# Parallel-in-time optimization of induction motors

Stephanie Friedhoff, <sup>1</sup> Jens Hahne<sup>1</sup>, Iryna Kulchytska-Ruchka<sup>2</sup>, Björn Polenz<sup>2</sup>, Sebastian Schöps<sup>2</sup>, and Stefan Ulbrich<sup>2</sup>

> <sup>1</sup>University of Wuppertal, Germany <sup>2</sup>TU Darmstadt, Germany

11th Conference on Parallel-in-Time Integration, July 11 – July 15, 2022





BERGISCHE UNIVERSITÄT WUPPERTAL

### Modern corporate design of electrical motors



- eBike with a synchronous machine
- Robust geometry optimization
- Expensive time domain simulations





Bundesministerium für Bildung und Forschung



# Time-domain simulation of three-phase induction motors



- Solution typically consists of a transient part, followed by a (periodic) steady state
- Steady-state operating characteristics are important design criteria



### The Eddy Current Problem neglect the displacement current in Maxwell's equations

• Eddy current problem in  $\Omega \times (0, T_{end}]$ 

$$\sigma \frac{\partial \mathbf{A}}{\partial t} + \nabla \times (\boldsymbol{\nu} \nabla \times \mathbf{A}) = \mathbf{J}_s$$

with suitable BCs and IC  $\mathbf{A}(\mathbf{x}, 0) = \mathbf{A}_0(\mathbf{x})$ , **A** unknown magnetic vector potential,  $\mathbf{J}_s$  source current density,  $\sigma(\mathbf{x}), \nu(\mathbf{x}, \mathbf{A})$  conductivity and reluctivity



2D cross section of "im\_3kw" model



### The Eddy Current Problem neglect the displacement current in Maxwell's equations

• Eddy current problem in  $\Omega \times (0, T_{end}]$ 

$$\sigma \frac{\partial \mathbf{A}}{\partial t} + \nabla \times (\boldsymbol{\nu} \nabla \times \mathbf{A}) = \mathbf{J}_{s}$$

with suitable BCs and IC  $\mathbf{A}(\mathbf{x}, 0) = \mathbf{A}_0(\mathbf{x})$ , **A** unknown magnetic vector potential,  $\mathbf{J}_s$  source current density,  $\sigma(\mathbf{x}), \nu(\mathbf{x}, \mathbf{A})$  conductivity and reluctivity

► Additional equation for three-phase input voltage ~> coupled field-circuit system



2D cross section of "im\_3kw" model



### The Eddy Current Problem neglect the displacement current in Maxwell's equations

• Eddy current problem in  $\Omega \times (0, T_{end}]$ 

$$\sigma \frac{\partial \mathbf{A}}{\partial t} + \nabla \times (\boldsymbol{\nu} \nabla \times \mathbf{A}) = \mathbf{J}_{s}$$

with suitable BCs and IC  $\mathbf{A}(\mathbf{x}, 0) = \mathbf{A}_0(\mathbf{x})$ , **A** unknown magnetic vector potential,  $\mathbf{J}_s$  source current density,  $\sigma(\mathbf{x}), \nu(\mathbf{x}, \mathbf{A})$  conductivity and reluctivity

- ► Additional equation for three-phase input voltage ~> coupled field-circuit system
- Semi-discretization in space yields DAE

$$M_{\sigma} \frac{d\mathbf{a}}{d}(t) + K_{\nu}(\mathbf{a}(t))\mathbf{a}(t) - X\mathbf{i}(t) = \mathbf{0},$$
$$X^{T} \frac{d\mathbf{a}}{d}(t) + R\mathbf{i}(t) = \mathbf{v}(t)$$



