
PinT Scheme using time as a parameter

Olga Mula

TU Eindhoven

PinT 2022 � July 11-15, 2022



Preliminary thoughts: Setting to study PinT schemes?

Let U be a Banach space over a domain Ω ⊂ Rd ,

Problem: �nd u ∈ C1([0,T ],U) solution to

u′(t) +A (t, u(t)) = 0, t ∈ [0,T ],

u(0) = u0 ∈ U

Task: Build a scheme such that for all N ≥ 1,

E�N :=
1

N

Sequential Runtime

Runtime in parallel with N processors
≈ 1

Accuracy: For a given taget accuracy η, the approximation ũ(t) must be
such that

max
t∈[0,T ]

‖u(t)− ũ(t)‖U ≤ η.
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Preliminary thoughts: Setting to study PinT schemes?

Di�erent paradigms:

Purely PDE-driven:

i) Time-stepping schemes (e.g. parareal, MGRIT, PFASST...)
ii) Preconditionnners (after discretization)
iii) Exponential integrators (Cauchy integral formula)

For i), scalability is rather poor, expecially for transport dominated
problems.

Mixed approaches PDE-Driven + Data-driven:

i) Model-Order Reduction
ii) Deep Learning (PINNs)

Does the learning phase enter into the count of the parallel e�cieny?
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Roadmap of the talk

This talk is a discussion about my thoughts/experience regarding:

The fundamental limits of parareal, and approach i).

Merits and limitations of alternative promising paradigms?

Roadmap:
1) A fully adaptive parareal algorithm: merits and pitfalls.

2) Time as a parameter:

The Cauchy integral formula (parabolic problems)

Reduced Order Models (transport-dominated problems)
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Part I:

An adaptive parareal algorithm

[MM20] An adaptive parareal algorithm. Y. Maday, O. Mula (JCAM, 2022)
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Motivations: scalability and online stoping criteria

The classical parareal in time algorithm

Let G and F be the coarse and �ne propagators of an evolution problem.

If k = 0, {
yN
0

= G(TN ,∆T , yN−1
0

), 1 ≤ N ≤ N.

y0
0

= u(0).

If k ≥ 1,{
yNk = G(TN−1,∆T , yN−1k ) +F (TN−1,∆T , yN−1k−1 )− G(TN−1,∆T , yN−1k−1 ),

y0k = u(0).

Two major obstructions

1 Parallel e�ciency:

e� ≈ 1/K
Problem: repeated use of F

2 No online stopping criteria −→ Need for a posteriori estimators
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Setting and notations
Let U be a Banach space over a domain Ω ⊂ Rd ,

Problem: �nd u ∈ C1([0,T ],U) solution to

u′(t) +A (t, u(t)) = 0, t ∈ [0,T ],

u(0) = u0 ∈ U

Propagators:

E(t, s,w) = E(initial time, step, initial condition in U)
E(0, t, u0) = u(t)

For any ζ > 0, [E(t, s,w); ζ] is an element of U satisfying

‖E(t, s,w)− [E(t, s,w); ζ]‖ ≤ ζ s (1+ ‖w‖).

F = [E(), ζF ], G = [E(); ζG ].

Discretization in time: T0 = 0 < T1 < · · · < TN = T .

Goal: For a given taget accuracy η, build ũ(TN ) such that

max
0≤N≤N

‖u(TN )− ũ(TN )‖ ≤ η.
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Best implementable version of algorithm
Ideal parareal iterations: We build a sequence (yNk )k of approximations
of u(TN ) for 0 ≤ N ≤ N following the recursive formula


yN+1

0
= G(TN ,∆T , yN0 ), 0 ≤ N ≤ N − 1

yN+1

k+1
= G(TN ,∆T , yNk+1)

+ E(TN ,∆T , yNk )− G(TN ,∆T , yNk ), 0 ≤ N ≤ N − 1, k ≥ 0,

y00 = u(0).

Feasible parareal iterations: We build a sequence (ỹNk )k of
approximations of u(TN ) for 0 ≤ N ≤ N following the recursive formula


ỹN+1

0
= G(TN ,∆T , ỹN0 ), 0 ≤ N ≤ N − 1

ỹN+1

k+1
= G(TN ,∆T , ỹNk+1)

+ [E(TN ,∆T , yNk ), ζNk ]− G(TN ,∆T , ỹNk ), 0 ≤ N ≤ N − 1, k ≥ 0,

ỹ00 = u(0).

