 0 0
= d Dy =
o o0 1/2 o |72 0 0 1/2 0
0 0 0 1/2 0O 0 0 1)

Multi-D and many subdomains: General procedure

The set of indices N can be partitioned by an automatic graph partitioner such as METIS or SCOTCH.

Intro 20/48

Multi-D and many subdomains: General procedure

The set of indices N can be partitioned by an automatic graph partitioner such as METIS or SCOTCH.
e From the input matrix A, a connectivity graph is created.

Intro 20/48

Multi-D and many subdomains: General procedure

The set of indices N can be partitioned by an automatic graph partitioner such as METIS or SCOTCH.
e From the input matrix A, a connectivity graph is created.
e Two indices i, j € N are connected if the matrix coefficient A;; # 0.

Intro 20/48

Multi-D and many subdomains: General procedure

The set of indices N can be partitioned by an automatic graph partitioner such as METIS or SCOTCH.
e From the input matrix A, a connectivity graph is created.

e Two indices i, j € N are connected if the matrix coefficient A;; # 0.

e Even if matrix A is not symmetric, the connectivity graph is symmetrized.

Intro 20/48

Multi-D and many subdomains: General procedure

The set of indices N can be partitioned by an automatic graph partitioner such as METIS or SCOTCH.
e From the input matrix A, a connectivity graph is created.

e Two indices i, j € N are connected if the matrix coefficient A;; # 0.

e Even if matrix A is not symmetric, the connectivity graph is symmetrized.

e Algorithms that find a good partitioning of highly unstructured graphs are used.

Intro 20/48

Multi-D and many subdomains: General procedure

The set of indices A can be partitioned by an automatic graph partitioner such as METIS or SCOTCH.

e From the input matrix A, a connectivity graph is created.

e Two indices i, j € N are connected if the matrix coefficient A;; # 0.

e Even if matrix A is not symmetric, the connectivity graph is symmetrized.

e Algorithms that find a good partitioning of highly unstructured graphs are used.

e This distribution must be done so that the number of elements assigned to each processor is roughly the same
(balance the computations among the processors).

Intro 20/48

Multi-D and many subdomains: General procedure

Intro

The set of indices N can be partitioned by an automatic graph partitioner such as METIS or SCOTCH.

e From the input matrix A, a connectivity graph is created.

e Two indices i, j € N are connected if the matrix coefficient A;; # 0.

e Even if matrix A is not symmetric, the connectivity graph is symmetrized.

e Algorithms that find a good partitioning of highly unstructured graphs are used.

e This distribution must be done so that the number of elements assigned to each processor is roughly the same
(balance the computations among the processors).

e The number of adjacent elements assigned to different processors is minimized (minimize the communication

between different processors).

20/48

Multi-D algebraic setting

Extend each disjoint subset A/; with its direct neighbors to form /\ff:l.

N::Uij\ilf\fi, NLQ./\/'J:@{:OY’L#]

R; be the restriction matrix from set A to the subset ./\/'1-5:1.
Partition of unity: D; a diagonal matrix of size #N?=! x #N?=1, 1 <i < N such that

(Di)jj = 1/#Mj, M == {1 < i< N je N7

Intro 21/48

Multi-D algebraic finite element (FE) decomposition

Computational domain

Multi-D algebraic finite element (FE) decomposition

Computational domain

Create overlapping subdomains resolved by the finite
element meshes:

Q= |J 7 fori<i<N. (1)
T€Ti,n

Intro 22/48

Multi-D algebraic finite element (FE) decomposition

Computational domain

Let {¢r } ke be a basis of the finite element space.
N = {k € N & supp(n) N2 # 0}
For all degree of freedom k € N, define

pr=#1{7: 1<j < N and supp(¢x) NQ; # 0} .

Intro 22/48

Multi-D algebraic finite element (FE) decomposition

Computational domain Let {¢r } ke be a basis of the finite element space.
N = {k € N : supp(¢x) N Qs # 0} .
For all degree of freedom k € N, define
pe = #{j: 1 <j < N and supp(¢y) Ny # 0}.

R; be the restriction matrix from N to Nj;.

Partition of unity D;: diagonal matrix of size

#HN; X #N;, 1 <i< N sit,
(Di)kk := 1/uk, k € N;.

