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Motivations

• Fluids are everywhere ! ! !

• Atmosphere/land : weather, rain, storms, flooding, water ressources, etc.

• Underground
• Sea/ocean/Channel

• A topic of investigation/interest old as the world yielding to almost existing
branches of applied mathematics, computers sciences, etc.

• Multiple scales, non trivial interactions/coupling yielding to hydrostatic to
non hydrostatic phenomenon involving modern applied mathematics
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Motivations

• Fluids are everywhere ! ! !

• Atmosphere/land
• Underground
• Sea/ocean/Channel : maritime, navigation, erosion, sedimentation, tsunamis,

breaking waves and even sounds like health etc.

• A topic of investigation/interest old as the world yielding to almost existing
branches of applied mathematics, computers sciences, etc.

• Multiple scales, non trivial interactions/coupling yielding to hydrostatic to
non hydrostatic phenomenon involving modern applied mathematics

Nazare Tsunami
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Motivations

• Fluids are everywhere ! ! !

• Atmosphere/land
• Underground
• Sea/ocean/Channel

• A topic of investigation/interest old as the world yielding to almost existing
branches of applied mathematics, computers sciences, etc.

• Multiple scales, non trivial interactions/coupling yielding to hydrostatic to
non hydrostatic phenomenon involving modern applied mathematics

Aerial screw (Vinci, 1487) Waterwheel (Poncelet, 1825)
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Saint-Venant equations

& Applications

• Introducing characteristic scales :

L, l and H

• length L
• width l
• height H

• Introducing aspect ratio numbers :

εz =
H

L
and εy =

l

L

• One can reduce the initial model (Navier-Stokes or Euler equations)

• Opposite to DNS, model reduction → to decrease the computational cost

• Some applications :
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L
and εy =
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• εz =
H

L
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• εy =
l

L
following the width
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Saint-Venant equations

& Applications

• Introducing characteristic scales : L, l and H

• Introducing aspect ratio numbers : εz =
H

L
and εy =

l

L
• One can reduce the initial model (Navier-Stokes or Euler equations)

• 3D-2D depth averaged model reduction if

εz � 1 and εy ≈ 1

u(x, y, z, t; εz) = u(x, y, t; 0)+εz∂εzu(x, y, t; 0) where u(x, y, z, t; 0) = u0(x, y, t)

• 3D-1D section averaged model reduction if

εz ≈ εy � 1

u(x, y, z, t; εz) = u(x, y, t; 0)+∇εy,εzu(x, y, t; 0) where u(x, y, z, t; 0) = u0(x, t)

Asymptotic expansion = Taylor expansion with respect to ε

• Opposite to DNS, model reduction → to decrease the computational cost

• Some applications :
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Applications of Saint-Venant equations

• SV equations for closed water pipes/channels/rivers


∂tA+ ∂xQ = 0,

∂tQ+ ∂x

(
Q2

A
+ gI1(x,A)

)
= gI2(x,A)

− gAK(x,Q/A)

with

A(t, x), Q(t, x), g : wet area, discharge, gravity

I1(x,A) =

∫ η

d

σ(x, z)(η − z)dz : hydrostatic pressure

I2(x,A) =

∫ η

d

∂

∂x
σ(x, z)(η − z)dz : hydrostatic pressure source

• SV equations for closed water pipes/channels/rivers including friction

• SV equations for urban/overland flows including precipitation and recharge

C. Bourdarias, M. Ersoy, S. Gerbi.

A kinetic scheme for pressurized flows in non uniform pipes.
Monografias de la Real Academia de Ciencias, 2009.

C. Bourdarias, M. Ersoy, S. Gerbi.

A model for unsteady mixed flows in non uniform closed water pipes
and a well-balanced finite volume scheme.
International Journal on Finite Volumes, 2009.

C. Bourdarias, M. Ersoy, S. Gerbi.

A kinetic scheme for transient mixed flows in non uniform closed
pipes : a global manner to upwind all the source terms.
Journal of Scientific Computing, 2011.