2D cross section of "im\_3kw" model



# The Eddy Current Problem - neglect the displacement current in Maxwell's equations

• Eddy current problem in  $\Omega \times (0, T_{end}]$ 

$$\sigma \frac{\partial \mathbf{A}}{\partial t} + \nabla \times (\boldsymbol{\nu} \nabla \times \mathbf{A}) = \mathbf{J}_s$$

with suitable BCs and IC  $\mathbf{A}(\mathbf{x}, 0) = \mathbf{A}_0(\mathbf{x})$ , **A** unknown magnetic vector potential,  $\mathbf{J}_s$  source current density,  $\sigma(\mathbf{x}), \nu(\mathbf{x}, \mathbf{A})$  conductivity and reluctivity

- ► Additional equation for three-phase input voltage ~> coupled field-circuit system
- Semi-discretization in space yields DAE

$$M_{\sigma} \frac{d\mathbf{a}}{d}(t) + K_{\nu}(\mathbf{a}(t))\mathbf{a}(t) - X\mathbf{i}(t) = \mathbf{0},$$
$$X^{T} \frac{d\mathbf{a}}{d}(t) + R\mathbf{i}(t) = \mathbf{v}(t)$$



2D cross section of "im\_3kw" model

 $\begin{array}{l} \text{Design process} \\ \text{requires many simulations} \\ \rightarrow \text{reduce using PinT} \end{array}$ 





### Time integration

### Consider system of ODEs

$$\mathbf{u}'(t) = \mathbf{f}(t, \mathbf{u}(t)), \quad t \in (0, T_{\text{end}}], \quad \mathbf{u}(0) = \mathbf{g}_0$$



### Time integration

### Consider system of ODEs

$$\mathbf{u}'(t) = \mathbf{f}(t, \mathbf{u}(t)), \quad t \in (0, T_{\text{end}}], \quad \mathbf{u}(0) = \mathbf{g}_0$$

► Time-stepping problem ("Φ-form")

$$\mathbf{u}_i = \Phi_i(\mathbf{u}_{i-1}), \ \mathbf{u}_0 = \mathbf{g}_0, \ i = 1, \dots, n_t$$





### Time integration

### Consider system of ODEs

$$\mathbf{u}'(t) = \mathbf{f}(t, \mathbf{u}(t)), \quad t \in (0, T_{\text{end}}], \quad \mathbf{u}(0) = \mathbf{g}_0$$

► Time-stepping problem ("Φ-form")

$$\mathbf{u}_i = \Phi_i(\mathbf{u}_{i-1}), \ \mathbf{u}_0 = \mathbf{g}_0, \ i = 1, \dots, n_t$$

.

Equivalent space-time system

$$\mathcal{A}(\mathbf{u}) \equiv \begin{bmatrix} \mathbf{u}_0 \\ \mathbf{u}_1 - \Phi_1(\mathbf{u}_0) \\ \vdots \\ \mathbf{u}_{n_t} - \Phi_{n_t}(\mathbf{u}_{n_t-1}) \end{bmatrix} = \begin{bmatrix} \mathbf{g}_0 \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix} \equiv \mathbf{g}$$



### Multigrid in time: motivation for AT-MGRIT





# Multigrid in time: motivation for AT-MGRIT



Method with few but still small time steps on the coarsest grid?



# Multigrid in time: motivation for AT-MGRIT



- Method with few but still small time steps on the coarsest grid?
- Enable parallelism at the coarsest level?



# Asynchronous Truncated MGRIT (AT-MGRIT)\*

 Partition the time grid into C-points and F-points





<sup>\*</sup>J. Hahne et.al. Asynchronous Truncated Multigrid-reduction-in-time, arXiv:2107.09596v1.

# Asynchronous Truncated MGRIT (AT-MGRIT)\*

- Partition the time grid into C-points and F-points
- Relaxation is highly parallel
  alternates between F- and C-points



\*J. Hahne et.al. Asynchronous Truncated Multigrid-reduction-in-time, arXiv:2107.09596v1.