Intro 22/48

Summary: Additive Schwarz

Let the discretised Poisson problem: AU = F € R".

Intro 23/48

Summary: Additive Schwarz

Let the discretised Poisson problem: AU = F € R". Given a decomposition of [1;n], (N1, N2), define:
the restriction operator R; from RV into RYi| RT as the extension by 0 from RV into RI'™I.

931

Intro

Q2

23/48

Summary: Additive Schwarz

Let the discretised Poisson problem: AU = F € R". Given a decomposition of [1;n], (N1, N2), define:
the restriction operator R; from RV into RYi| RT as the extension by 0 from RV into RI'™I.

Intro

Find U™ — U™ ™! by solving concurrently:
UM = U + A;'R;(F — AU™), j = 1,2

where U™ = R,;U™ and A; := R, AR} .

931

Q2

23/48

An introduction to Additive Schwarz Il

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

N
1= ZR,;TDiRi.

=1

Intro 24/48

An introduction to Additive Schwarz Il

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

N
1= ZR,;TDiRi.

=1

N
Then, U™ =" RI DU

=il

Intro 24/48

An introduction to Additive Schwarz Il

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

N
I=> R!DR,.
< q
2
N N
Then, U™ =" RI DU Mgis=> R{D:A;'R..

u=Il

i=1
RAS algorithm (Cai & Sarkis, 1999)

Intro 24/48

Algebraic formulation - RAS and ASM

Schwarz algorithm iterates on a pair of local functions (u),,u2,)
RAS algorithm iterates on the global function u™

Intro 25/48

Algebraic formulation - RAS and ASM

Schwarz algorithm iterates on a pair of local functions (u},, u?2,)
RAS algorithm iterates on the global function u™

Schwarz and RAS (Efstathiou and Gander, 2002)
Discretization of the classical Schwarz algorithm and the iterative RAS algorithm:

U™t = U™ + Mpjer" ,t" :=F — AU".

are equivalent
U" = R{ D,U? 4+ R; D-U% .

Operator M5, ¢ is used as a preconditioner in Krylov methods for non symmetric problems.

Intro 25/48

ASM: a symmetrized version of RAS

Intro

N
Mphs =Y R DiA7' Ri.

i=1

A symmetrized version: Additive Schwarz Method (ASM),

N
Mysy =Y Ri A7'Rs

i=1

are used as a preconditioner for the conjugate gradient (CG) method. Later on, we introduce

N
M3opas = ZRZT D; B ' D; R;
=1

where (B;)1<i<n are some local invertible matrices.
Although RAS is more efficient, ASM is amenable to theory.

(2)

26/48

Geometrical analysis in 1d

Let L >0, 2 = (0, L) be decomposed into two
subodmains Q1 := (0, L1) and Q2 := (l2, L) with
lo < L.

Intro 27/48

Geometrical analysis in 1d

Let L > 0, Q = (0, L) be decomposed into two
subodmains Q1 := (0, L1) and Q2 := (l2, L) with
lo < L.

The error €} := u’ —uq,, i = 1,2 satisfies

dQ "n+1
- | = 07 T < (07 Ll)
4"
e7 ™ (0) 0
L) = ef(Ly)

Intro 27/48

Geometrical analysis in 1d

Let L > 0, Q = (0, L) be decomposed into two

subodmains Q1 := (0, L1) and Q2 := (l2, L) with
lo < L.

The error e := u —u|., i = 1,2 satisfies
i i [€2; ’

d2ept!
22 = 0ze ()
) = atie)
en™ (L) = o.

Intro

27/48

Geometrical analysis in 1d

Let L > 0, Q = (0, L) be decomposed into two
subodmains Q1 := (0, L1) and Q2 := (l2, L) with

lo < Lj.
Errors are affine functions in each subdomain:
+1 _ , T
@) = ep(l) £
+1 _ +1 L—3
6; (CC) - CT (12) L,ZTZ o

Thus, we have

L—L1) l2 L—Ll
—_— = L) — .
I—n W T,

esTH(Ly) = ef T (la)

