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Introduction

We want to solve the time dependant pde

LW =Ff in R x RY,
W(,0)=W, inR,

by a Schwarz Waveform Relaxation Method (SWR).
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Linearized Viscous Shallow Water equations

Linearized adimensionalized equations LW = F are

ou 1 0h 1 8%u

9t T Frox Reoe | OnEx(04e)

oh  Ju
E—i—&—o on R x (0, 4+00)
u(+,0) = uo, h(-,0) = ho on R

where W = (u, h), Fr = U/c, Re = UL/v.
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SWR Algorithm with Robin boundary conditions

1 ou 1
If Bu, h) = — =24 4 = i
B(u, h) e + Fr2h the DD algorithm reads
LW =F on ©; x (0,400),
(B(uf ™ ™) = Aug™)(0,8) = (B(ug, h3) — Au5)(0,1). (1)

uerl(')O) = Uo, thrl('aO) = ho

LW =F on Qs x (0, 4+00),
(Bug™, h3 ™) + Aug™)(0. 1) = (B(uf, hY) + Aup)(0,8),  (2)
ungl('vO) = Uo, h5+1(0) = ho

How to choose A such that the convergence is fast?
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SWR Algorithm with Robin boundary conditions

1 Ou 1
If B(u,h) = —— 22 + ~_p i
B(u, h) e Ox + % the DD algorithm reads
LW =0 on ] —o0,0[x(0, T),

(B, ) — A )(0,6) = (Bl h) — A0, ), (1)
uerl('v O) = 0) hf+1('70) =0

LWy =0 on 10, +00[x (0, T),
(B(ug ™, h3 ™) + Aug™)(0,8) = (B(uf, hT) + Auf)(0, 1),  (2)
U5+1(-7 0) = 07 thrl('? O) =0

How to choose A such that the convergence is fast?
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SWR Algorithm with Robin boundary conditions

If B(u, h) = g— = h the DD algorithm reads
Lsw W =0 on | — o0,0[x(0, T),
(B(u*, h™h) — pu™)(0,1) = (B(u3. h3) —pu3)(0.1). (1)

uerl('vO) =0, hf+1('70) =0

LswWgtt =0 on 10, +-00[x (0, T),
(B(ug™, it + puz™)(0,8) = (B(uf, i) +puf)(0,1),  (2)
Ug+1(~, 0) - 07 hg+l(’7 0) =0

In this talk A = p /d with p € R to be chosen.
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Solving in Laplace variables

We use the Laplace transform

+o00
i(s) = /0 u(t)e *tdt.

The SW equations LW = 0 in Laplace variables are

Ou 1 0h 1u_ g_(i_ki)@:
ot Fr29x Reodx? Re = sFr?’ox?
oh  Ou _ A 100

ot Tox ° ~ h="%ox
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Solving in Laplace variables

We use the Laplace transform

+o00
i(s) = /0 u(t)e *tdt.

The SW equations LW = 0 in Laplace variables are

Application to the 2D-case

Qu, 1 0h_ 10w _ B (L)%l

Ot  Fr2ox Redx? Re = sFr2’9x?

oOh  Ou A 1 90

o s Ox

The solution of the algorithm is
LAY =0 in R x RY { 0 (x, ) = am(s)e
L(us™ hy) =0 inRT xRF 00t (x, 5) = rL(s)eHEx

sFrv/Re
where p(s) =
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Solving in Laplace variables

We have obtained
07(x,s) = a"(s)e" and 03 (x,s) = B"(s)e ">,

The transmission conditions at {0} x (0, +o0) are

1 n+1 n+1 n+1 1 P n
R 8 + ﬁh puy = — ?edXUZ + Fr2 h2 — puUy
1 1 n—1 1 n—1 n—1
" Re 5 Oxti3 + ,_-2h2+PU2 = _ﬁax 1 +ﬁhl + pu;y
In Laplace variables they become
1 1 ~An+1 An+1 _ 1 1 An An
Re © Frs )a*"l I = (et gy )06+ Pl
1 1 1 o o
(Re + Fe )d 4+ pn = *(Rfe s YO0 + pi Tt
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Solving in Laplace variables

Obtaining the convergence factor
We have the relation

0771(0,5) == p(p, 5)a7 (0, 5)

with

‘\//w—i- p‘ P2 — V2DV A+ VA + w2 + VAZ 2

Viw+A+p
where A = Re/Fr? et p = v/ Rep.

