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What is an extreme ?
The tallest man living is Sultan Kosen (Turkey, December 1982) who
measured 246.5 cm



What is an extreme ?
The tallest man living is Sultan Kosen (Turkey, December 1982) who
measured 246.5 cm
“Man can believe the impossible, but man can never believe the improbable”

Oscar Wilde, (Intentions, 1891)

Robert Wadlow (1918-1940, 2.72 m, 8 ft 11.1 in) & his father, H.F. Wadlow (1.82m, 5 ft 11 1?2 in)
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Quantiles and return levels

A return level with a return period of
T =1/pyears is a high threshold z,
whose probability of exceedance is p.
E.g.,p=0.01 = T =100 years.
Return levels

m Number of events : Average
number of events occurring within
a T-year time period is one

Probability density function

Return level x(p)




Important facts about Extreme Value Theory

APP|ied statistics

An asymptotic probabilistic
Concept Non—stzﬁ:\ionarit\g
m A statistical approach for '

extrapolation of quantiles

Univariate Multivariate
m Clear assumptions }<t w>t
m Assessment of uncertainties )
m Possible couplings with physical mAaPénAence

numerical models

Theoritical Probability




An active research statistical field

A good intro A few sessions at EVA in 2019

Extremes and machine learning - organizer Anne Sabourin (L7Cl, Télécom ParisTech)
Dan Cooley (Colorado State University)
Laurent Gardes (/RMA, Université de Strasbourg)
Vincent Feuillard (Airbus Group Innovations)

Risk analysis in insurance - organizer Liang Peng (Georgia State University)

rigger Series i Claudia Kluppelberg (Technische Universitt Miinchen)

Jan Beirlant (KU Leuver)
Fan Yang (University of Waterloo)

Spatial extremes - organizer Clement Dombry (Université de Franche-Comte)

Ana Ferreira (Universidade de Lisboa)
An I’ntrﬂdunlon Marco Oesting (Universitét Siegen)
% Raphaél de Fondeville (EPFL)
to Statistical

Detection and attribution of climate change - organizer Dan Cooley (Colorado State University)

Modeling of
Extreme Values Richard Smith (University of North Carolina)

Alexis Hannart (Ouranos)

Anna Kiriliouk (Université de Namur)

Sub-asymptotic spatial extremes - organizer Thomas Opitz (/NRA Avignon )

Raphaél Huser (KAUST)
Gwiladys Toulemonde (Montpellier University)
Jenny Wadsworth (Lancaster University)

Mixtures of dependence types - organizer Jennifer Wadsworth (Lancaster University)

Anne Sabourin (Telecom Paris-Tech)
Emma Simpson (Lancaster University)
Chen Zhou (Erasmus University Rotterdam, De Nederlandsche Bank)




A very short biblio about univariate EVT
m Davison, A. C. and Huser, R. G. (2015) Statistics of extremes. Annual
Review of Statistics and Its Application, 2, 203-235.

m Katz, R. W,, Parlange, M. B. and Naveau, P. (2002) Statistics of
extremes in hydrology. Advances in Water Resources, 25, 1287-1304.

m Stephenson A. Gilleland E. (2006) Software for the analysis of extreme
events :The current state and future directions, Extremes,



EVT = Going beyond the data range

What is the probability of observing data above an high threshold ?
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March precipitation amounts recorded at Lille (France) from 1895 to 2002. The 17 black dots corresponds to the number of excesses above

the threshold up = 75 mm. This number can be conceptually viewed as a random sum of Bernoulli (binary) events.



An example in three dimensions

Air pollutants (Leeds, UK, winter 94-98, daily max) NO vs. PM10 (left), SO2 vs. PM10
(center), and SO2 vs. NO (right) (Heffernan& Tawn 2004, Boldi & Davison, 2007)
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Typical question in multivariate EVT

What is the probability of observing data in the blue box ?
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Give me a lift

A AA Area with data points

p 5%



EVT : It is a kind of Magic




Asymptotic theory




Pierre-Simon Laplace (1749-1827) + De Moivre (1667-1754)
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Central limit theorem

The sum of independent random variables, properly normalized, tends

toward a normal distribution even if the original variables themselves are not
normally distributed (with finite variance).

1. a CLT proof of a result similar to the 1922 Lindeberg CLT was the subject of Alan Turing’s 1934

Fellowship Dissertation. Only after submitting the work did Turing learn it had already been proved.
Consequently, Turing’s dissertation was not published.