C. Bourdarias, M. Ersoy, S. Gerbi.

Unsteady mixed flows in non uniform closed water pipes : a Full
Kinetic Appraoch.
Numerische Mathematik, 2014.
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Applications of Saint-Venant equations

• SV equations for closed water pipes/channels/rivers
∂tA+ ∂xQ = 0,

∂tQ+ ∂x

(
Q2

A
+ gI1(x,A)

)
= gI2(x,A)− gAK(x,Q/A)

with K(x, u) =
K0(u)

A

∫
Γb(x,t)

ds where

• K0(u) = Cl + Ct |u|

• A/

∫
Γb

(x, t)ds is the so-called hydraulic radius

• SV equations for closed water pipes/channels/rivers including friction

• SV equations for urban/overland flows including precipitation and recharge

M. Ersoy.

Dimension reduction for incompressible pipe and open channel flow including friction.
Applications of Mathematics, 2015.

M. Ersoy.

Dimension reduction for compressible pipe flows including friction.
Asymptotic Analysis, 2016.
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Applications of Saint-Venant equations

• SV equations for closed water pipes/channels/rivers

• SV equations for closed water pipes/channels/rivers including friction

• SV equations for urban/overland flows including precipitation and recharge
∂th+ ∂xq = S := R− I,

∂tq + ∂x

(
q2

A
+ g

h2

2

)
= −gh∂xZ + S

q

h
−
(
k+(R) + k−(I) + k0

( q
h

)) q
h

with
h(t, x), q(t, x) : water height, discharge
k± : friction generated from precipitation and infiltration

where I can be driven by the solution of the Richards’ equation.

M. Ersoy, O. Lakkis, P. Townsend.

A Saint-Venant shallow water model for overland flows with
precipitation and recharge.
Mathematical and Computational Applications, Natural Sciences, 2020.

J.-B. Clément, M. Ersoy, F. Golay, and D. Sous.

Discontinuous galerkin method for steady-state richards equation.
Topical Problems of Fluid Mechanics, 2019

J.-B. Clément, M. Ersoy, F. Golay, and D. Sous.

Adaptive discontinuous galerkin method for richards equation.

Topical Problems of Fluid Mechanics, 2020

J.-B. Clément, M. Ersoy, F. Golay, and D. Sous.

An adaptive strategy for discontinuous Galerkin simulations of
Richards’ equation.
Preprint, 2020

J.-B. Clément, D. Sous, F. Golay, and M. Ersoy.

Wave-driven Ground- water Flows in Sandy Beaches : A Richards
Equation-based Model.
Journal of Coastal Research, 2020
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Applications of Saint-Venant equations

• SV equations for closed water pipes/channels/rivers

• SV equations for closed water pipes/channels/rivers including friction

• SV equations for urban/overland flows including precipitation and recharge

• Existence of an entropy, energetically consistant, Galilean invariant, FV based
on Kinetic scheme, accurate compare to exp data
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Applications of Saint-Venant equations

• SV equations for closed water pipes/channels/rivers

• SV equations for closed water pipes/channels/rivers including friction

• SV equations for urban/overland flows including precipitation and recharge

• Existence of an entropy, energetically consistant, Galilean invariant, FV based
on Kinetic scheme, accurate compare to exp data

• Example : applications to Tsunamis propagation
∂th+ div(hu) = 0,

∂t(hu) + div

(
hu⊗ u+ g

h2

2
I

)
= −gh∇Z,

with u(t, x) ∈ R2 : depth averaged velocity

K. Pons, M. Ersoy.

Adaptive mesh refinement method. Part 1 : Automatic thresholding
based on a distribution function.
SEMA SIMAI Springer Series, Partial Differential Equations :
Ambitious Mathematics for Real-Life Applications, D. Donatelli and C.
Simeoni Editors, 2020

K. Pons, M. Ersoy , F. Golay and R. Marcer.

Adaptive mesh refinement method. Part 2 : Application to tsunamis
propagation.
SEMA SIMAI Springer Series, Partial Differential Equations :
Ambitious Mathematics for Real-Life Applications, D. Donatelli and C.
Simeoni Editors, 2020
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Saint-Venant equations for certains tsunamis ? ? ?

• Tsunamis are water waves that start in the deep ocean : H is huge

• But, the wavelength λ of the tsunami is huge as well (200 km)

→ shallow
water models

• Large scale numerical simulation → Adaptive strategy :
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Saint-Venant equations for certains tsunamis ? ? ?

