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What is an extreme?
The tallest man living is Sultan Kosen (Turkey, December 1982) who
measured 246.5 cm

“Man can believe the impossible, but man can never believe the improbable”
Oscar Wilde, (Intentions, 1891)

Robert Wadlow (1918-1940, 2.72 m, 8 ft 11.1 in) & his father, H.F. Wadlow (1.82 m, 5 ft 11 1?2 in)
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Quantiles and return levels

A return level with a return period of
T = 1/p years is a high threshold zp

whose probability of exceedance is p.
E.g., p = 0.01⇒ T = 100 years.
Return levels

Number of events : Average
number of events occurring within
a T -year time period is one



Important facts about Extreme Value Theory

An asymptotic probabilistic
concept

A statistical approach for
extrapolation of quantiles

Clear assumptions

Assessment of uncertainties

Possible couplings with physical
numerical models

Applied statistics

Theoritical probability

Non-stationarity

Independence

Univariate

Parametric

Multivariate
Non-parametric



An active research statistical field

A good intro A few sessions at EVA in 2019
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EVT = Going beyond the data range

What is the probability of observing data above an high threshold?
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Hauteurs de crête (Lille, 1895-2002)

March precipitation amounts recorded at Lille (France) from 1895 to 2002. The 17 black dots corresponds to the number of excesses above

the threshold un = 75 mm. This number can be conceptually viewed as a random sum of Bernoulli (binary) events.



An example in three dimensions

Air pollutants (Leeds, UK, winter 94-98, daily max) NO vs. PM10 (left), SO2 vs. PM10
(center), and SO2 vs. NO (right) (Heffernan& Tawn 2004, Boldi & Davison, 2007)
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Typical question in multivariate EVT

What is the probability of observing data in the blue box?



Give me a lift

t A

A

Area with data points

researchers in probability have extended the notion of Poisson random variables to a wider

class called Poisson process. This generalization allows to count random events according to

the size of a set of interest, say A. This set can be a d-dimensional object and therefore this

concept will simplify the transition from univariate EVT to multivariate EVT. A Poisson

process is characterized by the following two conditions

P [N(A) = m] =
Λm(A) exp(−Λ(A))

m!
, and (5)

P [N(A) = i & N(B) = j] = P [N(A) = i] × P [N(B) = j], if A ∩ B = ∅ . (6)

Equation (6) indicates that if the sets A and B are disjoints, then N(A) the random number

of points in A is independent of N(B). Equation (5) is just another version of the Poisson

definition (1) but now the intensity depends on the set A and its measure Λ(A) = E(N(A)).

For example, Equation (4) can be expressed with these new notations as

lim
n→∞

nP (X/an ∈ A) = Λ(A), with A = (x,∞) and Λ(A) = x−α. (7)

Working with this set notation enables us to emphasize the main ingredient of EVT. By

noticing that for any positive real t, we can write from (7) that

Λ(tA) = t−αΛ(A). (8)

Coming back to the tail behavior described by (2), it is interesting to define the threshold

an that is exceeded in average once, i.e. such that

lim
n→∞

n F (an) = 1.
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EVT : It is a kind of Magic



Asymptotic theory



Pierre-Simon Laplace (1749-1827) + De Moivre (1667-1754)

Central limit theorem 1

The sum of independent random variables, properly normalized, tends
toward a normal distribution even if the original variables themselves are not
normally distributed (with finite variance).

1. a CLT proof of a result similar to the 1922 Lindeberg CLT was the subject of Alan Turing’s 1934
Fellowship Dissertation. Only after submitting the work did Turing learn it had already been proved.
Consequently, Turing’s dissertation was not published.



Pierre-Simon Laplace (1749-1827) + De Moivre (1667-1754)

Central limit theorem

X1 + · · ·+Xn ∼ Gaussian with mean E(X ) and variance var(X )/n, for large n

Why a Gaussian limit?
The normal distribution is sum-stable and behaves like an attractor.
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“Everyone wants to be normal, but no one wants to be average”



Simon Denis Poisson (1781-1840)
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Hauteurs de crête (Lille, 1895-2002)

Counting excesses
As a sum of random binary events, the variable Nn that counts the number of
events above the threshold un has mean n Pr(X > un)

Poisson’s theorem 2 in 1837
If un such that

lim
n→∞

n Pr(X > un) = λ ∈ (0,∞).

then Nn follows approximately a Poisson variable N.