Optimizing the convergence factor

min  max  p(p,w).
PGR WE[UJmin;wmax]

P2+ V2pVA+ VA + w2 4+ VA2 + 2
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Remark on a limit case

We consider the heat equation

ou_Fu_,
ot Uox2

Theorem (M.J. Gander, L. Halpern, 2003)

The solution of the min-max problem involving the convergence factor
(case A=0)

2
Viw—p
Pheat(P»W) = m

is p* = (w,,,;,,wmax)l/ * and pheat(p*,w) equi-oscillates between wp, and
Wmax- We have the asymptotic result

Pheat(P*a W) =1- CAtY/* + O(A1/4).
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Optimizing the convergence factor

Physical and numerical data:  wmin = 5, Wmax = gz =~ 2011,
A=1.

p=3

0.3 max=0.8278

0 500 1000 1500 2000 2500
w

Figure: w — p(p,w)
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Optimizing the convergence factor

Physical and numerical data:  wpj, = % Wmax = % ~ 2011,

A=1.

p=7

0.8
0.7
0.6

p(ps

0.4
0.3 max=0.64533
0.2

0 500 1000 1500 2000 2500
w

Figure: w — p(p,w)
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Optimizing the convergence factor

Physical and numerical data:  wmin = 5, Wmax = gz =~ 2011,
A=1.

p=8.7683

0.3 max=0.57927

0 500 1000 1500 2000 2500
w

Figure: w — p(p,w)
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Optimizing the convergence factor

Physical and numerical data:  wpj, = % Wmax = % ~ 2011,

A=1.

p=11

0.8
0.7
0.6

p(ps

0.4
0.3 max=0.64717
0.2

0 500 1000 1500 2000 2500
w

Figure: w — p(p,w)
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Optimizing the convergence factor

Physical and numerical data:  wpj, = % Wmax = % ~ 2011,
A = 1000.

=4 =47 =
0.1 p=40 0.1 P 0.1 p=58
\/
0.08 0.08 0.08
—0.06 —0.06 —0.06
3 3 3
=0.04 max=0.088139 { = 0.04 max=0.081055 | < 0.04 max=0.32675
0.02 0.02 0.02
0 0 0
[ 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
w w w

Figure: w — p(p,w)

Conclusion



Optimization of the convergence factor
Let g; et g, defined by

q1 = (A2 + wrznax)l/4

1/2
9 = <A+ \JA+ A2+ w2 A+ \/A2+w%m>

Theorem (M. J. Gander, V.M. 2022)

Optimizing the convergence factor has a unique solution:
p" = min(qy, q2),
If g1 < g then the optimized solution satisfies

pTel%we[:;:i??‘(Umax] p(po, w) = p(qh wmax)-

If g1 > g» then the optimized solution satisfies

min max p(p,w) = p(qz,wmin) = p(Q2,Wmax)~
PER WE[Wmin,Wmax]
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Dependance of g; and g, w.r. to the parameters

If g1 > g2 p* = g2 (equi-oscillation)
If g1 < g2 p* = g1 (no equi-oscillation)

60 6
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50
° —q1
40 45 — g
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30 —q1 35
—Qq2
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15
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0 200 400 600 800 1000
A Wnaz
. . ™
g1, g as functions of A g1, g as functions of wya =

At
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Case At =0

Corollary 1
If At — 0 then the optimized parameter behaves like

1/4
* o~ CAEVA Co= - (Re + \/Re? + w2, Frt)l/4
1% ) p \/@( min )
and the convergence factor like

C
min max p(p,w)=1-— 2\/2Re\/—'iAt1/4 + o(AtH*)
T

p€[0,+00[ we[wmimwmax]

Conclusion

Proof:

~w
< s Case 1 > qo.

g = Cwmax
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Case Re — +00

Corollary 2
If Re — 400 then the optimized parameter behaves like

s L
~ Fr
and the convergence factor behaves like

p

2 4
. Whas Fr
min max W) o —max

PE[0,+00[ WE[Wmin,Wmax] p(p w) 16 Re?