• Tsunamis are water waves that start in the deep ocean : H is huge

• But, the wavelength λ of the tsunami is huge as well (200 km)

→ shallow
water models

• Change λ in L in the derivation → shallow water models
• Dynamics of tsunamis are ”essentially” governed by the shallow water

equations.
• Consequence phase speed of propagation vφ ≈

√
gH (H ocean depth), either

vφ ≈ 600 km/h for H = 3km.
• Thus, λ in L in the derivation → shallow water models : justify the use of

Saint-Venant equations for some tsunamis.

• Large scale numerical simulation → Adaptive strategy :
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Saint-Venant equations for certains tsunamis ? ? ?

• Tsunamis are water waves that start in the deep ocean : H is huge

• But, the wavelength λ of the tsunami is huge as well (200 km) → shallow
water models

• Large scale numerical simulation → Adaptive strategy : principle.

• To cluster more grid points in the regions with large solution variations,
singularities or oscillations.

• To get ”Optimal mesh” : a mesh on which some physical or computational
quantities (gradient, error, etc.) are approximately the same on each element
(equi-distribution strategy)
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Saint-Venant equations for certains tsunamis ? ? ?

• Tsunamis are water waves that start in the deep ocean : H is huge

• But, the wavelength λ of the tsunami is huge as well (200 km)

→ shallow
water models

• Large scale numerical simulation → Adaptive strategy : methods.

• h-method (Adaptive Mesh Refinement method) involves automatic refinement
or coarsening of the spatial mesh based on a posteriori error estimates, error
indicators or heuristic indicators.

• p-method involves the adaptive enrichment of the polynomial order.

• r-method (Moving Mesh Method) relocates grid points in a mesh having a
fixed number of nodes.
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AMR for hyperbolic equations

We focus on general non linear hyperbolic conservation laws{
∂w

∂t
+
∂f(w)

∂x
= 0, (x, t) ∈ R× R+

w(x, 0) = w0(x), x ∈ R

w ∈ Rd : vector state,
f : flux governing the physical description of the flow.

Weak solutions satisfy

S =
∂s(w)

∂t
+
∂ψ(w)

∂x

 = 0 for smooth solution
= 0 across rarefaction
< 0 across shock

where (s, ψ) stands for a convex entropy-entropy flux pair

M. Ersoy, F. Golay, L. Yushchenko.

Adaptive multi scale scheme based on
numerical density of entropy production for
conservation laws
Central European Journal of Mathematics,
Springer, 2013

L. Yushchenko, F. Golay, M. Ersoy.

Entropy production and mesh refinement –
Application to wave breaking.
Mechanics & Industry, EDP Sciences, 2015.

F. Golay, M. Ersoy, L. Yushchenko, D. Sous.

Block-based adaptive mesh refinement
scheme using numerical density of entropy
production for three-dimensional two-fluid
flows.

International Journal of Computational Fluid
Dynamics, 2015.

T. Altazin, M. Ersoy, F. Golay, D. Sous, L.

Yushchenko.
Numerical investigation of BB-AMR scheme
using entropy production as refinement
criterion.
International Journal of Computational Fluid
Dynamics, 2016.
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 = 0 for smooth solution
= 0 across rarefaction
< 0 across shock

where (s, ψ) stands for a convex entropy-entropy flux pair

Entropy inequality '“smoothness indicator”

M. Ersoy, F. Golay, L. Yushchenko.

Adaptive multi scale scheme based on
numerical density of entropy production for
conservation laws
Central European Journal of Mathematics,
Springer, 2013
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Mechanics & Industry, EDP Sciences, 2015.

F. Golay, M. Ersoy, L. Yushchenko, D. Sous.

Block-based adaptive mesh refinement
scheme using numerical density of entropy
production for three-dimensional two-fluid
flows.

International Journal of Computational Fluid
Dynamics, 2015.

T. Altazin, M. Ersoy, F. Golay, D. Sous, L.

Yushchenko.
Numerical investigation of BB-AMR scheme
using entropy production as refinement
criterion.
International Journal of Computational Fluid
Dynamics, 2016.