2. Give HW



Simon Denis Poisson (1781-1840)

Poisson’s theorem in 1837
If un such that

lim
n→∞

n Pr(X > un) = λ ∈ (0,∞).

then Nn, the number of events above the threshold un, follows approximately
a Poisson variable N.

Question 1
Let an such that n Pr(X > an) = 1. What is your interpretation of an ?

Question 2
Suppose un > an such that n Pr(X > un) = λ ∈ (0,∞). What is
Pr(X > un|X > an)? your interpretation?

Question 3 : a special case
Suppose X follows an exponential distribution. Find un(x) and an such that

Pr(X > un(x)|X > an) = Pr(X > x).

How to interpret this result ?
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Poisson and maxima

Counting = max

Pr(Mn ≤ un) = Pr(Nn = 0) with Mn = max(X1, . . . ,Xn)

Poisson’s at work

lim
n→∞

Pr(Mn ≤ un) = lim
n→∞

Pr(Nn = 0) = Pr(N = 0) = exp(−λ)



Different modeling options

Maxima

Counting
exceedancesTail behavior

High
quantiles

lundi 31 janvier 2011



The fundamental Fisher-Tippet theorem (1928)

Suppose that there exists an > 0 and bn such that

lim
n→∞

Pr(Mn ≤ anx + bn) is a non-degenerate distribution

then this limit has to be equal to

GEV(x) = exp
{
−H(x ;µ, σ, ξ)

}
where

H(x ;µ, σ, ξ) =
[
1 + ξ

(x − µ
σ

)]−1/ξ

+



Gumbel type



Fréchet (Pareto) type



Weibull type



Extreme Value Theory : Historical perspective

Gumbel (1891-1966) Weibull (1887-1979) Fréchet (1878-1973)

Emil Gumbel was born and trained as a statistician in Germany, forced to move to
France and then the U.S. because of his pacifist and socialist views.

Waloddi Weibull was a Swedish engineer famous for his pioneering work on
reliability, providing a statistical treatment of fatigue, strength, and lifetime.

Maurice Frechet was a French mathematician who made major contributions to
pure mathematics as well as probability and statistics.

Other important names : Fisher and Tippet (1928), Gnedenko (1943), see Rick Katz’s website



Animations



A summary of the 1D EVT galaxy

Can you find the misplaced planet?



A summary of the 1D EVT galaxy

Can you find the misplaced planet?



Maxima DistributionGumbel (1891-1966) Weibull (1887-1979) Fréchet (1878-1973)
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Distribution du maximum

Normal density ⇒

Uniform density ⇒

Cauchy density ⇒

⇐ Gumbel density

⇐ Weibull density

⇐ Fréchet density

n = 50 n = 100



Generalized Extreme Value (GEV) distribution

pr
(

Mn − an

bn
< x

)
∼ GEV(x) = exp

{
−
[
1 + ξ

(x − µ
σ

)]−1/ξ

+

}
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Home work : show that a GEV is max-stable



A tough example : maxima of normally distributed random variables

Home work simulation

Generated random sample of length 100 from standard normal
distribution and obtain maximum value (Repeated 40,000 times)

Fit GEV distribution to sample of 40000 maxima

Check if the estimate of ξ is around −0.1 but not zero



Penultimate approximation

Theory by Fisher and Tippett (1928)
For infinite block sizes, maxima of Gaussian belong to the Gumbel galaxy,
but for finite samples sizes the estimated shape parameters belong to the
Weibull galaxy (Von Mises conditions)

ξn =
1

hazard ′(an)
with hazard(x) =

f (x)
F (x)

and F (x) = 1− F (x)

Back to the Gaussian example

hazard(x) ≈ x for large x and an ≈
√

2 log n

Hence,

ξn ≈
1

2 log n
and

1
2 log 100

≈ −0.109
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Lessons learned from this Gaussian example

The convergence towards max-stability can be very very slow

The sign of the estimated shape parameter from a finite block size
should not be over-interpreted

Theoretical results exist to explain and quantity this phenomenon

Practical considerations

Some light-tailed atmospheric variables like temperatures are often
averaged in space, time or both. The central limit theorem makes them
very close to Gaussian variables. So, don’t be surprised to find negative
shape parameters for maxima of averaged values
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GEV and return levels