Intro 27/48

Geometrical analysis in 1d

Let L > 0, Q = (0, L) be decomposed into two

subodmains Q1 := (0, L1) and Q2 := (l2, L) with
Let 0 := L1 — l2 (overlap). Interface iteration

lo < L.
Errors are affine functions in each subdomain: en+1(L1) B I Li[g*ée"(lq)
® 2 T Tats LIy 2
it z) = ep(L1) B TS ST
@) =) £t e
It is clear that § > 0 is sufficient and necessary to have
Thus, we have convergence.
L — L1 l2 L — Ll
el T1(L1) = et (l) =——= = eB(L1) — .
5 (L1) = €] (z)L_l2 2(1)L1L—12

Intro 27/48

Geometrical analysis in 1d

Let L > 0, Q = (0, L) be decomposed into two
subodmains Q1 := (0, L1) and Q2 := (l2, L) with

lo < Lj.
Errors are affine functions in each subdomain:
+1 _ 1 T
G@) = ep(l) £
+1 _ +1 L—3
6; (CC) - CT (12) L,ZTZ o

Thus, we have

L—L1 l2 L—Ll

eyt (L1) = ef T (l2) 1=, — @)

Intro

L—1ly

Let 6 := L1 — l2 (overlap). Interface iteration

! L—Ily—46
6;+1(L1) = zZié L;i?beg(L')
1—6/(L—I:<
T e (L)

It is clear that § > 0 is sufficient and necessary to have

convergence.
\6\
V0
| ey
T\
1 ,
‘1 N\ €2
o :
G R
G
'
L
' T
0 Iy Ly L

27/48

Fourier analysis in 2d

Let R? decomposed into two half-planes
Q1 = (—00,0) X R and Qs = (0,00) x R with an
overlap of size 6 > 0 and the problem
(n—A)uw) =f in R?
u is bounded at infinity,

Intro 28/48

Fourier analysis in 2d

Let R2? decomposed into two half-planes
Q1 = (—00,0) X R and Q2 = (0,00) x R with an
overlap of size § > 0 and the problem
(n—A)u) =f in B2,
u is bounded at infinity,

1 H n .— n H
By linearity, the errors el := ul> — u|q, satisfy

(n—2)Ee) =0 in o
e?Jrl is bounded at infinity
eft(@Ey) =e3(y),

Intro 28/48

Fourier analysis in 2d

Let R2? decomposed into two half-planes
Q1 = (—00,0) X R and Q2 = (0,00) x R with an
overlap of size § > 0 and the problem
(n—A)u) =f in B2,
u is bounded at infinity,

By linearity, the errors e := ul’ — u|q, satisfy

(n—2A)ed™) =0 in Q
e§+1 is bounded at infinity
est10,y) =er(0,y).

Intro 28/48

Fourier analysis in 2d

Let R? decomposed into two half-planes
Q1 = (—00,d) x R and Q2 = (0,00) x R with an
overlap of size § > 0 and the problem
(n—2A)(uw) =f in R?
u is bounded at infinity,
Partial Fourier transform of the equation in the y
direction:

02 " .
(W—@-l—kQ) (ej'H(x,k')):O in Q.

Intro 28/48

Fourier analysis in 2d

Let R? decomposed into two half-planes
Q1 = (—00,d) x R and Q2 = (0,00) x R with an
overlap of size § > 0 and the problem
(n—2A)(uw) =f in R?
u is bounded at infinity,
Partial Fourier transform of the equation in the y
direction:

02 " .
(W—@-l—kQ) (ej'H(x,k')):O in Q.

Intro 28/48

Fourier analysis in 2d

Let R2 decomposed into two half-planes
Q1 = (—00,d) x R and Q2 = (0,00) X R with an
overlap of size § > 0 and the problem

(n—A)w) =f in R
u is bounded at infinity,

Partial Fourier transform of the equation in the y
direction:

a2 :
(n—@wﬁ) €t (e, k) =0 in Q;

For a given k, solutions

é?+1($’ k) = ﬂ+1(k)x+(k)x +7f+1(k)er(k’>“'),

must be bounded at z = Foo.