Pierre-Simon Laplace (1749-1827) + De Moivre (1667-1754)
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Central limit theorem

Xi+-- -+ Xn ~ Gaussian with mean E(X) and variance var(X)/n, for large n



Pierre-Simon Laplace (1749-1827) + De Moivre (1667-1754)
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Central limit theorem

X1+ -+ Xn ~ Gaussian with mean E(X) and variance var(X)/n, for large n

Why a Gaussian limit ?

The normal distribution is sum-stable and behaves like an attractor.



“Everyone wants to be normal, but no one wants to be average”




Simon Denis Poisson (1781-1840)
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Counting excesses

As a sum of random binary events, the variable N, that counts the number of
events above the threshold u, has mean n Pr(X > up)

Poisson’s theorem? in 1837
If u, such that
lim n Pr(X > up) = X € (0,00).

n— oo

then N, follows approximately a Poisson variable N.

2. Give HW
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Poisson’s theorem in 1837

If un such that
nlim n Pr(X > up) = X € (0,00).
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then N, the number of events above the threshold uj, follows approximately
a Poisson variable N.



Simon Denis Poisson (1781-1840)

Poisson’s theorem in 1837

If un such that
nlim n Pr(X > up) = X € (0,00).
— 00

then N, the number of events above the threshold uj, follows approximately
a Poisson variable N.

Question 1
Let a, such that n Pr(X > a,) = 1. What is your interpretation of a, ?
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Pr(X > un|X > an) ? your interpretation ?



Simon Denis Poisson (1781-1840)

Poisson’s theorem in 1837

If un such that
lim n Pr(X > up) =X € (0,00).
n—oo

then N, the number of events above the threshold uj, follows approximately
a Poisson variable N.
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Let a, such that n Pr(X > a,) = 1. What is your interpretation of a, ?
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Suppose up > an such that n Pr(X > un) = X € (0,00). What is
Pr(X > un|X > an) ? your interpretation ?

Question 3 : a special case
Suppose X follows an exponential distribution. Find us(x) and a, such that

Pr(X > ua(x)|X > an) = Pr(X > x).

How to interpret this result ?



Simon Denis Poisson (1781-1840)

Poisson’s theorem in 1837

If un such that
lim n Pr(X > up) =X € (0,00).
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then N, the number of events above the threshold uj, follows approximately
a Poisson variable N.
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Pr(X > ua(x)|X > an) = Pr(X > x).

How to interpret this result ?



Poisson and maxima

Counting = max
Pr(Ms < up) = Pr(N, = 0) with My, = max(Xi, ..., Xa)

Poisson’s at work

lim Pr(Mp, < us) = lim Pr(N, =0)= Pr(N =0) = exp(—\)

n—oo n— oo



Different modeling options

Maxima

Counting
exceedances

Tail behavior



The fundamental Fisher-Tippet theorem (1928)

Suppose that there exists a, > 0 and b, such that

lim Pr(M, < anx + bp) is a non-degenerate distribution

n— oo

then this limit has to be equal to
GEV(x) = exp {—H(X; W, o, &)}

where

H(x; p,0,6) = [1 b (x ; ,1)}—1/5

+



Gumbel type

(i) €= 0 (Gumbel type, limit as § — 0)

“Light” upper tail

“Domain of attraction” for many common distributions (e. g.,

normal, exponential, gamma)

Gumbel
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Fréchet (Pareto) type

(ii) § > 0 (Fréchet type)

“Heavy” upper tail with infinite rth-order moment if r= 1/§

(e. g., infinite variance if § 2 1/2)

Fits precipitation, streamflow, economic damage

Frechet
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Weibull type

(iii) € <0 (Weibull type)

Bounded upper tail [ x<p+0o/(-§)]

Fits temperature, wind speed, sea level

Weibull
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Extreme Value Theory : Historical perspective

Gumbel (1891-1966) Weibull (1887-1979) Fréchet (1878-1973)

m Emil Gumbel was born and trained as a statistician in Germany, forced to move to
France and then the U.S. because of his pacifist and socialist views.

m Waloddi Weibull was a Swedish engineer famous for his pioneering work on
reliability, providing a statistical treatment of fatigue, strength, and lifetime.

m Maurice Frechet was a French mathematician who made major contributions to
pure mathematics as well as probability and statistics.

Other important names : Fisher and Tippet (1928), Gnedenko (1943), see Rick Katz's website



Animations

Annual Review of Statistics and Its Application

Statistics of Extremes: Animation 1

An animation from the 2015 review by A.C. Davison and R. Huser, "Statistics of
Extremes," from the Annual Review of Statistics and Its Application.