GEV(x) = exp

{
−
[
1 + ξ

(x − µ
σ

)]−1/ξ

+

}

Computing the return level zp such that GEV(zp) = 1− p

zp = GEV−1(1− p)

Hence, zp = µ+ σ
ξ

(
[− ln(1− p)]−ξ − 1]

)



GEV and return levels estimation

zp = µ+
σ

ξ

(
[− ln(1− p)]−ξ − 1]

)

Estimating the return level zp

ẑp = µ̂+ σ̂

ξ̂

(
[− ln(1− p)]−ξ̂ − 1]

)

Estimating the GEV parameters

Maximum likelihood estimation

Methods of moments type (PWM and GPWM, Ribereau et al., 2010)

Exhaustive tail-index approaches



An example from Rick Katz



Data at hand





Maximum likelihood estimates

Advice : Always checked the literature on the same type of analysis















Annual block maxima modeling with a GEV

Advantages

Easy to define an extreme

Do not need to explicitly model seasonal or diurnal cycles

Do not need to explicitly model temporal dependence

Incorporating covariates is simple (e.g., gam for GEV)

Easy to communicate with stakeholders

Drawbacks

The block size is fixed

Only one observation is kept within a block

Difficult to explain multivariate block maxima
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A different point of view : what is the hidden object in this picture?



Modeling exceedances

Improve Flood
Quantile Estimates

by
Mathieu Ribatet

Intro

Motivations

Extreme Value Theory

Improve Inferences

Modelling All
Exceedances

Justification

Theory

First (Few) Results

Test for Asymptotic

Dependence

Comparison Between All

Markovian Models

Inference on Flood Duration

Conclusions and
Perspectives

Some References

From a time series to. . .

! Annual Maxima

! POT

! Markovian

! Time series⇒ 1 obs/year

! Time series⇒ λ obs/year

! Time series⇒ all exceedances

11/29



The Generalized Pareto Distribution (GPD)

pr{X− u > y |X > u} =
(

1 +
ξ y
σu

)−1/ξ

+

Born in France and trained
as an engineer in Italy, Vilfredo
Pareto (1848-1923) formulated the
power-law distribution (or ”Pareto’s
Law”), as a model for how income
or wealth is distributed across
society.

Home work
Show that the GPD is threshold invariant
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Exceedance intensities modelling
The survival

P(X > x) = P(X > x |X > u)× P(X > u)

can be approximated by (for u large and x > u)

Hξ

(x − u
σ

)
× P(X > u).

After fitting a GDP to the exceedances above u, P(X > x) is estimated by

H ξ̂

(x − u
σ̂

)
× 1

n

n∑
i=1

I(Xi > u).
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Over interpreting MLE fits from 500 GP samples of size 100

ξ = 0.4 ξ = −0.4



Can you find the two woman faces?



Can you find two inferential strategies ?
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Animations



Precipitation in Colorado’s front range

Data

56 weather stations in Colorado (semi-arid and mountainous region)

Daily precipitation for the months April-October

Time span = 1948-2001

Not all stations have the same number of data points

Precision : 1971 from 1/10th of an inche to 1/100

D. Cooley, D. Nychka and P. Naveau, (2007). Bayesian
Spatial Modeling of Extreme Precipitation Return Levels.
Journal of The American Statistical Association.



Pierre Simon Laplace (1749-1827)

“L’analyse des probabilités
assigne la probabilité de ces
causes, et elle indique les
moyens d’accroitre de plus
en plus cette probabilité.”
“Essai Philosophiques sur
les probabilités” (1774)



Pierre Simon Laplace (1749-1827)

“If an event can be produced by a number of n different causes, then the
probabilities of the causes given the event ... are equal to the probability of
the event given that cause, divided by the sum of all the probabilities of the
event given each of the causes.”

pr(causei |event) =
pr(event|causei)× pr(causei)∑n
j=1 pr(event|causej)× pr(causej)



Bayes’ formula = calculating conditional probability

[x|y] ∝ [y|x]× [x]

1701(?)- 1761 “An essay
towards solving a Problem in
the Doctrine of Chances”
(1764)



Bayesian approach

[x|y] ∝ [y|x]× [x]