Intro 28/48

Fourier analysis in 2d

Let R2 decomposed into two half-planes
Q1 = (—00,d) x R and Q2 = (0,00) X R with an
overlap of size § > 0 and the problem

(n—A)w) =f in R
u is bounded at infinity,

Partial Fourier transform of the equation in the y
direction:

a2 :
(n—@wﬁ) €t (e, k) =0 in Q;

For a given k, solutions

é?+4($’k):: 71+1(k)x+(k)x_+,7E+1(k)exf(k)x%

must be bounded at z = Foo.

Intro

This implies

é';lﬁ—l(:];7 k) _ 7i+l(k)c)\+(k)m

(Ai;H—l(:L', k) _ ’yﬁ+1(k)(i>\7(k)w

28/48

Fourier analysis in 2d

Let R2 decomposed into two half-planes
Q1 = (—00,d) x R and Q2 = (0,00) X R with an
overlap of size § > 0 and the problem
(n—A)w) =f in B2,
u is bounded at infinity, Combining these two and denoting
Ak) = AT (k) = =27 (k), we get fori = 1,2,

From the interface conditions we get

n n “(k)x n n At (k)
YL (k) = 4 (k) T B0, L (k) = 4 (R)e AT R,

Partial Fourier transform of the equation in the y

TS VX (k) = plkim,)2 22 ()
1%}) .
(n - == k?) (€ (@, k) =0 in Q.
x The convergence factor p is given by:

For a given k, solutions ok, 6) = e—A(k)67 AK) = m
é?+1($’ k) = ﬂ+1(k)x+(k)x +7f+1(k)er(k’>“'),

must be bounded at z = Foo.

Intro 28/48

Fourier analysis in 2d

The convergence factor p is given by:

p(k;n,8) = e AP N\(k) = /i + k2

Properties

o Forall k € R, p(k) < e~V7% < 1 so that
'y]"(k) — 0 uniformly as n goes to infinity.

e p — 0 as k tends to infinity, high frequency
modes of the error converge very fast.

e When there is no overlap (6 = 0), p =1 and
there is stagnation of the method.

Intro 20/48

Schwarz methods using Freefem++
Schwarz algorithms as solvers
Schwarz algorithms as preconditioners

Schwarz preconditioners using FreeFEM++

Intro 20/48

About FreeFem++ (survival kit)

FreeFem++ allows a very simple and natural way to solve a great variety of variational problems.
It is possible to have access to the underlying linear algebra such as the stiffness or mass matrices.

A very detailed documentation of FreeFem++ is available on the official website
http://www.freefem.org/

Codes and lecture notes for the domain decomposition part available here:
http://www.victoritadolean.com/p/book.html

Intro 30/48

http://www.freefem.org/
http://www.victoritadolean.com/p/book.html

Intro

Let a homogeneous Dirichlet boundary value problem for a Laplacian defined on a unit square
Q =10, 17

—Au=f dans Q
_ (4)
u=20 sur 0N)

The variational formulation of the problem
Find ue Hy(Q) :={we H'(Q) : w=0, on Ul U3 U}

such that
/ Vu.Vodz —/ fode=0,Yv e Hy ().
Q Q

Feature of Freefem++: penalization of Dirichlet BC. Let TGV (Trés Grande Valeur in French) be a
very large value, the above variational formulation is approximated by
Find w € H'(Q2) such that

aang

31/48

The following FreeFem++ script is solving this problem

// Number of mesh points in x and y directions
int Nbnoeuds=10;

The text after // symbols are comments ignored by the FreeFem++ language.

Each new variable must be declared with its type (here int designs integers).

//Mesh definition
mesh Th=square (Nbnoeuds , Nbnoeuds ,[x,y]);

The function square returns a structured mesh of the square, the sides of the square are labelled from
1 to 4 in trigonometrical sense.

Intro 32/48

Define the function representing the right hand side

// Function of x and y
func f=xxy;

and the P; finite element space Vh over the mesh Th.

// Finite element space on the mesh Th
fespace Vh(Th,P1);

//uh and vh are of type Vh

Vh uh,vh;

The functions us and vy, belong to the P finite element space Vj, which is an approximation to H*(£2).

// variational problem definition

problem heat(uh,vh,solver=LU)=
int2d (Th) (dx(uh)*dx(vh)+dy(uh)*xdy(vh))
—int2d (Th) (fxvh)
4+on(1,2,3,4,uh=0);

Intro 33/48

Intro

The keyword problem allows the definition of a variational problem (without solving it)

where TGV is equal to 10%°.

