
Introduction Optimization of the convergence factor Two approximations Numerical results Application to the 2D-case Conclusion

Optimized Schwarz Waveform Relaxation
Method for 1D Shallow Water equations

veronique.martin@u-picardie.fr
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Introduction

We want to solve the time dependant pde{
LW = f in R× R+,

W (·, 0) = W0 in R,

by a Schwarz Waveform Relaxation Method (SWR).
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Introduction

We want to solve the time dependant pde{
LW = f in R× R+,

W (·, 0) = W0 in R,

by a Schwarz Waveform Relaxation Method (SWR).
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Linearized Viscous Shallow Water equations

Linearized adimensionalized equations LW = F are
∂u

∂t
+

1

Fr 2

∂h

∂x
− 1

Re

∂2u

∂x2
= f on R× (0,+∞)

∂h

∂t
+
∂u

∂x
= 0 on R× (0,+∞)

u(·, 0) = u0, h(·, 0) = h0 on R

where W = (u, h), Fr = U/c, Re = UL/ν.

-1 -0.5 0 0.5 1

0

0.5

1
u

-1 -0.5 0 0.5 1

0.8

1

1.2

h

-1 -0.5 0 0.5 1

0

0.5

1
u

-1 -0.5 0 0.5 1

0.8

1

1.2

h

-1 -0.5 0 0.5 1

0

0.5

1
u

-1 -0.5 0 0.5 1

0.8

1

1.2

h



Introduction Optimization of the convergence factor Two approximations Numerical results Application to the 2D-case Conclusion

SWR Algorithm with Robin boundary conditions

If B(u, h) = − 1

Re

∂u

∂x
+

1

Fr2
h the DD algorithm reads


LW n+1

1 = F on Ω1 × (0,+∞),

(B(un+1
1 , hn+1

1 )− Λun+1
1 )(0, t) = (B(un2 , h

n
2)− Λun2 )(0, t),

un+1
1 (·, 0) = u0, h

n+1
1 (·, 0) = h0

(1)


LW n+1

2 = F on Ω2 × (0,+∞),

(B(un+1
2 , hn+1

2 ) + Λun+1
2 )(0, t) = (B(un1 , h

n
1) + Λun1 )(0, t),

un+1
2 (·, 0) = u0, h

n+1
2 (·, 0) = h0

(2)

How to choose Λ such that the convergence is fast?
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SWR Algorithm with Robin boundary conditions

If B(u, h) = − 1

Re
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+
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Fr2
h the DD algorithm reads


LW n+1

1 = 0 on ]−∞, 0[×(0,T ),

(B(un+1
1 , hn+1

1 )− Λun+1
1 )(0, t) = (B(un2 , h

n
2)− Λun2 )(0, t),

un+1
1 (·, 0) = 0, hn+1

1 (·, 0) = 0

(1)


LW n+1

2 = 0 on ]0,+∞[×(0,T ),

(B(un+1
2 , hn+1

2 ) + Λun+1
2 )(0, t) = (B(un1 , h

n
1) + Λun1 )(0, t),

un+1
2 (·, 0) = 0, hn+1

2 (·, 0) = 0

(2)

How to choose Λ such that the convergence is fast?
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SWR Algorithm with Robin boundary conditions

If B(u, h) = − 1

Re

∂u

∂x
+

1

Fr2
h the DD algorithm reads


LSWW n+1

1 = 0 on ]−∞, 0[×(0,T ),

(B(un+1
1 , hn+1

1 )− pun+1
1 )(0, t) = (B(un2 , h

n
2)− pun2 )(0, t),

un+1
1 (·, 0) = 0, hn+1

1 (·, 0) = 0

(1)


LSWW n+1

2 = 0 on ]0,+∞[×(0,T ),

(B(un+1
2 , hn+1

2 ) + pun+1
2 )(0, t) = (B(un1 , h

n
1) + pun1 )(0, t),

un+1
2 (·, 0) = 0, hn+1

2 (·, 0) = 0

(2)

In this talk Λ = p Id with p ∈ R to be chosen.
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Solving in Laplace variables

We use the Laplace transform

û(s) =

∫ +∞

0

u(t)e−stdt.