Proof:

qL =
Case 2 > q1.
g2~ V3
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Influence of the time interval

Physical and numerical data
Ax =156-10"% At=5-10"3
u(x,t) =0, h(x,t) =0
u3(0,-) = rand(—1,1)

10°
10°
10°®
s 8 o8
I i}
10-10
10710
10-12
0 2 4 6 8 10 12 2 4 6 8
Iterations Iterations

T=0.2 T=2
Error versus iterations

Conclusion
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How sharp is the optimized parameter?

Physical and numerical data
T=2
Ax=156-10"% At=5-10"3
u(x,t) =0, h(x,t) =0
u3(0,-) = rand(—1,1)

30

- n n
o o (5]

number of iterations

-
o

Number of iterations needed to reach an error of 1071,
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Effect of p for a sum of frequencies

T=2
Physical and numerical data Ax =1.56-10"% At=1.6-10"3
u3(0,-) = rand(—1,1)

p=07p" - p=0.7p"
o
o
0
o o m w0 o T o T
p=08p"
o o wn w0 won T o e w0 b o m o o g W T w5 W 2
p=0.9p" e p=0.9p
o sk 1
o
os| K
02 y L L L L L L L L L
o o m w0 o T o e w0 o o o o o T g o 0 T 2
P=p o p=p
N T T T T T T T T T
o sk 1
os| K
T e w e T e e w0 o m o o : e w W e 2

Convergence Factor Error u®(0,t) w.rit. t
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Effect of p for a sum of frequencies

T=2
Physical and numerical data: Ax =1.56-10"% At =1.6-10"3
v3(0,-) = rand(—1,1)

p=11p"

o p=11p*
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o os| ]
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p=13p . b= L3p*
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Optimization of the convergence factor

2D Linear Viscous Shallow Water equations

The equations with (u, v) the velocity field, e = U/fL the Rossby number

ou 1 Oh 1 1
ot " FPox Re
ov 1 Oh 1
ot TF20y  Re
oh Ou Ov

ot Tox Tay
The transmission boundary conditions

1 Ou 1

S oh 1, frou
B(u,v,h) = AN(u, v, h) = Rle gx Fr —| Fr 2Re Ot
_ -9 qv
Re 0x

with g to be chosen

ical results Application to the 2D-case Conclusion
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Conclusion

Application to the 2D-case
Optimizing the convergence factor

0.95 +
0.9+
0.85

0.8 4

0.75

Laplace in time t — w

Fourier in space y — 1




Optimizing the convergence factor

Lemma (M.J. Gander, V.M. 2022)

The convergence factor for the algorithm with q = AK 9_ « >0, behaves
yOt
at n = Nmin like

. 8|7 min| Ay*

Ay?).
Re rq + O(Ay™)

,D(q, Nmin, 0) =1

Lemma (M.J. Gander, V.M. 2022)

The convergence factor of the algorithm with q = kq/Ay®, o > 0,
behaves at ) = Nmax = T Jike
Ay

s 8 Re
T o)=1-2CApy...
(g, NG ) Py
[Jmin|TFr 1

Choose q = ReZ Ay

ical results Application to the 2D-case Conclusion
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Numerical Results
Physical and numerical data o
Q = [0, 15000 km] x [—1500 km, 1500 km]
F = (2.5-107%(1 + tanh((3000 — x)/300) N/m?,0) "o
v=500m?/s"t, f=2-10""m 1s7?

Iteration 1
Iteration 3
Iteration 10
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Conclusion

e 1D equations
A good optimized parameter can be designed for large time T.

e 2D equations
We need to mix physical informations and optimization results.
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