The parameter solver sets the method that will be used to solve the resulting linear system. To solve
the problem we need

//Solving the problem
heat ;

// Plotting the result
plot (uh, wait=1);

The Freefem++ script can be saved with your favourite text editor (e.g. under the name heat.edp).
In order to execute the script write the shell command

FreeFem++ heat.edp

The result will be displayed in a graphic window.

34/48

Intro

Solve Neumann or Fourier boundary conditions such as

—Au+u=f dansQ

ou __
5, =0 sur I'y (5)
u=20 sur I's

g—fl—l—au:g sur 'sUTy

The new variational formulation consists in determining u, € V}, such that

Vun . Vopdr + / aupvy + TGV Up.Vp,

Q C3Uly Iy

= gun */ fopdr = 0,V € V.

'3UTy Q

The Freefem++ definition of the problem

problem heat(uh,vh)=
int2d (Th) (dx(uh)*dx(vh)+dy(uh)xdy(vh))
+intld (Th,3,4) (alphaxuhxvh)
—intld (Th,3,4) (gxvh)
—int2d (Th) (fxvh)
+on(2,uh=0);

35/48

In order to use some linear algebra package, we need the matrices. The keyword varf allows the
definition of a variational formulation

varf heat(uh,vh)=
int2d (Th) (dx(uh)xdx(vh)+dy(uh)sxdy(vh))
+intld (Th,3,4) (alphaxuhxvh)
—intld(Th,3,4) (gxvh)
—int2d (Th) (fxvh)
+on(2,uh=0);
matrix Aglobal; // stiffness sparse matrix
Aglobal = heat(Vh,Vh, solver=UMFPACK) ; // UMFPACK solver
Vh rhsglobal; //right hand side vector
rhsglobal [] = heat(0,Vh);

Here rhsglobal is a FE function and the associated vector of d.o.f. is rhsgloball[].
The linear system is solved by using UMFPACK

// Solving the problem by a sparse LU sover
uh[] = Aglobal~—1xrhsglobal [];

Intro 36/48

Decomposition into overlapping domains

Intro

To build the overlapping decomposition and the associated algebraic call the routine
SubdomainsPartitionUnity.

Output:

e overlapping meshes aTh[i]

e the restriction/interpolation operators Rih[i] from the local finite element space Vh[i] to the
global one Vh

e the diagonal local matrices Dih[i] from the partition of unity.

include "./data.edp"

include "./decomp.idp"

include "./createPartition.idp"
SubdomainsPartitionUnity (Th, part[] ,sizeovr ,aTh, Rih , Dih ,Ndeg, AreaThi);

37/48

RAS and ASM: global /localdata

We first need to define the global data.

Aglobal = vaglobal (Vh,Vh, solver = UMFPACK); // global
rhsglobal [] = vaglobal (0,Vh);

uglob [] = Aglobal~—1xrhsglobal [];

plot (uglob ,value=1, fill =1,wait=1,emm="Solution

matrix

// sglobal

And then the local problems

for(int i = O;i<npart;++i)

{
cout << " Domain :" << i << "/" << npart << endl;
matrix aT = AglobalxRih[i]’;
aA[i] = Rih[i]*aT;

set(aA[i],solver = UMFPACK);// direct solvers

Intro

by a direct method",dim=3);

38/48

RAS and ASM : Schwarz iteration

ofstream filei ("Conv.m");

Vh un = 0; // initial guess
Vh rn = rhsglobal;
for(int iter = 0;iter <maxit;++iter)
{ real err = 0, res;
Vh er = 0;
for(int i = O;i<npart;++i)
{ real[int] bi = Rih[i]*xrn[]; // restriction to the local domain
real[int] ui = aA[i] "—1 % bi; // local solve
bi = Dih[i]*ui;
// bi = ui; // uncomment this line to test the ASM method as a solver
er[] += Rih[i] 'xbi;}
un[] += er[]; // build new iterate
rn[] = Aglobalxun][]; // computes global residual
rn[] = rn[] — rhsglobal [];
rn[] *x= —1;

err = sqrt(er[]'xer[]);

res = sqrt(rn[] ' *xrn[]);

cout << "lteration: " << iter << " Correction = " << err << " Residual = " << res << endl;
plot (un, wait=1,value=1, fill =1,dim=3,cmm="Approximate solution at step " + iter);

int j = iter+1;

// Store the error and the residual in Matlab/Scilab/Octave form

filei << "Convhist("+j+" ,:)=[" << err << " " << res <<"];" << endl;
if(err < tol) break;}
plot (un,wait=1,value=1, fill =1,dim=3,cmm="Final solution");

Intro 39/48

Convergence

Convergence history of the RAS solver for different values of the overlapping parameter.