# Asynchronous Truncated MGRIT (AT-MGRIT)\*

- Partition the time grid into C-points and F-points
- Relaxation is highly parallel
  - alternates between F- and C-points
- Truncated local coarse grids
  - One grid per point on coarsest level
  - Based on local grid size k (#points per grid)
  - restriction = injection
  - interpolation = injection (1 point) + F-relax



\*J. Hahne et. al. Asynchronous Truncated Multigrid-reduction-in-time, arXiv:2107.09596v1.

PinT optimization of induction motors Stephanie Friedhoff



6/17

### Two-level AT-MGRIT



 Asynchronous: Communication only required for computation and distribution of the residuals



### Two-level AT-MGRIT



- Asynchronous: Communication only required for computation and distribution of the residuals
- Extends to nonlinear problems with FAS formulation



### Two-level AT-MGRIT



- Asynchronous: Communication only required for computation and distribution of the residuals
- Extends to nonlinear problems with FAS formulation
- Equivalent to Parareal if k = #C-points



### Multilevel AT-MGRIT





### Multilevel AT-MGRIT



#### • Equivalent to MGRIT if k = # points coarsest level



### Multilevel AT-MGRIT



#### • Equivalent to MGRIT if k = # points coarsest level

Coarsest level structure can be used for any cycle types



### Numerical model



- Model "im\_3\_kw"\* of an electrical machine
- Four-pole 3kW squirrel cage induction machine
- about 4,500 spatial DoFs

PinT optimization of induction motors Stephanie Friedhoff



9/17

<sup>\*</sup>J. Gyselinck et.al. *Multi-slice FE modeling of electrical machines with skewed slots-the skew discretization error*, IEEE Magnetics **37**, 2001.

### Numerical model



- Model "im\_3\_kw"\* of an electrical machine
- Four-pole 3kW squirrel cage induction machine
- about 4,500 spatial DoFs



- Excited with three-phase sinusoidal voltage of 50Hz and amplitude Û = 311.1 V
- time interval: [0, 0.2], 16,385 time points ( $\Delta t \approx 10^{-5}$ )





<sup>\*</sup>J. Gyselinck et.al. *Multi-slice FE modeling of electrical machines with skewed slots-the skew discretization error*, IEEE Magnetics **37**, 2001.

### Numerical model



- Model "im\_3\_kw"\* of an electrical machine
- Four-pole 3kW squirrel cage induction machine
- about 4,500 spatial DoFs



- Excited with three-phase sinusoidal voltage of 50Hz and amplitude Û = 311.1 V
- time interval: [0, 0.2], 16,385 time points ( $\Delta t \approx 10^{-5}$ )





<sup>\*</sup>J. Gyselinck et. al. *Multi-slice FE modeling of electrical machines with skewed slots-the skew discretization error*, IEEE Magnetics **37**, 2001.

### **Objective function**



Nonlinear model "im\_3\_kw"; torque  $T_{\text{EM}} \rightsquigarrow P_{\text{mech}} = T_{\text{EM}} \omega_{\text{mech}}$ 



Nonlinear model "im\_3\_kw"; Joule losses  $P_{loss}(\mathbf{A}_3, p)$ 



### **Objective function**



Nonlinear model "im\_3\_kw"; torque  $T_{\text{EM}} \rightsquigarrow P_{\text{mech}} = T_{\text{EM}} \omega_{\text{mech}}$  Nonlinear model "im\_3\_kw"; Joule losses  $P_{loss}(\mathbf{A}_3, p)$ 

$$\min_{\widehat{J}(p) := -\frac{P_{\mathsf{out}}(\mathbf{A}_3(p), p)}{P_{\mathsf{in}}(\mathbf{A}_3, p)}$$

 ${\rm s.\,t.} \qquad 0.007 \le h \le 0.015, \quad 0.0015 \le w \le 0.0035$ 

$$P_{\rm out}(\mathbf{A_3},p) = \int_{0.18}^{0.2} P_{\rm mech}(\mathbf{A_3},p) \; {\rm d}t, \quad P_{\rm in}(\mathbf{A_3},p) = \int_{0.18}^{0.2} \left[ P_{\rm mech}(\mathbf{A_3},p) + P_{\rm loss}(\mathbf{A_3},p) \right] \; {\rm d}t$$