The SW equations LW = 0 in Laplace variables are
∂u

∂t
+

1

Fr 2

∂h

∂x
− 1

Re

∂2u

∂x2
= 0

∂h

∂t
+
∂u

∂x
= 0 ⇒


sû − (

1

Re
+

1

sFr2
)
∂2û

∂x2
= 0

ĥ = −1

s

∂û

∂x

The solution of the algorithm is{
L(un+1

1 , hn+1
1 ) = 0 in R− × R+

L(un+1
2 , hn+1

2 ) = 0 in R+ × R+

{
ûn+1

1 (x , s) = αn+1(s)eµ(s)x

ûn+1
2 (x , s) = βn+1(s)e−µ(s)x

where µ(s) =
sFr
√
Re√

sFr 2 + Re
.
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sû − (

1

Re
+

1

sFr2
)
∂2û
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.
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Solving in Laplace variables

We have obtained

ûn
1 (x , s) = αn(s)eµ(s)x and ûn

2 (x , s) = βn(s)e−µ(s)x .

The transmission conditions at {0} × (0,+∞) are
− 1

Re
∂xu

n+1
1 +

1

Fr 2
hn+1

1 − pun+1
1 = − 1

Re
∂xu

n
2 +

1

Fr 2
hn

2 − pun
2

− 1

Re
∂xu

n
2 +

1

Fr 2
hn

2 + pun
2 = − 1

Re
∂xu

n−1
1 +

1

Fr 2
hn−1

1 + pun−1
1

In Laplace variables they become

(
1

Re
+

1

Fr 2s
)∂x û

n+1
1 + pûn+1

1 = (
1

Re
+

1

Fr 2s
)∂x û

n
2 + pûn

2

− (
1

Re
+

1

Fr 2s
)∂x û

n
2 + pûn

2 = − (
1

Re
+

1

Fr 2s
)∂x û

n−1
1 + pûn−1

1
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Solving in Laplace variables

Obtaining the convergence factor
We have the relation

ûn+1
1 (0, s) := ρ(p, s)ûn−1

1 (0, s)

with

ρ(p, ω) =

∣∣∣∣√iω + A− p√
iω + A + p

∣∣∣∣2 =
p2 −

√
2p
√
A +
√
A2 + ω2 +

√
A2 + ω2

p2 +
√

2p
√
A +
√
A2 + ω2 +

√
A2 + ω2

where A = Re/Fr2 et p =
√
Rep.

Optimizing the convergence factor

min
p∈R

max
ω∈[ωmin,ωmax ]

ρ(p, ω).
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Remark on a limit case

We consider the heat equation

∂u

∂t
− ν ∂

2u

∂x2
= 0.

Theorem (M.J. Gander, L. Halpern, 2003)

The solution of the min-max problem involving the convergence factor
(case A = 0)

ρheat(p, ω) =

∣∣∣∣∣
√
iω − p√
iω + p

∣∣∣∣∣
2

is p? = (ωminωmax)1/4 and ρheat(p
?, ω) equi-oscillates between ωmin and

ωmax . We have the asymptotic result

ρheat(p
?, ω) = 1− C∆t1/4 + o(∆1/4).
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Optimizing the convergence factor

Physical and numerical data: ωmin = π
2 , ωmax = π

dt ' 2011,
A = 1.
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Figure: ω → ρ(p, ω)
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Optimizing the convergence factor

Physical and numerical data: ωmin = π
2 , ωmax = π

dt ' 2011,
A = 1.
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Optimizing the convergence factor

Physical and numerical data: ωmin = π
2 , ωmax = π

dt ' 2011,
A = 1.
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Optimizing the convergence factor

Physical and numerical data: ωmin = π
2 , ωmax = π

dt ' 2011,
A = 1.
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Optimizing the convergence factor

Physical and numerical data: ωmin = π
2 , ωmax = π

dt ' 2011,
A = 1000.
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Optimization of the convergence factor
Let q1 et q2 defined by

q1 = (A2 + ω2
max)1/4

q2 =

(
A +

√
A +

√
A2 + ω2

min

√
A +

√
A2 + ω2

max

)1/2

Theorem (M. J. Gander, V.M. 2022)

Optimizing the convergence factor has a unique solution:
p? = min(q1, q2),
If q1 < q2 then the optimized solution satisfies

min
p0∈R

max
ω∈[ωmin,ωmax ]

ρ(p0, ω) = ρ(q1, ωmax).