IsoValue

overlap=10

Note that this convergence, not very fast even in a simple configuration of 4 subdomains.
The iterative version of ASM does not converge. For this reason, the ASM method is always used a
preconditioner for a Krylov method such as CG, GMRES or BiCGSTAB.

Intro 40/48

Schwarz algorithms as preconditioners

Fixed point method Krylov method

. . Consider a preconditioned linear system:
Consider the linear system P 4

—1 _p-1
Aw—b B " Axz=DB""b

G S . _ Let z¥ an initial dr%:=B71b—C2z° th
A possible iterative method is a fixed point algorithm . e_ .:c an_ (it guess and = 0 * N
initial residual. Then y := x — z" solves
1 -1
"l =gn 4 B - Az™) Cy=1rO.
d x is a fixed point of th tor: . . .
and wis @ fixed pomt of the operator The basis for Krylov methods is the following

z+— x4+ B7l(b— Ax).

Let 79 := b — Az® and C := B~! A, then Lemma
Let C be an invertible matrix of size N x N.
n
P o Then, there exists a polynomial P of degree
n _ I,—C)YB 1,. 0.
’ ZZ;(d) e p < N such that

We have convergence iff the spectral radius of the ct = P(C).
matrix I; — C' is smaller than one.

Intro 41/48

Why Krylov methods

By a constructive proof
d o
z=a° +Z <7—L> ci a0
i1 N @0

Thus, it makes sense to introduce Krylov spaces,
K (C,r0)

K™ (C,r0) := Span{r®, Cr°,...,C" 10} n > 1.

to seek y™ an approximation to y.

Intro 42/48

Why Krylov methods

By a constructive proof

d
z=a° +Z <7&> ci a0
i=1

ag

Thus, it makes sense to introduce Krylov spaces,
K (C,r0)

K™ (C,r0) := Span{r®, Cr°,...,C" 10} n > 1.

to seek y™ an approximation to y.

Intro

Example: The CG methods applies to symmetric
positive definite (SPD) matrices and minimizes the
A~1_norm of the residual when solving Az = b:

Find y™ € K" (A, r°) such that
CG

Ay™ — 10,1 = min Aw—710 41 .
Ay =0l = min | flAw =],

42/48

Why Krylov methods

A detailed analysis reveals that ™ = y™ 4 xo can be
obtained by the quite cheap recursion formula:

fori=1,2,... do

By a constructive proof pi—1 = (ri—1,7mi-1)2

d if i =1 then
a; ;
I:xOJrZ(f—L)C“er. p1 =T0

i1 N @0 else
Thus, it makes sense to introduce Krylov spaces, Bi—1 = pi—1/pi—2
K™ (C,r9) pi =1i—1+ Bic1Pi—1

0 0 0 1,.0 end if
K"(C,r”) := Span{r”, Cr°,...,C" " "r"}, n > 1. g = Ap;_1
Pi—1

to seek y™ an approximation to y. Q; = m

Tj = Tj—1 + 04P;

TP = Ti—1 — ®q;

check convergence; continue if necessary
end for

Intro 42/48

Preconditioned Krylov - general framework

By solving an optimization problem:

Find y" € K" (C,7°) such that
GMRES lcy™ 77‘0H2 — min HC’LU*TO||2
weK™(C,r0)

Intro 43/48

Preconditioned Krylov - general framework

By solving an optimization problem:

Find y" € K"(C,r°) such that

GMRES ICy™ —r°a= min [|[Cw—7"|s
wekn (C,r0)

a preconditioned Krylov solve will generate an optimal z’x in

K™(C, B "ry) := zo + Span{B~'ry, C B 'ro,...,C" ' B~ 'ro}.