PinT optimization of induction motors Stephanie Friedhoff

10/17



# Optimization algorithm and software

### Optimization using Py-BOBYQA\*

- Trust-region optimization algorithm BOBYQA (derivative-free)
- Idea: Use a model for the objective function (quadratic interpolation polynomial)

$$\mathcal{Q}^{(k)}(s) \approx \widehat{J}(p^{(k)} + s)$$

▶ Improve the model in every iteration: minimize  $Q^{(k)}$  inside a trust-region  $\{s \in \mathbb{R}^n : \|s\|_2 \le \Delta^{(k)}\}$ 

$$\min_{s} \mathcal{Q}^{(k)}(s) \text{ s. t. } \|s\|_2 \leq \Delta^{(k)}$$

► Initial trust-region radius: Δ<sup>(0)</sup> = 10<sup>-4</sup>
 ► Stopping criterion: allowed trust-region radius Δ<sup>(end)</sup> = 10<sup>-8</sup>

PinT optimization of induction motors Stephanie Friedhoff



11/17

<sup>\*</sup>C. Cartis et. al., Improving the flexibility and robustness of model-based derivative-free optimization solvers, tech. report, University of Oxford, 2018.

### Optimization procedure





### Optimization procedure





# PinT time-domain simulation and software

For each objective function evaluation, generate mesh using Gmsh Time-domain simulation using PyMGRIT<sup>a</sup>

- Two-level AT-MGRIT with F-relaxation
- m = 64, local grid size: k = 100
- Initial guess: Full coarse-grid solve
- Subcycling on coarse level
- Spatial solves using GetDP<sup>b</sup>
- Stopping criterion: relative difference of Jule losses of two succ. iterations < 1%</p>
- 256 processes









<sup>&</sup>lt;sup>a</sup>J. Hahne et. al., *PyMGRIT: A Python package for the parallel-in-time method MGRIT*, tech. report, University of Wuppertal, 2020.

<sup>&</sup>lt;sup>b</sup>C. Geuzaine, *GetDP: a general finite-element solver for the de Rham complex, PAMM* **7** (1), 2007.

# Optimization results





### Optimization results



#### optimize

26 optimization steps up to 11x speedup per optimization step (256 procs)







### Optimization results





### Optimization process



31 function evaluations (optimal geometry found in iteration 18)

- one evaluation in each of the 26 iterations
- ► five additional evaluations for initial quadratic interpolation model



- Optimizing design parameters to obtain efficient and robust designs of induction machines requires carrying out many simulations.
- PinT methods can reduce simulation times.



- Optimizing design parameters to obtain efficient and robust designs of induction machines requires carrying out many simulations.
- PinT methods can reduce simulation times.
- A large degree of intrusiveness may be prohibitive for exploitation of PinT methods within large existing application codes.
- ► Key practical advantage of AT-MGRIT: non-intrusive approach



- Optimizing design parameters to obtain efficient and robust designs of induction machines requires carrying out many simulations.
- PinT methods can reduce simulation times.
- A large degree of intrusiveness may be prohibitive for exploitation of PinT methods within large existing application codes.
- Key practical advantage of AT-MGRIT: non-intrusive approach
- Successfully applied AT-MGRIT in the design optimization of a realistic induction machine model.



- Optimizing design parameters to obtain efficient and robust designs of induction machines requires carrying out many simulations.
- PinT methods can reduce simulation times.
- A large degree of intrusiveness may be prohibitive for exploitation of PinT methods within large existing application codes.
- Key practical advantage of AT-MGRIT: non-intrusive approach
- Successfully applied AT-MGRIT in the design optimization of a realistic induction machine model.

### Software

Code available in PyMGRIT (https://github.com/pymgrit/pymgrit)







### Thank you

http:/timex-eurohpc.eu http://parallel-in-time.org