Question: minimal accuracy ζNk to preserve the convergence rate of ideal
scheme?
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Parallel e�ciency

Lemma 1 (see [MM20])

Let ζG be the accuracy of G, and assume its cost is negligible.

We can �nd the minimal accuracy for ζNk to guarantee convergence and

e�(η, [0,T ]) =
costAP(η, [0,T ])cost

costseq(η, [0,T ])
≈∼ 1

(1+ ζG)
.

and

speed-up(η, [0,T ]) = N e�(η, [0,T ]) ∼ N
1

(1+ ζG)
.
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Parallel e�ciency

Merits:

Convergence to exact solution.

∀η > 0, better e�ciency than the plain method

E�ciency independent of the �nal number of iterations

Only cost of last �ne propagation counts

Opens the door to adaptive re�nements

Obstructions to get full scalability:

We have solved the issue with the �ne solver BUT...

Cost of coarse solver is in general non negligible.

This is particularly the case for transport dominated problems.
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Connection to other works/approaches

Classical formulation of parareal: We can interpret the �ne solver as

F (TN ,∆T ,w) = [E(TN ,∆T ,w), ζF ],

where ζF is small and kept constant across the parareal iterations.

Improvement of speed-up with info from previous iterations:

Coupling of the parareal algorithm with spatial domain
decomposition (see [MT05, Gue12, ABGM17]).

Combination of the parareal algorithm with iterative high order
methods in time like spectral deferred corrections (see
[MWS+08, Min10, MSB+15])

Solution of internal �xed points initialized with solutions at previous
parareal iterations (see [Mul14]).

In a similar spirit, applications of the parareal algorithm to solve
optimal control problems (see [MT05, MST07]).

Improvement of speed-up if we decrease cost of coarse solver.
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Part II: Parametric Strategies

The Cauchy integration formula for parabolic problems
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Integration of high-dimensional linear parabolic PDEs

Consider the spatial domain

Ω = Ω1 × · · · ×Ωd

and the elliptic operator

A =
d

∑
i=1

id⊗ · · · ⊗ id⊗ Ai ⊗ id⊗ · · · ⊗ id,

where each
Ai : Hi → H ′i ,

is elliptic with compact inverse. One example could be

Hi = H1
0 (Ωi ), Ai = −∂2xi , A = −∆
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Integration of high-dimensional linear parabolic PDEs

Let u ∈ H1 × · · · ×Hd be the solution to

∂tu(t, x) + Au(t, x) = f (t, x), ∀(t, x) ∈ (0,T )×Ω
u(t, x) = 0, ∀(t, x) ∈ (0,T )× ∂Ω

with u(t = 0) = u0.

The Cauchy formula gives the solution to this equation in terms of
exponential of operators:

u(t, ·) = e−tAu0(·) +
∫ t

0

e−(t−s)Af (s, ·)ds.

Back-bone of exponential in time integrators (see [SST00, HO10], talks
by Mayya Tokmann, Martin Schreiber).
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Cauchy integral formula

Let f : C→ C be an holomorphic function on some open set D ⊂ C.
The Cauchy integral formula states that

f (z) =
1

2iπ

∫
Γ

f (ζ)

ζ − z
dζ, ∀z ∈ C

for any recti�able Jordan curve satisfying some conditions.

Let H be a Hilbert space, and A ∈ L(H). We can de�ne the action of f
on A through the Cauchy integral

f (T ) :=
1

2iπ

∫
Γ
f (z)(z − T )−1dz

for a recti�able curve containing σ(A).

Let us apply this to f : z 7→ e−tz and A = −∆.
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Cauchy integral formula

Let us apply this to our case with A = −∆:

u(t, ·) = e−tAu0(·) +
∫ t

0

e−(t−s)Af (s, ·)ds

=
∫

Γ
e−tz (z + ∆)−1u0(·)dz +

∫ t

0

∫
Γ
e−(t−s)z (z + ∆)−1f (, s ·)dz

To compute this, select quadrature rules and

ũQ(t, ·) =
Q

∑
q=−Q

ωqe
−tzq (zq + ∆)−1u0(·)

+
∫ t

0

Q

∑
q=−Q

ωqe
−(t−s)zq (zq + ∆)−1f (s, ·)ds

Nice consequences:

Time is a simple parameter.