CEPS 2021, 29 January 6 / 20



Finite volume approximation

Figure – a cell mi

Finite volume approximation :

wn+1
i = wn

i −
δtn
δxi

(
F n
i+1/2 − F n

i−1/2

)
with

wn
i '

1

δxi

∫
mi

w (x, tn) dx and F n
i+1/2 ≈

1

δt

∫ tn+1

tn

f(w(xi+1/2, t)) dx

The numerical density of entropy production :

Sni =
sn+1
i − sni
δtn

+
ψni+1/2 − ψ

n
i−1/2

δxi
/ 0
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Principle of AMR methods

Assume that wn
i is given for all i and S := |S| is a given mesh refinement

criterion. Then,

• Compute Snib

• Compare to Sm =
1

|Ω|
∑
ib

Snib

• βmin and βmax might be the critical weakness of the AMR methods, or
equivalently αmin and αmax

How to overcome such a ”major” drawback in h-method ? See Pons-Ersoy
automatic threshold
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Principle of AMR methods

Assume that wn
i is given for all i and S := |S| is a given mesh refinement

criterion. Then,

• Compute Snib

• Compare to Sm =
1

|Ω|
∑
ib

Snib

• if Snib > αmax = Smβmax, the cell is refined and split

• if Snib0 < αmin = Smβmin and Snib1 < αmin, the cell is coarsened into a cell mib

where 0 < βmax ≤ 1 is user calibrated mesh refinement threshold.
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i is given for all i and S := |S| is a given mesh refinement

criterion. Then,

• Compute Snib

• Compare to Sm =
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Assume that wn
i is given for all i and S := |S| is a given mesh refinement

criterion. Then,

• Compute Snib

• Compare to Sm =
1

|Ω|
∑
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Snib

Dyadic tree quadtree octree
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Principle of AMR methods

Assume that wn
i is given for all i and S := |S| is a given mesh refinement

criterion. Then,

• Compute Snib

• Compare to Sm =
1

|Ω|
∑
ib

Snib

• βmin and βmax might be the critical weakness of the AMR methods, or
equivalently αmin and αmax

How to overcome such a ”major” drawback in h-method ? See Pons-Ersoy
automatic threshold

K. Pons, M. Ersoy .

Adaptive mesh refinement method. Part 1 : Automatic thresholding based on a distribution function.
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Numerical example : a dam-break problem (Saint-Venant eqs.)
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(b) Numerical density of entropy
production
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Test case : Tsunami runup onto a complex three dimensional
Monai-Valley beach

(a) Top view (b) Side view

Figure – Settings

K. Pons, M. Ersoy , F. Golay and R. Marcer.

Adaptive mesh refinement method. Part 2 : Application to tsunamis propagation.
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Test case : Tsunami runup onto a complex three dimensional
Monai-Valley beach

Adaptive mesh simula-
tion

Uniform mesh simula-
tion

Simulation time 30 s 30 s
Number of blocks 240 240
Number of cells 8 000-40 000 62 000
Re-meshing time step 0.25 s not applicable
Time order integration 2 2
Space order integration 1 1
CFL 0.5 0.5

Table – Numerical parameters
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Test case : Tsunami runup onto a complex three dimensional
Monai-Valley beach

(a) t = 11.25 s

Figure – Numerical water height (coloration is issue from the kinetic energy)
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Test case : Tsunami runup onto a complex three dimensional
Monai-Valley beach
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Figure – Free surface results at different positions : experimental data versus numerical
simulation with and without mesh adaptivity
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Test case : Tsunami runup onto a complex three dimensional
Monai-Valley beach
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speed up the computation by 3 time

CEPS 2021, 29 January 10 / 20



Coming back to the modelling problem : ”SVE for certain tsunamis”

• Are the SVE are pertinent for all Tsunamis ?

No !

• Dispersive wave model are also required

• Of course, Navier-Stokes equation can deal for both but too costly !
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Coming back to the modelling problem : ”SVE for certain tsunamis”

• Are the SVE are pertinent for all Tsunamis ? No !

• Earthquake generated tsunamis, if the magnitude is large enough, hydrostatic
models are accurate. Monai-Walley beach flooding is an example
(Hokkaido-Nansei-Oki tsunami, 1993, Mw 7,7).