Advantages

Integration of expert
information via prior [x ]

Deals with the full
distribution

Non-Gaussian

Non-linear

Drawbacks

Integration of expert information via prior
[x ]

densities are needed

Complex algorithmic techniques (MCMC,
particle-filtering)

Can be slow and not adapted for large
data sets

Adequacy with EVT



Hierarchical Bayesian Model with three levels

pr(process, parameters|data) ∝ pr(data|process, parameters)

×pr(process|parameters)

×pr(parameters)

Process level : the scale and shape GPD parameters (ξ(x), σ(x)) are hidden
random fields



Our main assumptions

Process layer : The scale and shape GPD parameters (ξ(x), σ(x)) are
random fields and result from an unobservable latent spatial process

Conditional independence : precipitation are independent given the GPD
parameters

Our main variable change

σ(x) = exp(φ(x))



Our three levels

A) Data layer := pr(data|process, parameters) =

prθ{R(xi)− u > y |R(xi) > u} =
(

1 +
ξi y
expφi

)−1/ξi

B) Process layer := pr(process|parameters) :

e.g. φi = α0 + α1 × elevationi + MVN (0, β0 exp(−β1||xk − x j ||))

and ξi =

{
ξmoutains, if x i ∈ mountains
ξplains, if x i ∈ plains

C) Parameters layer (priors) := pr(parameters) :
e.g. (ξmoutains, ξplains) Gaussian distribution with non-informative mean and
variance



Bayesian hierarchical modelingNotre modèle Bayesien hiérarchique
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Model selection
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the same manner as φ when modeled spatially. The exceedance
rate model is handled analogously.

We ran three parallel chains for each model. Each simula-
tion consisted of 20,000 iterations, the first 2,000 iterations
were considered to be burn-in time. Of the remaining itera-
tions, every 10th iteration was kept to reduce dependence. We
used the criterion R̂ as suggested by Gelman (1996) to test for
convergence and assumed that values below the suggested crit-
ical value of 1.1 imply convergence. For all parameters of all
models, the value of R̂ is below 1.05 unless otherwise noted in
Section 4.1.

3.4 Spatial Interpolation and Inference

Our goal is to estimate the posterior distribution for the return
level for every location in the study region. From (3), zr(x) is a
function of the GPD parameters φ(x), ξ(x), and the (indepen-
dent) exceedance rate parameter ζ(x); thus, it is sufficient to
estimate the posteriors of these processes. Our method allows
us to draw samples from these distributions, which in turn can
be used to produce draws from zr(x).

To illustrate our interpolation method, consider the log-
transformed GPD scale parameter of the exceedance model. We
begin with values for φ, αφ , and βφ from which we need to
interpolate the value of φ(x). We have assumed that the para-
meters αφ and βφ , respectively, determine the mean and co-
variance structure of the Gaussian process for φ(x). Using the
values of αφ and βφ , we are able to draw from the conditional
distribution for φ(x) given the current values of φ. Doing this
for each iteration of the MCMC algorithm provides draws from
the posterior distribution of φ(x).

We do the same for the exceedance rate parameter ζ(x) and
for the GPD shape parameter ξ(x) if it is modeled spatially.
Pointwise means are used as point estimates for each of the pa-
rameters (Fig. 7). The entire collection of draws from the pos-
terior distributions of φ(x), ξ(x), and ζ(x) are used to produce
draws from the return level posterior distribution. The point-
wise quantiles and pointwise means of the posterior draws are
used for the return level maps (Figs. 8 and 9).

4. RESULTS

4.1 Model Selection and Map Results

As in a regression study, we test both the threshold ex-
ceedance and the exceedance rate models with different covari-
ates. To assess model quality, we use the deviance information
criterion (DIC) (Spiegelhalter, Best, Carlin, and van der Linde
2002) as a guide. The DIC produces a measure of model fit D̄
and a measure of model complexity pD and sums them to get
an overall score (lower is better). As the DIC scores result from
the realizations of an MCMC run, there is some randomness
in them, and, therefore, nested models do not always have im-
proved fits. We do not solely rely on the DIC to choose the most
appropriate model. Because our project is product oriented (i.e.,
we want to produce a map), we also considered the statistical
and climatological characteristics of each model’s map, as well
as their uncertainty measures.