Each (static) problem can be computed in parallel.

...
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Consequences for us

Nice consequences:

Time is a simple parameter.

Each (static) problem can be computed in parallel.

Easy control on accuracy (spectral accuracy on quadrature + a
posteriori estimators on elliptic problems)

Repeated solving of elliptic problems → Model Reduction.

Fight against curse of dimensionality:

Suppose u0(x1, . . . , xd ) = ∑K
k=1 u

k
1
(x1) . . . ukd (xd ), then

e−t∆u0 =
K

∑
k=1

d

∏
i=1

e−t∂2xi uki (xi )

and

e−t∂2xi uki (xi ) ≈
Q

∑
q=−Q

ωqe
−tzq (zq + ∂2xi )

−1uki (xi )
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Conclusion about the Cauchy integral formula

Pros:

Perfectly scalable in the above setting.

Beats curse of dimensionality in certain settings [GHK02, DDGS15]

Possibility to use MOR [DAC+22]

Cons:

As soon as setting becomes more involved, becomes a time-stepping
method.

Use with care for other types of problems.
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Part II: Parametric Approaches

Model-Order Reduction for conservation laws
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Motivation: Reduced Order Modeling of parametric PDEs
Parametric PDE: Consider

Px (y)(r) = 0, ∀r ∈ Ω ⊂ Rs , (1)

where

Px : di�erential operator depending on a parameter x
y ∈ Y : solution to the PDE in a metric space Y

Parameter-to-solution map:

x ∈ X compact set of Hilbert space X .
Mapping:

y : X→ Y
x 7→ y(x) solution to (1)

Solution Set: M := {y(x) ∈ Y : x ∈ X}.

Goal: Find a quick approximation to the parameter-to-solution map

A : X→ Y
x 7→ A(x) ≈ y(x)
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Motivation: Reduced Order Modeling of parametric PDEs

Easy setting: If the PDE is elliptic/parabolic:

Work in a Hilbert space Y .
ApproximateM with linear subspaces Vn:

A : X→ Vn ⊆ Y
x 7→ A(x) ≈ y(x)

Kolmogorov n-width ofM decays fast with n. (see e.g. [CD16])

Problem: Nonlinear strategies for transport-dominated PDEs?

Our focus: Conservation Laws for which we can work with

Y = W2(Ω)
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Roadmap of the rest of the talk

1 De�nition of W2(Ω) and why this choice for MOR?

2 Sparse, adaptive interpolation of measures.

3 Some tests for a 2D Burgers equation.
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Part I:

De�nition of W2(Ω) and why this choice for MOR?
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The L2-Wasserstein space W2(Ω)

Let (Ω, ‖ · ‖) be a compact metric space (e.g. Ω ⊂ Rs).

Let P2(Ω) be the set of probability measures on Ω with �nite second
order moments.

The L2-Wasserstein distance is de�ned by

W 2
2 (u, v) := inf

π∈Π(u,v )

∫
Ω×Ω

‖x − y‖2 dπ(x , y), ∀(u, v) ∈ P2(Ω)×P2(Ω).

The in�mum is taken over all transport plans

Π(u, v) := {π ∈ P2(Ω×Ω) :
∫
y

dπ(x , y) = du(x),
∫
x

dπ(x , y) = dv(x)}

The space P2(Ω) with the distance W2 is a metric space.
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Interest of working in W2 for MOR?

Solutions of conservation laws, and gradient �ows can be seen as
members of W2.

The metric W2 encodes translations and can locate shocks.

It is a metric space so approximations must be nonlinear.