• Land-slide/subaerial landslide generated tsunamis (depending on landslide
thickness, water depth) cannot be represented by hydrostatic models ! a

→ dispersion effects are expected.

Parisot and Ersoy’s experimental wave generator
(Malaga, NumHyp 2019)

”Strong” bore

• Dispersive wave model are also required

• Of course, Navier-Stokes equation can deal for both but too costly !

a. Glimsdal, Pedersen, Harbitz, Lovholt, Dutykh, Bonneton, etc.
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1 Hydrostatic models, applications and limits
Hydrostatic models
Application to tsunamis propagation

2 Non-hydrostatic models and applications
Historical background and motivations
Toward the first dispersive section-averaged model
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Dispersive waves

Let ω =
2π

T
be the angular frequency (pulsation) and k =

2π

λ
wavenumber.

• A wave φ(kx− ωt) is characterised by two different characteristic speeds

• phase velocity Cp =
ω

k
which corresponds to the displacement of the wave

fronts

• group velocity Cg =
∂ω

∂k
which corresponds to the displacement of the wave’s

envelope
• dispersion relation is given by ω = Cpk

• If Cp is constant then the wave is not dispersive.
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Historical background : Soliton and dispersive water waves

• Everything starts with Russell’s ”Wave of translation”

”I was observing the motion of a boat which was rapidly drawn along a
narrow channel by a pair of horses, when the boat suddenly stopped - not so
the mass of water in the channel which it had put in motion ; it accumulated

round the prow of the vessel in a state of violent agitation, then suddenly
leaving it behind, rolled forward with great velocity, assuming the form of a
large solitary elevation, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without change of
form or diminution of speed. I followed it on horseback, and overtook it still

rolling on at a rate of some eight or nine miles an hour, preserving its original
figure some thirty feet long and a foot to a foot and a half in height. Its

height gradually diminished, and after a chase of one or two miles I lost it in
the windings of the channel. Such, in the month of August 1834, was my first
chance interview with that singular and beautiful phenomenon which I have

called the Wave of Translation”. John Scott Russell

• Heuristic and innovative proof of the stability of the solitary wave given by
Boussinesq in 1872 through a 1D model on a flat bottom assuming
ε = O(µ)� 1.
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Historical background : Soliton and dispersive water waves

• Everything starts with Russell’s ”Wave of translation”

• Observation of Soliton

Russell’s experiments “like” in 1834

• Heuristic and innovative proof of the stability of the solitary wave given by
Boussinesq in 1872 through a 1D model on a flat bottom assuming
ε = O(µ)� 1.
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Historical background : Soliton and dispersive water waves

• Everything starts with Russell’s ”Wave of translation”

• Heuristic and innovative proof of the stability of the solitary wave given by
Boussinesq a in 1872 through a 1D model on a flat bottom assuming
ε = O(µ)� 1. These equations can be written as follows


∂

∂t
ξ +

∂

∂x
(hu) = O(µ2)

∂

∂t
u+ εu

∂

∂x
u+∇ξ + µD(u) = O(µ2)

with

ε =
a

H
, µ =

(
H

λ

)2

: non-linear parameter, dispersive parameter

H, ξ, u : water depth, free surface elevation, averaged speed
D : dispersive term

a. ”All engineers know the beautiful experiments of J. Scott Russell and M. Basin on
the generation and propagation of solitary waves” Joseph Valentin Boussinesq
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Historical background : Soliton and dispersive water waves

• Everything starts with Russell’s ”Wave of translation”

• Heuristic and innovative proof of the stability of the solitary wave given by
Boussinesq in 1872 through a 1D model on a flat bottom assuming
ε = O(µ)� 1.