If q1 > q2 then the optimized solution satisfies

min
p∈R

max
ω∈[ωmin,ωmax ]

ρ(p, ω) = ρ(q2, ωmin) = ρ(q2, ωmax).
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Dependance of q1 and q2 w.r. to the parameters

If q1 > q2 p? = q2 (equi-oscillation)
If q1 < q2 p? = q1 (no equi-oscillation)
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Case ∆t → 0

Corollary 1

If ∆t → 0 then the optimized parameter behaves like

p? ' Cp∆t−1/4,Cp =
π1/4

√
ReFr

(Re +
√
Re2 + ω2

minFr
4)1/4

and the convergence factor like

min
p∈[0,+∞[

max
ω∈[ωmin,ωmax ]

ρ(p, ω) = 1− 2
√

2Re
Cp√
π

∆t1/4 + o(∆t1/4)

Proof:
q1 ' ω1/2

max

q2 ' Cω
1/4
max

Case q1 > q2.
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Case Re → +∞

Corollary 2

If Re → +∞ then the optimized parameter behaves like

p? ' 1

Fr

and the convergence factor behaves like

min
p∈[0,+∞[

max
ω∈[ωmin,ωmax ]

ρ(p, ω) ' ω2
maxFr

4

16Re2
.

Proof:
q1 '

√
A

q2 '
√

3A
Case q2 > q1.
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Influence of the time interval

Physical and numerical data
∆x = 1.56 · 10−4,∆t = 5 · 10−3

u(x , t) = 0, h(x , t) = 0
u0

2(0, ·) = rand(−1, 1)
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How sharp is the optimized parameter?

Physical and numerical data
T = 2
∆x = 1.56 · 10−4,∆t = 5 · 10−3

u(x , t) = 0, h(x , t) = 0
u0

2(0, ·) = rand(−1, 1)
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Effect of p for a sum of frequencies

Physical and numerical data
T = 2
∆x = 1.56 · 10−4,∆t = 1.6 · 10−3

u0
2(0, ·) = rand(−1, 1)
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Effect of p for a sum of frequencies

Physical and numerical data:
T = 2
∆x = 1.56 · 10−4,∆t = 1.6 · 10−3
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2D Linear Viscous Shallow Water equations

The equations with (u, v) the velocity field, ε = U/fL the Rossby number

∂u

∂t
+

1

Fr2

∂h

∂x
− 1

Re
4u − 1

ε
v = F1,

∂v

∂t
+

1

Fr2

∂h

∂y
− 1

Re
4v +

1

ε
u = F2,

∂h

∂t
+
∂u

∂x
+
∂v

∂y
= 0.

The transmission boundary conditions

B(u, v , h)− Λ(u, v , h) =

 −
1

Re

∂u

∂x
+

1

Fr2
h

− 1

Re

∂v

∂x

−
 1

Fr
u +

Fr

2Re

∂u

∂t
qv


with q to be chosen
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Optimizing the convergence factor
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Optimizing the convergence factor

Lemma (M.J. Gander, V.M. 2022)

The convergence factor for the algorithm with q =
κq

∆yα
, α > 0, behaves

at η = ηmin like

ρ(q, ηmin, 0) = 1− 8|ηmin|
Re

∆yα

κq
+O(∆y2α).

Lemma (M.J. Gander, V.M. 2022)

The convergence factor of the algorithm with q = κq/∆yα, α > 0,

behaves at η = ηmax =
π

∆y
like

ρ(q,
π

∆y
, 0) = 1− 8

3

Re

πFr
∆y + · · ·

Choose q =
|ηmin|πFr

Re2

1

∆y
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Numerical Results

Physical and numerical data
Ω = [0, 15000 km]× [−1500 km, 1500 km]
F = (2.5 · 10−2(1 + tanh((3000− x)/300) N/m2, 0)
ν = 500m2/s−1, f = 2 · 10−11m−1s−1
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Conclusion

• 1D equations
A good optimized parameter can be designed for large time T .

• 2D equations
We need to mix physical informations and optimization results.
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