Illustration of the Extremal Types Theorem. For increasing values of n, the left panels
display the distribution of the maximum Z, of nindependent uniform (top row),
standard Gaussian (second row), unit exponential (third row), and 0.2-Pareto
(bottom row), i.e., F(y)=1-y %2 y> 1, random variables. The right panels display
the distribution of 2,7 (Z,, - b,,) for appropriate sequences a, >0 and by, In each
case, Z,is asymptotically degenerate, whereas a,, 1 (Z,- b,) is not.

View on YouTube | Read Associated Article



A summary of the 1D EVT galaxy




A summary of the 1D EVT galaxy

Can you find the misplaced planet ?



Maxima Distribution

Normal density =

Uniform density =

Cauchy density =

ﬂth¢

L
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n = 50

density

density

density



Generalized Extreme Value (GEV) distribution

pr(MnT—nan < X> ~ GEV(x) = exp{— [1 +e (%)]j/f}
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Home work : show that a GEV is max-stable



A tough example : maxima of normally distributed random variables

Home work simulation

m Generated random sample of length 100 from standard normal
distribution and obtain maximum value (Repeated 40,000 times)

m Fit GEV distribution to sample of 40000 maxima
m Check if the estimate of £ is around —0.1 but not zero



Penultimate approximation

Theory by Fisher and Tippett (1928)
For infinite block sizes, maxima of Gaussian belong to the Gumbel galaxy,
but for finite samples sizes the estimated shape parameters belong to the
Weibull galaxy (Von Mises conditions)

hazard (ay) With hazard(x) = F((’)‘()) and F(x) = 1 — F(x)

én =



Penultimate approximation

Theory by Fisher and Tippett (1928)
For infinite block sizes, maxima of Gaussian belong to the Gumbel galaxy,
but for finite samples sizes the estimated shape parameters belong to the
Weibull galaxy (Von Mises conditions)

hazard (ay) With hazard(x) = F((’)‘()) and F(x) = 1 — F(x)

én =

Back to the Gaussian example

hazard(x) ~ x for large x and a, =~ \/2logn

Hence,
1 1

& Siogn 29 31og 700 ~ 0109




Lessons learned from this Gaussian example

m The convergence towards max-stability can be very very slow

m The sign of the estimated shape parameter from a finite block size
should not be over-interpreted

m Theoretical results exist to explain and quantity this phenomenon



Lessons learned from this Gaussian example

m The convergence towards max-stability can be very very slow

m The sign of the estimated shape parameter from a finite block size
should not be over-interpreted

m Theoretical results exist to explain and quantity this phenomenon

Practical considerations

m Some light-tailed atmospheric variables like temperatures are often
averaged in space, time or both. The central limit theorem makes them
very close to Gaussian variables. So, don’t be surprised to find negative
shape parameters for maxima of averaged values



GEV and return levels

ceve e {-[ree ()]

+

Computing the return level z, such that GEV(z,) =1 —p

Hence,

z,=GEV'(1 - p)

Zp=p+ ¢ (=1 -p)~* 1))




GEV and return levels estimation

g

¢ (m(t=p1 — 1))

Zp=p+

Estimating the return level z,

2 =i+ ¢ ([=In(t =p)] < ~1])

Estimating the GEV parameters

m Maximum likelihood estimation
m Methods of moments type (PWM and GPWM, Ribereau et al., 2010)
m Exhaustive tail-index approaches



An example from Rick Katz




Data at hand

¢ Fort Collins daily precipitation amount
-- Time series of daily precipitation amount (in), 1900-1999

Annual cycle in precipitation

(Peak in mean in May)

Consider annual maxima (block size n = 365)
No obvious long-term trend in annual maxima (7 = 100)

Flood on 28 July 1997

(Damaged campus of Colorado State University)



Precipitation (in)

Fort Collins annual maximum daily precipitation

T T T T T T

1900 1920 1940 1960 1980 2000
Year




Maximum likelihood estimates

Parameter Estimate (Std. Error)
Location p 1.347 in. (0.062)
Scale o 0.533 in. (0.049)
Shape § 0.174 (0.092)

Advice : Always checked the literature on the same type of analysis



Probability density function
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- Observed relative frequency
- Fitted GEV distribution
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Observed (in)

Q-Q Plot: Ft. Collins Annual Maximum Prec.
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-- Likelihood ratio test (LRT) for comparing two models
(e. 9., test whether shape parameter § = 0)
Fit two models:

(i) GEV distribution with & # 0

=In L(x1, x2, . . ., X7; H, 0, §) minimized with respect to y, o, §

(ii) GEV distribution with § = 0 (i. e., Gumbel distribution)

=In L(x1, X2, . . ., X1; 4, 0, § = 0) minimized with respect to u, o

If § = 0, then 2 [(ii) — (i)] has approximate chi square distribution

with 1 degree of freedom (df) for large T



-- Confidence interval

(e. g., for shape parameter §)

Profile likelihood method:

Minimize -In L(x1, x2, . . ., x1; M, O, §) with respect to , o as

function of §

Use chi square distribution with 1 df to determine lower and

upper bounds of confidence interval

Alternate technique:

Resampling (parametric or nonparametric bootstrap)
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-- Likelihood ratio test (LRT) for § =0

Obtain P-value = 0.038

--95% confidence interval for shape parameter ¢

Based on profile likelihood technique, obtain

0.009 < §<0.369

(Consistent with P-value < 0.05)



Annual block maxima modeling with a GEV

Advantages

Easy to define an extreme

Do not need to explicitly model seasonal or diurnal cycles
Do not need to explicitly model temporal dependence
Incorporating covariates is simple (e.g., gam for GEV)
Easy to communicate with stakeholders



Annual block maxima modeling with a GEV

Advantages

Easy to define an extreme

Do not need to explicitly model seasonal or diurnal cycles
Do not need to explicitly model temporal dependence
Incorporating covariates is simple (e.g., gam for GEV)
Easy to communicate with stakeholders

Drawbacks
m The block size is fixed
m Only one observation is kept within a block
m Difficult to explain multivariate block maxima



A different point of view : what is the hidden object in this picture ?




Modeling exceedances
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The Generalized Pareto Distribution (GPD)

—1/¢
pr{X—u>yX>u}= (1+£—‘V)
(] +

- ﬁ Born in France and trained

as an engineer in ltaly, Vilfredo
Pareto (1848-1923) formulated the
power-law distribution (or "Pareto’s
Law”), as a model for how income
or wealth is distributed across
society.




The Generalized Pareto Distribution (GPD)

pr{X—u>yX>u}= (1

Home work
Show that the GPD is threshold invariant

—1/¢
n Ly)
Oy +

ﬁ Born in France and trained

as an engineer in ltaly, Vilfredo
Pareto (1848-1923) formulated the
power-law distribution (or "Pareto’s
Law”), as a model for how income
or wealth is distributed across
society.



Exceedance intensities modelling

The survival
P(X > x) = P(X > x|X > u) x P(X > u)

can be approximated by (for u large and x > u)

He (X_“) % P(X > u).

(o



Exceedance intensities modelling

The survival
P(X > x) = P(X > x|X > u) x P(X > u)

can be approximated by (for u large and x > u)

He (X_“) % P(X > u).

g
After fitting a GDP to the exceedances above u, P(X > x) is estimated by

n

A (54 x %Zu(x,- > ).

i=1



Over interpreting MLE fits from 500 GP samples of size 100
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Can you find the two woman faces ?




Can you find two inferential strategies ?
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Animations

Annual Review of Statistics and Its Application

Statistics of Extremes: Animation 2

An animation from the 2015 review by A.C. Davison and R. Huser, "Statistics of
Extremes," from the Annual Review of Statistics and Its Application.

Illustration of the point process of exceedances and the convergence to the GPD. For
increasing values of n, the plots display the point process of rescaled times and
rescaled variables, namely (j/(n+ 1), (Y;— b,)/a), for data simulated from the
uniform (top left), standard Gaussian (top right), unit exponential (bottom left), and
0.2-Pareto distributions. The side plots are histograms of the exceedances over the
threshold u (horizontal blue line),i.e., a,™(V;= by)|a, ™ (¥;~ by) > u. The solid red
curves are the corresponding asymptotic GPD densities.

View on YouTube | Read Associated Article



Precipitation in Colorado’s front range

Data

m 56 weather stations in Colorado (semi-arid and mountainous region)
Daily precipitation for the months April-October

Time span = 1948-2001

Not all stations have the same number of data points

Precision : 1971 from 1/10th of an inche to 1/100

D. Cooley, D. Nychka and P. Naveau, (2007). Bayesian
Spatial Modeling of Extreme Precipitation Return Levels.
Journal of The American Statistical Association.