• An other proof of the stability of the solitary wave given by introduced by
Boussinesq (1877)/Korteweg and Gustav de Vries (1895) through a 1D scalar
equation, a perfect equilibrium between non-linearities and the dispersion
term,

ut + 6uux + uxxx = 0
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Historical background : Soliton and dispersive water waves

• On the basis of this work, several models have been proposed :

• 1967 : a first 2D formulation for non flat weakly dispersive and weakly non
linear model of Boussinesq type was proposed by Peregrine

• 1984 : a first method to improve the frequency dispersion Boussinesq type’s
model was proposed by Witting

• 1953 : A first 1D fully non-linear (ε = O(1)) and weakly dispersive equation
for flat bottom was derived by Serre in 1953 motivated by the fact that wave
dynamics is strongly nonlinear close to shoaling zone

• 1976 : Green and Naghdi derived the famous 2D fully nonlinear dispersive
equations for uneven bottom (1D below)

• 2021 : Debyaoui and Ersoy introduce the first section-averaged non-linear
weakly dispersive equations for ”arbitrary geometry”

• Nowadays : Lannes, Bonneton, Cienfuegos, Dutykh, Gavrilyuk, Richard,
Sainte-Marie, . . . proposed several improvements

CEPS 2021, 29 January 13 / 20



Historical background : Soliton and dispersive water waves

• On the basis of this work, several models have been proposed :

• 1967 : a first 2D formulation for non flat weakly dispersive and weakly non
linear model of Boussinesq type was proposed by Peregrine

• 1984 : a first method to improve the frequency dispersion Boussinesq type’s
model was proposed by Witting

• 1953 : A first 1D fully non-linear (ε = O(1)) and weakly dispersive equation
for flat bottom was derived by Serre in 1953 motivated by the fact that wave
dynamics is strongly nonlinear close to shoaling zone

• 1976 : Green and Naghdi derived the famous 2D fully nonlinear dispersive
equations for uneven bottom (1D below)

• 2021 : Debyaoui and Ersoy introduce the first section-averaged non-linear
weakly dispersive equations for ”arbitrary geometry”

• Nowadays : Lannes, Bonneton, Cienfuegos, Dutykh, Gavrilyuk, Richard,
Sainte-Marie, . . . proposed several improvements

CEPS 2021, 29 January 13 / 20



Historical background : Soliton and dispersive water waves

• On the basis of this work, several models have been proposed :

• 1967 : a first 2D formulation for non flat weakly dispersive and weakly non
linear model of Boussinesq type was proposed by Peregrine

• 1984 : a first method to improve the frequency dispersion Boussinesq type’s
model was proposed by Witting

• 1953 : A first 1D fully non-linear (ε = O(1)) and weakly dispersive equation
for flat bottom was derived by Serre in 1953 motivated by the fact that wave
dynamics is strongly nonlinear close to shoaling zone

• 1976 : Green and Naghdi derived the famous 2D fully nonlinear dispersive
equations for uneven bottom (1D below)

• 2021 : Debyaoui and Ersoy introduce the first section-averaged non-linear
weakly dispersive equations for ”arbitrary geometry”

• Nowadays : Lannes, Bonneton, Cienfuegos, Dutykh, Gavrilyuk, Richard,
Sainte-Marie, . . . proposed several improvements

CEPS 2021, 29 January 13 / 20



Historical background : Soliton and dispersive water waves

• On the basis of this work, several models have been proposed :

• 1967 : a first 2D formulation for non flat weakly dispersive and weakly non
linear model of Boussinesq type was proposed by Peregrine

• 1984 : a first method to improve the frequency dispersion Boussinesq type’s
model was proposed by Witting

• 1953 : A first 1D fully non-linear (ε = O(1)) and weakly dispersive equation
for flat bottom was derived by Serre in 1953 motivated by the fact that wave
dynamics is strongly nonlinear close to shoaling zone

• 1976 : Green and Naghdi derived the famous 2D fully nonlinear dispersive
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∂

∂t
h+

∂

∂x
(hu) = 0

∂

∂t
(hu) +

∂

∂x

(
hu2 +

h2

2F 2
r

)
+ µ

∂

∂x

(
h3

3
D(u)

)
=

where D(u) =
(
∂

∂x
u

)2

− ∂

∂t

∂

∂x
u− u ∂

∂x

∂

∂x
u
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Context : channel/river as tsunami ”highways”

• Waves may penetrate through rivers/channel much faster inland than the
coastal inundation reaches over the ground, and may lead flooding in
low-lying areas located several km away from the coastline !

• How to model ?