W2(u, v) = d ,

L1(u, v) = 2 as soon as supp(u) ∩ supp(v) = ∅
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Part II:

Adaptive, Sparse interpolation of Measures in W2(Ω).
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Sparse, Adaptive Interpolatory Strategy
Back-bone of many strategies for Hilbert spaces Y :

Training set: for N � 1, compute

Xtrain
N := {xi}Ni=1, Ytrain

N := {y(xi )}Ni=1

For a �xed 1 ≤ n� N, �nd parameters

Xn := {x∗1 , . . . , x∗n} ⊂ Xtrain
n .

with their associated solution snapshots

Yn := {y(x∗1 ), . . . , y(x∗n )} ⊂ Ytrain
n .

and build the approximation class

Vn := span{y(x∗1 ), . . . , y(x∗n ))} ⊂ Y

Approximate with

A : X→ Vn ⊆ Y
x 7→ A(x) ≈ y(x)

Interpolation property:

A(x) = y(x), ∀x ∈ Xn.
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Sparse, Adaptive Interpolatory Strategy
Our strategy in Y = W2(Ω) (ideal version):

For every x ∈ X:
Find appropriate parameters (with a procedure yet to be de�ned)

Xx
n = {x∗1 (x), . . . , x∗n (x)} ⊂ Xtrain

N

and set
Yx
n = {y(x) : x ∈ Xx

n }ni=1 ⊂ Ytrain
N .

Given weights
Λn = (λ1, . . . ,λn) ∈ Σn

from the n-dimensional simplex

Σn := {Λn ∈ Rn :
n

∑
i=1

λi = 1, λi ≥ 0},

we can de�ne de�ne the barycenter

Bar(Λn,Yx
n) ∈ argmin

v∈P2(Ω)

n

∑
y∈Yx

n

λiW
2
2 (v , y)

Our approximation class is now the set of barycenters

V x
n := Bar(Σn,Yx

n) = {Bar(Λn,Yx
n) : Λn ∈ Σn}
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Sparse, Adaptive Interpolatory Strategy
Our strategy in Y = W2(Ω) (continued):

For every x ∈ X:
Find b ∈ Bar(Σn,Yx

n) such that

b ∈ argmin
b∈V x

n

W 2
2 (y(x), b)

This is equivalent to �nding the optimal weights

Λx
n ∈ argmin

Λn∈Σn

W 2
2 (y(x),Bar(Λn,Yx

n))

Approximate with

Ax : X→ V x
n := Bar(Σn,Yx

n) ⊂ Y
z 7→ Ax (z) = Bar(Λz

n,V
x
n ) ≈ y(z).

In particular,
Ax (x) = Bar(Λx

n,Yx
n)

Interpolation properties:
Local: for all x ∈ X,

Ax (z) = y(z), ∀z ∈ Xx
n

Global:
Ax (x) = y(x), ∀x ∈ Xtrain

N
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Questions/Challenges

Questions:

For a given x ∈ X, what are the best Xx
n,Λx

n?

Algorithm to compute them?

Numerical cost and feasibility?

Limitations:

Cost of computing a barycenter with state of the art Sinkhorn-type
algorithms:

O(nNdof logNdof)

⇒ Not as cheap as classical ROM setting but provides nevertheless
fast computations thanks to GPU architectures.
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Part III:

Best n-term barycentric approximation
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Best n-term barycentric approximation
For a given x ∈ X, the best (Xx

n,Λx
n) are characterized as follows:

Λx
n ∈ argmin

ΛN ∈ΣN∩∆n
N

W 2
2

(
y(x),Bar(ΛN ,Ytrain

N )
)

where {
∆n
N := {v ∈ RN : ‖v‖0 ≤ n}

ΣN := {v ∈ RN : vi ≥ 0, ∑N
i=1 vi = 1}

We obtain a sparse vector

Λx
n = (0, . . . , 0,λix

1
, 0, . . . , 0,λixn , 0, . . . , 0)T ∈ RN

with non-zero entries at coordinates

{ix1 , . . . , ixn }.

We de�ne

Xx
n := {xix

1
, . . . , xixn } ⊂ Xtrain

N , and Yx
n := {y(xix

1
), . . . , y(xixn )} ⊂ Ytrain

N

The best n-term barycentric approximation of y(x) is

Bar(Λx
n,Yx

n)
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Best n-term barycentric approximation

Some remarks on the optimization problem:

Λx
n ∈ argmin

ΛN ∈ΣN∩∆n
N

W 2
2

(
y(x),Bar(ΛN ,Ytrain

N )
)

Vaguely reminiscent of Compressed Sensing problems posed on
Y = RN of the type:

min
z∈RN

‖z‖0 s.t. Az = yobs

Di�cult optimization problem:

Nonconvex
Possibly plenty of local minima, non-unique minimizer.
`1-regularization not possible because in con�ict with ΣN .