Pierre Simon Laplace (1749-1827)

“Lanalyse des probabilités
assigne la probabilité de ces
causes, et elle indique les
moyens d'accroitre de plus
en plus cette probabilité.”
“Essai Philosophiques sur
les probabilités” (1774)




Pierre Simon Laplace (1749-1827)

“If an event can be produced by a number of n different causes, then the
probabilities of the causes given the event ... are equal to the probability of
the event given that cause, divided by the sum of all the probabilities of the
event given each of the causes.”

r t - r j
pr(cause;|event) = ,53 (event|cause;) x pr(cause;)
>4 br(event|cause;) x pr(cause;)



Bayes’ formula = calculating conditional probability

| [xIv] o< [y[x] x [¥]]

Rev. T. BAves

1701(?)- 1761 “An essay
towards solving a Problem in
the Doctrine of Chances”
(1764)



Bayesian approach

Advantages
m Integration of expert
information via prior [x]

m Deals with the full
distribution

m Non-Gaussian
m Non-linear

[xIy] o< [y[x] > [x]

Drawbacks
m Integration of expert information via prior
(x]
m densities are needed

m Complex algorithmic techniques (MCMC,
particle-filtering)

m Can be slow and not adapted for large
data sets

m Adequacy with EVT



Hierarchical Bayesian Model with three levels

pr(process, parameters|data) o pr(data|process, parameters)
x pr(process|parameters)
xpr(parameters)

Process level : the scale and shape GPD parameters (£(x), o(x)) are hidden
random fields



Our main assumptions

m Process layer : The scale and shape GPD parameters (£(x), o(x)) are
random fields and result from an unobservable latent spatial process

m Conditional independence : precipitation are independent given the GPD
parameters

Our main variable change

o (x) = exp(4(x))



Our three levels

A) Data layer := pr(data|process, parameters) =

&y =1/
pro{R(xi) — u > y|R(xj) > u} = (1 + m)

B) Process layer := pr(process|parameters) :
e.g. i = ap + a1 X elevation; + MVN (O,Bo exp(—ﬁ1 HXk — X/||))

Emoutains, If Xi € mountains
fplains; if x; € plains

and¢, = {

C) Parameters layer (priors) := pr(parameters) :
.9 ({moutains; Eplains) Gaussian distribution with non-informative mean and
variance



Bayesian hierarchical modeling
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Model selection

Baseline model D Pp DIC

Model 0: ¢p=¢ 73,5955 2.0 73,597.2
§=§

Models in latitude/longitude space D 1) DiC

Model 1: ¢=ap+¢€4 73,442.0 40.9 73,482.9

Model 2: ¢ = g + ay(msp) + €4 73,4416 40.8 73,482.4
E=¢§

Model 3: ¢ =g +aq(elev) + €4 73,443.0 35.5 73,478.5

Model 4: ¢ = ap+oaq(elev)+-ax(msp)+€, 73,443.7 35.0 73,478.6
§=¢

Models in climate space D PD DIC

Model 5: ¢ =+ €4 73,4371 30.4 73,467.5

Model 6: ¢ = ag + ay(elev) + €p 73,438.8 28.3 73,467.1

Model 7: ¢ =ap + ¢y 73,437.5 28.8 73,466.3
§= émtm plains

Model 8: ¢ = g + a1(elev) + €4 73,436.7 30.3 73,467.0
S = smtmsplains

Model 9: ¢ =ap +€p 73,4339 54.6 73,4885
E=E+e

NOTE: Models in the climate space had better scores than models in the longitude/latitude

space. €. ~ MVN(0, X), where [a];; = 8.0 exp(—B.,111X; — X;II).




Return levels posterior mean
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Posterior quantiles of return levels (.025, .975)
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Problem 3 : Means versus maxima

Simulate a uniform sample of daily values for 1000 years (i.e.
m=365,n=1000 )

Compute yearly means and maxima
Plot the histograms of the sample average and sample maximum
Repeat this experience for different values of m (season, month, etc)

Repeat this experience with exponential and Gaussian draws



Problem 4 : fitting a GEV distribution

m Simulate three GEV samples of length 100 with ¢ = —0.3, 0 and 0.3.
Can you see a difference ?



Problem 4 : fitting a GEV distribution

m Simulate three GEV samples of length 100 with ¢ = —0.3, 0 and 0.3.
Can you see a difference ?
m Load package "evd”
m Fit the GEV distribution to Annual Rainfall Maxima at Uccle, Belgium
from 1938 to 1972 for four different time scales
m day = Annual daily rainfall maxima.
m hour = Annual hourly rainfall maxima.

m tmin = Annual rainfall maxima over ten minute durations.
® min = Annual rainfall maxima over one minute durations.