• 2D models for rivers/channels can be used but costly in the large scale
simulation

• Non-hydrostatic 1D section-averaged have not yet been derived
→ toward the first full non-linear and weakly dispersive model
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Outline
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1 Hydrostatic models, applications and limits
Hydrostatic models
Application to tsunamis propagation

2 Non-hydrostatic models and applications
Historical background and motivations
Toward the first dispersive section-averaged model
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Outline of the derivation

Incompressible and irrotational Euler
equations

div(ρ0u) = 0,
∂

∂t
(ρ0u) + div(ρ0u⊗ u) +∇p− ρ0F = 0

with
u = (u, v, w) : velocity field
ρ0 : density
F = (0, 0,−g) : external force
p : pressure

completed with the irrotational relations

∂u

∂y
=
∂v

∂x
,
∂v

∂z
=

∂w

∂y
,
∂u

∂z
=
∂w

∂x
.
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Outline of the derivation

Incompressible and irrotational Euler
equations

div(ρ0u) = 0,
∂

∂t
(ρ0u) + div(ρ0u⊗ u) +∇p− ρ0F = 0

• free surface kinematic boundary condition,

u · nfs =
∂

∂t
m · nfs and p = p0, ∀m(t, x, y) = (x, y, η(t, x, y)) ∈ Γfs(t, x)

• no-penetration condition on the wet boundary

u · nwb = 0, ∀m(x, y) = (x, y, d(x, y)) ∈ Γwb(x)

CEPS 2021, 29 January 15 / 20



Outline of the derivation

Let us define the dispersive parameters

• µ1 =
h2

1

L2

• µ2 =
H2

2

L2
,

such that
h1 < H1 = H2 � L, i.e. µ1 < µ2

2

where
H1 : characteristic scale of channel width
h1 : characteristic wave-length in the transversal direction
H2 : characteristic water depth

Fr =
U√
gH2

: Froude’s number

T =
L

U
: characteristic time

P = U2 : characteristic pressure
X : characteristic length of x
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Outline of the derivation

Then, define the dimensionless variables

x̃ =
x

L
, P̃ =

P

P
, ϕ̃ =

ϕ

h1
,

ỹ =
y

h1
, ũ =

u

U
, d̃ =

d

H2
,

z̃ =
z

H2
, ṽ =

v

V
=

v
√
µ1U

, η̃ =
η

H2
.

t̃ =
t

T
, w̃ =

w

W
=

w
√
µ2U

.
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Outline of the derivation

We get

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+
∂P

∂x
= 0

µ1

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
+
∂P

∂y
= 0

µ2

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
+
∂P

∂z
= − 1

Fr
2

and
∂u

∂y
= µ1

∂v

∂x
, µ1

∂v

∂z
= µ2

∂w

∂y
,
∂u

∂z
= µ2

∂w

∂x
.
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The new model : generalization of the SGN and Free surface flows
equations


∂

∂t
A+

∂

∂x
Q = 0

∂

∂t
Q+

∂

∂x

(
Q2

A
+ I1(x,A)

)
+ µ2

∂

∂x
(D(u)G(A, x)) = I2(x,A)

+µ2G(u, S, σ) +O(µ2
2)

where

A =

∫
Ω(t,x)

dy dz : wet area

Q = A(t, x)u(t, x) : discharge

I1 =

∫
Ω(t,x)

η(t, x)− z
F 2
r

σ(x, z) dy dz : hydro. press.

I2 = −
∫ y+(t,x)

y−(t,x)

h(t, x)

Fr
2

∂

∂x
d(x, y) dy : hydro. press. source
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The new model : generalization of the SGN and Free surface flows
equations
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∂

∂t
A+

∂

∂x
Q = 0

∂

∂t
Q+

∂

∂x

(
Q2

A
+ I1(x,A)

)
+ µ2

∂

∂x
(D(u)G(A, x)) = I2(x,A)

+µ2G(u, S, σ) +O(µ2
2)

where

D(u) =

(
∂

∂x
u

)2

− ∂

∂t

∂

∂x
u− u ∂

∂x

∂

∂x
u

and

G(A, x) =

∫ η

d∗(x)

σ(x, z)

∫ η

z

S(x, s)

σ(x, s)
ds dz
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2)

where

G(u, S, σ) =

∫ η

z

u2

σ(x, s)