We have built a minimization algorithm that delivers satisfactory
results.
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Best n-term barycentric approximation: Proximal Algorithm

Algorithm 1: Sparse projection on the simplex

Data: Target y ∈ P2(Ω), Training set Ytrain
N , sparsity degree n

Result: Λy
N ∈ ΣN ∩ ∆n

N .

Initialize Λ ∈ ΣN ;

repeat

Gradient step: Λ← Λ− τ∇ΛW
2
2
(y ,Bar(Λ,Ytrain

N ));

Projection into ∆n
N ∩ ΣN : Λ← P∆n

N∩ΣN
(Λ)

until convergence;

Algorithm is a generalization of CoSamp and re�nements such as GSSP
(see [NT09, KBCK13, BRB13]).

We can build variants in which we learn adaptively the sparsity degree n.

Rigorous convergence analysis seems out of reach due to nonconvexity.
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Experiment with functions from a Burgers' equation

N = 100 and Ytrain
N = {y(xi )}Ni=1

contains solutions of a Burgers'
equation.
Target function is a barycenter with support 2 from training set.

2

4

6

8

ref

2 4 6 8

2

4

6

8

fit

0.0000

0.0008

0.0016

0.0024

0.0032

0.0040

0.0048

0.0056

0.0064
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Experiment with functions from a Burgers' equation

Target function is a barycenter with support 2 from training set.
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Experiment with functions from a Burgers' equation

Target function is a barycenter with support 10 from training set.

Some functions of the target barycenter are probably redundant.
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Error Landscape Λn → W2(y ,Bar(Λn,Yn))

As n increases, there are more and more local minima.

Ref: �Wasserstein model reduction approach for parametrized �ow
problems in porous media�
(T. Blickham, B. Battisti, G. Enchery, V. Ehrlacher, D. Lombardi,
O. Mula, submitted to ESAIM Proc.)
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Experiment with functions from a Burgers' equation

How do we perform with respect to nearest neighbors?
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Part IV:

How to use the best n-term barycentric approximation for
model reduction?
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Back to Model Reduction

For a given x ∈ X, computing Xx
n and Λx

n is based on solving

Λx
n ∈ argmin

ΛN ∈ΣN∩∆n
N

W 2
2

(
y(x),Bar(ΛN ,Ytrain

N )
)

The computation requires y(x) so we can only use it for x ∈ Xtrain
N .

For a general x ∈ X, we cannot assume that y(x) is given. We need
an extra approximation step.
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Current strategy

O�ine: For x ∈ Xtrain
N :

Compute Xx
n,Yx

n,Λx
n.

Find local Euclidean embedding:

M(x) ∈ argmin
M≥0

∑
y (z)∈Nn(y (x))

|(x − z)TM(x − z)−W 2
2 (y(x), y(z))|2

Online: Given x ∈ X:
Find the n nearest neighbors of y(x) by using the Euclidean
embedding. Evaluate

(z − x)TM(z)(z − x) ≈ W 2
2 (y(x), y(z)), ∀z ∈ Xtrain

N

and pick the n smallest values to de�ne the neighbors.

For the neighbors y(z) ∈ Nn(y(x)), we have Λz
n,Xz

n,Yz
n.

We want to use this information to de�ne an interpolation strategy
for the weights. [ongoing step]
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Interpolation strategy

∑
y (z)∈Nn(y (x))

|W 2
2 (y(x), y(z))−W 2

2 (b, y(z))|2

≈ ∑
y (z)∈Nn(y (x))

|(x − z)TM(z)(x − z)−W 2
2 (b, y(z))|2

So we look for

min
Λn∈Σn

∑
y (z)∈Nn(y (x))

|(x− z)TM(z)(x− z)−W 2
2 (Bar(Λn,Nn(y(x))), y(z))|2
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