Intro 43/48

Preconditioned Krylov - general framework

By solving an optimization problem:

Find 4™ € K™(C,r°) such that
GMRES ICy™

—r%e = min [|[Cw—7"|2
wek™(C,r0)

a preconditioned Krylov solve will generate an optimal =% in

lC"(C,Bilro) =1z + Span{Bilro, CB 'rg,...,C"" " Bilro}.

Remark. This minimization problem is of size n. When n is small w.rt. N, its solving
has a marginal cost. Thus, 2% has a computing cost similar to that of ™. But, since z" €
K™(B™'A, B~ 'rg) as well but with “frozen” coefficients, we have that x,, is less optimal (actually
much much less) than z%.

Intro 43/48

Schwarz methods as preconditioners

In the previous Krylov methods we can use as preconditioner
e RAS (in conjunction with BiCGStab or GMRES)

N
B™'i=Muas = R Di(RiART) 'R
=1

e ASM (in a CG methods)

N
B~ :=Mjysy =) R (RiAR))™' R

=il

Intro 44/48

Preconditioner in CG

°]\"[g;‘]\l as a preconditioner :
e a Krylov method: conjugate gradient since M, ¢, ,
and A are symmetric.

At iteration m the error for the PCG method is

bounded by:
|2 —zm|l 1 1 <
\FI\/IA 2 AJ\JASQM
2| T Iz — zoll 1
= _1 1
ﬁ AJA SM AAJA SQA/I

where & is the condition number of]V[X;‘MA and 7 is
the exact solution.

Intro 45/48

Preconditioner in CG

°]\"[g;‘]\l as a preconditioner :
e a Krylov method: conjugate gradient since M, ¢, ,
and A are symmetric.

At iteration m the error for the PCG method is

bounded by:
lo—amll _y 4 <
\FM? 2 (AM , 2,
2| “—T IZ — zoll _1
— EER
ﬁ AJA SM AA[A S2A/I

where & is the condition number of MX;‘MA and 7 is
the exact solution.

Intro

The CG with the ASM preconditioner becomes:

fori=1,2,... do

pic1 = (ric1, My rie1)2

if - =1 then
—1
p1=Mygpm0
else

Bi—1 = Pi1—1/pz‘72
pi = Mygpri—1+ Bi—1pi—1

end if

¢ = Api—1

o = _Pi-1
L (piyai)2

Ti = Ti—1 + 0P;
Ti = Ti—1 — Qiq;
check convergence; continue if necessary

end for

45/48

Action of the preconditioner

The action of the global matrix and preconditioner

func real[int] A(real[int] &x)

{
// Matrix vector product with the global matrix
Vh Ax;
Ax[]= Aglobalxx;
return Ax|[];
b

// and the application of the preconditioner
func real[int] AS(real[int] &I)

{
// Application of the ASM preconditioner
// M {—1}xy = sum Ri"TxAi“{—1}xRixy
// Ri restriction operators, Ai =RixAxRi"T local matrices
Vh s = 0;
for(int i=0;i<npart;++i)
{
real[int] bi = Rih[i]x]; // restricts rhs
real[int] ui = aA[i] "—1 % bi; // local solves
s[] += Rih[i] ' *ui; // prolongation
return s[];
3

Intro 46/48

The Krylov method applied in this case is the CG. The performance is now less sensitive to the overlap
size.

IsoValue

Intro 47/48

We can also use RAS as a preconditioner, by taking into account the partition of unity

func real[int] RAS(real[int] &l)

{
// Application of the RAS preconditioner
// M {—1}xy = \sum Ri"T«DixAi"{—1}*Rixy
// Ri restriction operators, Ai =RixAxRi"T local matrices
Vh s = 0;
for(int i=0;i<npart;++i) {
real[int] bi = Rih[i]x]; // restricts rhs
real[int] ui = aA[i] "—1 % bi; // local solves
bi = Dih[i]*ui; // partition of unity
s[] += Rih[i] '*bi; // prolongation
}
return s[];
}

this time in conjuction with BiCGStab since we deal with non-symmetric problems.

Intro 48/48

	Introduction
	Schwarz methods using Freefem++