We first discuss the model for threshold exceedances. Ta-
ble 1 shows the models tested and their corresponding DIC
scores. We begin developing models in the traditional lat-
itude/longitude space and start with simple models where

Table 1. Several of the Different GPD Hierarchical Models Tested and
Their Corresponding DIC Scores

Baseline model D̄ pD DIC

Model 0: φ = φ 73,595.5 2.0 73,597.2
ξ = ξ

Models in latitude/longitude space D̄ pD DIC

Model 1: φ = α0 + εφ 73,442.0 40.9 73,482.9
ξ = ξ

Model 2: φ = α0 + α1(msp) + εφ 73,441.6 40.8 73,482.4
ξ = ξ

Model 3: φ = α0 + α1(elev) + εφ 73,443.0 35.5 73,478.5
ξ = ξ

Model 4: φ = α0 +α1(elev)+α2(msp)+εφ 73,443.7 35.0 73,478.6
ξ = ξ

Models in climate space D̄ pD DIC

Model 5: φ = α0 + εφ 73,437.1 30.4 73,467.5
ξ = ξ

Model 6: φ = α0 + α1(elev) + εφ 73,438.8 28.3 73,467.1
ξ = ξ

Model 7: φ = α0 + εφ 73,437.5 28.8 73,466.3
ξ = ξmtn,ξplains

Model 8: φ = α0 + α1(elev) + εφ 73,436.7 30.3 73,467.0
ξ = ξmtn,ξplains

Model 9: φ = α0 + εφ 73,433.9 54.6 73,488.5
ξ = ξ + εξ

NOTE: Models in the climate space had better scores than models in the longitude/latitude
space. ε· ∼ MVN(0, &), where [σ ]i, j = β·, 0 exp(−β·, 1‖xi − xj ‖).

φ(x) is modeled as in Section 3.1 and ξ(x) is modeled as a
single value throughout the region. We allow the mean of the
scale parameter to be a linear function of elevation and/or MSP
(Models 2, 3, and 4). To our surprise, we find that elevation
outperforms MSP as a covariate and, in fact, adding MSP does
not improve the model over including elevation alone. Unfor-
tunately, the maps produced by these simple models in the
traditional space seem to inadequately describe the extreme
precipitation. For example, the point estimate maps for φ(x)

show relatively high values around the cities of Boulder and
Fort Collins but do not show similar values for the stationless
region between the cities despite that it has a similar climate
and geography.

When we perform the analysis for the climate space, we ob-
tain better results. Both the model fit score and the effective
number of parameters are lower in the climate space, yield-
ing lower DIC scores for corresponding models (e.g., Models
1 and 5 or Models 3 and 6). However, in the climate space,
adding elevation (or MSP) as a covariate does not seem to im-
prove the model as these covariates are already integrated into
the analysis as the locations’ coordinates. Most important, when
the points are translated back to the original space, we obtain
parameter estimate maps that seem to better agree with the ge-
ography.

We then begin to add complexity to the shape parameter ξ(x).
Allowing the mountain stations and plains stations to have
separate shape parameter values slightly improves model fit
(Model 7), but a fully spatial model for ξ(x) does not improve
model fit enough to warrant the added complexity (Model 9).
Model 7 is chosen as the most appropriate model tested based
not only on its DIC score but also on the posteriors for the
parameters ξmtn and ξplains. Selected posterior densities from
Model 7 are plotted in Figure 6. The left plot in Figure 7 shows
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Posterior quantiles of return levels (.025, .975)
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Problem 3 : Means versus maxima

Simulate a uniform sample of daily values for 1000 years (i.e.
m=365,n=1000 )

Compute yearly means and maxima

Plot the histograms of the sample average and sample maximum

Repeat this experience for different values of m (season, month, etc)

Repeat this experience with exponential and Gaussian draws



Problem 4 : fitting a GEV distribution

Simulate three GEV samples of length 100 with ξ = −0.3, 0 and 0.3.
Can you see a difference?

Load package ”evd”
Fit the GEV distribution to Annual Rainfall Maxima at Uccle, Belgium
from 1938 to 1972 for four different time scales

day = Annual daily rainfall maxima.
hour = Annual hourly rainfall maxima.
tmin = Annual rainfall maxima over ten minute durations.
min = Annual rainfall maxima over one minute durations.
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