 ∂

∂x
S(x, s)

∂

∂x
σ(x, s)

σ(x, s)
− ∂

∂x

∂

∂x
S(x, s)


+
∂

∂x

(
u2

2

)S(x, s)
∂

∂x
σ(x, s)

σ(x, s)2

−
(
∂

∂t
u+ u

∂

∂x
u

) ∂

∂x
S(x, s)

σ(x, s)
ds

.
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The new model : generalization of the SGN and Free surface flows
equations


∂

∂t
A+

∂

∂x
Q = 0

∂

∂t
Q+

∂

∂x

(
Q2

A
+ I1(x,A)

)
+ µ2

∂

∂x
(D(u)G(A, x)) = I2(x,A)

+µ2G(u, S, σ) +O(µ2
2)

Setting σ = 1, d = 1,

• A = h

• S(x, z) ≡ S(z) ⇒ G = 0 and I2 = 0

• G =
h3

3

• I1 =
h2

2F 2
r
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The new model : generalization of the SGN and Free surface flows
equations


∂

∂t
A+

∂

∂x
Q = 0

∂

∂t
Q+

∂

∂x

(
Q2

A
+ I1(x,A)

)
+ µ2

∂

∂x
(D(u)G(A, x)) = I2(x,A)

+µ2G(u, S, σ) +O(µ2
2)

we recover the classical SGN equations on flat bottom
∂

∂t
h+

∂

∂x
(hu) = 0

∂

∂t
(hu) +

∂

∂x

(
hu2 +

h2

2F 2
r

)
+ µ2

∂

∂x

(
h3

3
D(u)

)
= O(µ2

2)

where

D(u) =

(
∂

∂x
u

)2

− ∂

∂t

∂

∂x
u− u ∂

∂x

∂

∂x
u
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Numerical scheme : hyperbolic part

We consider a classical Finite Volume scheme, U = (A,Q)

Un+1
i = Un

i −
δtn

δx

(
Fi+1/2(Un

i ,U
n
i+1)− Fi−1/2(Un

i−1,U
n
i )
)

where Fi±1/2 ≈
1

δtn

∫
mi

F (U(t, xi+1/2)) dx is a Finite volume solver,

for

instance, with upwind technique to deal with source term

Fi±1/2 =
F (U) + F (V )

2
− sni

2
(V −U)

with
F (U) =

 Au

Au2 +
κ− 1

κ

(
I1 −′′

∫
I2
′′
)
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)
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F (U) + F (V )
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− sni

2
(V −U)
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F (U) =

 Au

Au2 +
κ− 1

κ

(
I1 −′′

∫
I2
′′
)

I Bourdarias, Ersoy, Gerbi. Journal of Scientific Computing, 2011
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Numerical scheme : dispersive part

We consider a classical Finite Volume scheme, U = (A,Q)

Un+1
i = Un

i −
δtn

δx

(
Fi+1/2(Un

i ,U
n
i+1)− Fi−1/2(Un

i−1,U
n
i )
)

−δt
n

δx
([(Id − µ2L)n]

−1
Dn)i

with

(Dn)i = Di+1/2(Un
i−1,U

n
i ,U

n
i+1)−Di−1/2(Un

i−2,U
n
i−1,U

n
i )

where Di±1/2 and [(Id − µ2L)n]
−1 are the centred approximation of

D =
1

κ

(
∂

∂x
I1 − I2

)
+ µ2AQ and [(Id − µ2L)]

−1
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Numerical scheme :

We consider a classical Finite Volume scheme, U = (A,Q)

Un+1
i = Un

i −
δtn

δx

(
Fi+1/2(Un

i ,U
n
i+1)− Fi−1/2(Un

i−1,U
n
i )
)

−δt
n

δx
([(Id − µ2L)n]

−1
Dn)i

Theorem

The numerical scheme is stable under the classical CFL condition,

max
λ∈Sp(DUF (U))

|λ|δt
n

δx
6 1 .

I Debyaoui, Ersoy. NumHyp, 2020
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Two solitary waves test case

• Comparison with the NLSW and the exact solution

Figure – σ = 1, d = 1, N = 1000, CFL = 0.95, Tf = 10 and κ = 1.159

• Influence of κ
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