

Stochastic models and Evolution

Hélène Leman

Master Class, CIRM, 29/01/2021

Helene Leman	11/		
	HA	ana	<u>m n n</u>
	115		i i a i i

Stochastic process

29/01/2021 1/26

< □ > < 同 > < 回 > < 回 > < 回 >

Ecologie (bic): dynamique des pop. Evolution: modification des espèces.

4 Example of reproductive preferences

Biological context

Birth-death modelImprovements

- Model description
- Large population Approximation
- Dynamics

Introduction

Dynamics

< □ > < 同 > < 回 > < 回 > < 回 >

Introduction

Basic mechanisms of Evolution

- Offsprings acquire the genetic information of their parents: $\operatorname{Mer}(\mathcal{A}, \mathcal{A})$
- Permanent alteration of DNA:

• Differential survival and reproduction of individuals due to differences in phenotype:

• • = • • = •

Introduction

Individual based models

- Birth-death model
- Improvements

3 Large population approximation

4 Example of reproductive preferences

- Biological context
- Model description
- Large population Approximation
- Dynamics
- Dynamics

(4) (3) (4) (4) (4)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Birth-death model

Stochastic Birth and death Model

▲ □ ▶ ▲ □ ▶ ▲ □

Birth-death model

Stochastic Birth and death Model

Héléne	leman
Telelle	Lenian

Birth-death model

Stochastic Birth and death Model

•---

Birth-death model

Stochastic Birth and death Model

Birth-death model

Stochastic Birth and death Model

Birth-death model

Stochastic Birth and death Model

Birth-death model

Stochastic Birth and death Model

Improvements

Different biological aspects

competition :

Birth : $\mathcal{E}(b)$ E(b)

Competition

Ref: Champagnat, Costa, Fournier, Méléard, Tran...

Death : $\mathcal{E}(d)$

E (d + C Nr) north compétition notriselle

Improvements

Different biological aspects

Age or space structure : frail génétique Birth : $\mathcal{E}(b)$ $\mathcal{L}(u)$

Spatial structures

Ref: Champagnat (Costa, Fournier, Méléard Tran.

• • • • • • • • • • • • •

Death : $\mathcal{E}(d)$

dlu

Improvements

Different biological aspects

several species : イ, こ

Birth : $\mathcal{E}(b)$ $b'(u, N_{r}^{2})$ $b^2(v)$

Cooperation

-> Compremis : difficultés / Modélisation.

Ref: Champagnat, Costa, Fournier, Méléard, Tran...

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Death : $\mathcal{E}(d)$

 $d'(u, N_{r}, N_{r}^{2})$ $d^{2}(v)$

Introduction

Individual based models

- Birth-death model
- Improvements

3 Large population approximation

4 Example of reproductive preferences

- Biological context
- Model description
- Large population Approximation
- Dynamics
- Dynamics

→ Ξ →

First assumption

Simulations : birth-death-competition model

Simulations : birth-death-competition model

Simulations : birth-death-competition model

Simulations : birth-death-competition model

Simulations : birth-death-competition model

Simulations : birth-death-competition model

Large population approximation: when $K \rightarrow \infty$

Initially: 3K individuals.

(日)

Averaged behavior

K=1000

Limit population behavior :

$$\lim_{t\to+\infty} n(t) = \frac{b-d}{c}$$

< 31

Introduction

Individual based models

- Birth-death model
- Improvements

3 Large population approximation

4 Example of reproductive preferences

- Biological context
- Model description
- Large population Approximation
- Dynamics
- Dynamics

★ ∃ ► ★

Motivation

Definition

Species: largest group of organisms in which two individuals are capable of reproducing fertile offspring.

Definition

Speciation: evolutionary process by which reproductively isolated biological populations evolve to become distinct species.

 \rightarrow joint work with Coron, Costa, Smadi.

Problematic

Definition

Homogamy/assortative mating: individuals with similar phenotypes have a higher reproductive success

Pundamilia pundamilia

Pundamilia nyererei

Drosophila Melonaster

\rightarrow Can homogamy entail reproductive isolation ?

ightarrow Wu, Hollocher, Begun, Aquadro, Xu, Wu (1995)

Model description

- Two patches,
- Haploid population,
- two alleles: *a* and *A*,

Notation (population):

 $(N_{L}^{A,1})$ $N_{L}^{a, L}$ $N_{L}^{r, L}$ $\mathcal{N}^{\prime}_{, \prime}$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Preferential Mendelian reproduction

Any a-individual :

- meets with an individual of its patch at rate B: ▷ mates with probability: $\frac{1}{2}$ → A , $\frac{1}{2}$ → A , $\frac{1}{2}$

Offspring types follow Mendelian rules

Total production rate of (a, 1)

$$bN^{a_{1}}\left[\frac{\beta N^{a_{1}} + N^{A_{1}}}{N^{a_{1}} + N^{A_{1}}}\right]$$

Migration and death

- Migration:
 - mating success dependent migration,

$$n^{n} N^{q, L} \left[\frac{N^{A_1 L}}{N^{q, L} + N^{A_j L}} \right]$$

- Death:
 - natural and due to intra-patch competition,

$$dN^{a,1} + cN^{a,1} (N^{a,1} + N^{A,1})$$

→ Ξ →

Lemma (Ethier, Kurtz 1986)

There is a convergence in probability to $(\mathbf{n}(t), t \in [0, T])$, solution to

$$\begin{cases} \frac{d}{dt}n_{A,1}(t) = n_{A,1} \left[b \frac{\beta n_{A,1} + n_{a,1}}{n_{A,1} + n_{a,1}} - d - c(n_{A,1} + n_{a,1}) - m \frac{n_{a,1}}{n_{A,1} + n_{a,1}} \right] + m \frac{n_{A,2}n_{a,2}}{n_{A,2} + n_{a,2}} \\ \frac{d}{dt}n_{a,1}(t) = n_{a,1} \left[b \frac{\beta a n_{a,1} + n_{A,1}}{n_{A,1} + n_{a,1}} - d - c(n_{A,1} + n_{a,1}) - m \frac{n_{A,1}}{n_{A,1} + n_{a,1}} \right] + m \frac{n_{A,2}n_{a,2}}{n_{A,2} + n_{a,2}} \\ \frac{d}{dt}n_{A,2}(t) = n_{A,2} \left[b \frac{\beta a n_{A,2} + n_{a,2}}{n_{A,2} + n_{a,2}} - d - c(n_{A,2} + n_{a,2}) - m \frac{n_{a,2}}{n_{A,2} + n_{a,2}} \right] + m \frac{n_{A,1}n_{a,1}}{n_{A,1} + n_{a,1}} \\ \frac{d}{dt}n_{a,2}(t) = n_{a,2} \left[b \frac{\beta a n_{a,2} + n_{a,2}}{n_{A,2} + n_{a,2}} - d - c(n_{A,2} + n_{a,2}) - m \frac{n_{A,2}}{n_{A,2} + n_{a,2}} \right] + m \frac{n_{A,1}n_{a,1}}{n_{A,1} + n_{a,1}}. \end{cases}$$

▲ □ ▶ ▲ □ ▶ ▲ □

Dynamics

Dynamics

Theorem

Almost all trajectories converge to one of the four stable equilibria

▲ □ ▶ ▲ □ ▶ ▲ □

Dynamics

Questions ?

< □ > < 同 > < 回 > < Ξ > < Ξ