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Modern corporate design of electrical motors

I eBike with a synchronous machine
I Robust geometry optimization
I Expensive time domain simulations
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Time-domain simulation of three-phase induction motors
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Time-domain torque evolution

I Solution typically consists of a transient part, followed by a
(periodic) steady state

I Steady-state operating characteristics are important design criteria
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The Eddy Current Problem -
neglect the displacement current in Maxwell’s equations

I Eddy current problem in Ω× (0, Tend]

σ
∂A
∂t

+∇× (ν∇×A) = Js

with suitable BCs and IC A(x, 0) = A0(x),
A unknown magnetic vector potential,
Js source current density,
σ(x), ν(x,A) conductivity and reluctivity

I Additional equation for three-phase input
voltage ; coupled field-circuit system

I Semi-discretization in space yields DAE

Mσ
da
d

(t) +Kν(a(t))a(t)−Xi(t) = 0,

XT da
d

(t) +Ri(t) = v(t)

2D cross section of
“im 3kw” model

Design process
requires many simulations
→ reduce using PinT
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Time integration

I Consider system of ODEs
u′(t) = f(t,u(t)), t ∈ (0, Tend], u(0) = g0

I Time-stepping problem (“Φ-form”)

ui = Φi(ui−1), u0 = g0, i = 1, . . . , nt
t0 t1 t2 t3 · · · tnt

∆t

Φ · · ·

I Equivalent space-time system

A(u) ≡


u0

u1 − Φ1(u0)
...

unt − Φnt(unt−1)

 =


g0
0
...
0

 ≡ g
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Multigrid in time: motivation for AT-MGRIT
Two-level

	 Limited parallelism
⊕ Small time steps on coarsest grid

{parallel} {parallel}

{serial}

Multilevel

⊕ Small serial part
	 Large time steps on coarsest grid

{parallel} {parallel}

{serial}

I Method with few but still small time steps on the coarsest grid?
I Enable parallelism at the coarsest level?
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Asynchronous Truncated MGRIT (AT-MGRIT)∗

I Partition the time grid into
C-points and F-points

I Relaxation is highly parallel
I alternates between F- and

C-points

I Truncated local coarse grids
I One grid per point on coarsest

level
I Based on local grid size k

(#points per grid)
I restriction = injection
I interpolation =

injection (1 point) + F-relax

t0 t1 t2 t3
. . . tnt

T0 T1 . . .

∆t

∆T = m∆t

Φ
F-relax

Φ
C-relax

∗J. Hahne et. al. Asynchronous Truncated Multigrid-reduction-in-time, arXiv:2107.09596v1.
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Two-level AT-MGRIT

injection injection

F-relaxation F-relaxation

I Asynchronous: Communication only required for computation and
distribution of the residuals

I Extends to nonlinear problems with FAS formulation
I Equivalent to Parareal if k = #C-points
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Multilevel AT-MGRIT

Level 0
Level 1
Level 2

Level 3

I Equivalent to MGRIT if k = #points coarsest level
I Coarsest level structure can be used for any cycle types
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Numerical model

Optimization
parameters:

height and width

I Model “im 3 kw”∗ of an
electrical machine

I Four-pole 3kW squirrel cage
induction machine

I about 4,500 spatial DoFs
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I Excited with three-phase
sinusoidal voltage of 50Hz
and amplitude Û = 311.1 V

I time interval: [0, 0.2],
16,385 time points (∆t ≈ 10−5)

∗J. Gyselinck et. al. Multi-slice FE modeling of electrical machines with skewed slots-the skew
discretization error, IEEE Magnetics 37, 2001.
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Objective function
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Nonlinear model “im 3 kw”;
torque TEM ; Pmech = TEMωmech

Nonlinear model “im 3 kw”;
Joule losses Ploss(A3, p)

min
A3,p

Ĵ(p) := −Pout(A3(p), p)
Pin(A3, p)

s. t. 0.007 ≤ h ≤ 0.015, 0.0015 ≤ w ≤ 0.0035

Pout(A3, p) =
∫ 0.2

0.18
Pmech(A3, p) dt, Pin(A3, p) =

∫ 0.2

0.18
[Pmech(A3, p) + Ploss(A3, p)] dt
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Optimization algorithm and software

Optimization using Py-BOBYQA∗

I Trust-region optimization algorithm BOBYQA (derivative-free)
I Idea: Use a model for the objective function (quadratic interpolation

polynomial)
Q(k)(s) ≈ Ĵ(p(k) + s)

I Improve the model in every iteration:
minimize Q(k) inside a trust-region {s ∈ Rn : ‖s‖2 ≤ ∆(k)}

min
s
Q(k)(s) s. t. ‖s‖2 ≤ ∆(k)

I Initial trust-region radius: ∆(0) = 10−4

I Stopping criterion: allowed trust-region radius ∆(end) = 10−8

∗C. Cartis et. al., Improving the flexibility and robustness of model-based derivative-free
optimization solvers, tech. report, University of Oxford, 2018.
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Optimization procedure
START

k := 0, set p(0),∆(0), build Q(0)

Solve minsQ(k)(s) s.t.‖s‖2 ≤ ∆(k)

PinT time-domain calculation on [0, 0.2]
⇒ gives A3(p(k) + s) on

[
0.18, 0.2

]
Post-process: calculate Pmech, Ploss
⇒ evaluate J

(
A3(p(k) + s), p(k) + s

)

Update p(k+1),∆(k+1),Q(k+1), k := k + 1

∆(k+1) ≤ ∆(end)RETURN Yes No
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PinT time-domain simulation and software

For each objective function evaluation, generate mesh using Gmsh

Time-domain simulation using PyMGRITa

I Two-level AT-MGRIT with F-relaxation
I m = 64, local grid size: k = 100
I Initial guess: Full coarse-grid solve
I Subcycling on coarse level
I Spatial solves using GetDPb

I Stopping criterion: relative difference of
Jule losses of two succ. iterations < 1%

I 256 processes

· · ·

aJ. Hahne et. al., PyMGRIT: A Python package for the parallel-in-time method MGRIT, tech.
report, University of Wuppertal, 2020.
bC. Geuzaine, GetDP: a general finite-element solver for the de Rham complex, PAMM 7 (1),
2007.
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Optimization results

optimize

26 optimization steps
up to 11x speedup per opti-
mization step (256 procs)
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Optimization process
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31 function evaluations (optimal geometry found in iteration 18)
I one evaluation in each of the 26 iterations
I five additional evaluations for initial quadratic interpolation model
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Conclusions

Summary
I Optimizing design parameters to obtain efficient and robust designs

of induction machines requires carrying out many simulations.
I PinT methods can reduce simulation times.

I A large degree of intrusiveness may be prohibitive for exploitation of
PinT methods within large existing application codes.

I Key practical advantage of AT-MGRIT: non-intrusive approach
I Successfully applied AT-MGRIT in the design optimization of a realistic

induction machine model.

Software
I Code available in PyMGRIT (https://github.com/pymgrit/pymgrit)
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Thank you
http:/timex-eurohpc.eu

http://parallel-in-time.org
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