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discretise: e.qg.

k+1

T

y

ODE IVP

y' =ay+ f, y(to) = Yo

= Oay" ' + (1 — 0)ay” + f*, y°

k=0,1,...,2 with £ = T gives

— Yo,
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where the £ x £ coefficient matrix B is

b=1—a0r,c=—-1—a(l1 —0)T.

b
c b
C

b

C

b

l.e. B is a bidiagonal Toeplitz (constant diagonal) matrix.

e forward substitution — sequential—causality
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lterative methods for Bx = ¢, B ¢ R"™*":

From xo = 0 (typically) generate {x1,x2,...,Xk,...} USING
one matrix x vector product at each iteration:
Bc,B(Bc),...,BXc,... sothat

xiespan{c} xaoespanic, Bc}. . ., xkespan{c, Bc,.. ., Bk_lc},. ..
= Krylov subspace methods generally described by:
n« = pk(B)ro, n¢ =c— Bxy, pk € I, pk(0) =1
so if B = XAX~! then
Incll < 1IXI k(A IXH] ol

and if B = BT so that X—! = XT then this bound on
convergence in || - |2 depends only on eigenvalues

Well distributed (clustered) eigenvalues =- fast
convergence for symmetric matrices.
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All-at-once system

Consider vy’ = ay, y(0) =yo i.e. f =0 = all-at-once
system

b 17yt~ T f0 —cy? ”
c b y2 Tfl
By=| ¢ b y' | = Tf? = f,
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But consider y’ = ay, y(0) = yo

All-at-once system

all-at-once system

-

c b

l.e. f=0=

0
0

0

_O—cyo_

l.e. f only its first entry non-zero =- with zero initial guess

Y1 € Span{

X
0
0

b, va € span{

X
0
0

X
X
0
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Y € span {

- O O O X

0

- O O X X

0

X
0

0

but solution is an exponential (non-zero for every time
step)=- need ¢ iterations.

Precisely: exact solution up to k7 at kt" iteration, zero for

all other time steps: causality

thus solution for all £ time-steps only at £t* iteration

NOT a parallel-in-time method!!
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Iterative methods for linear systems
This is true for any of the available iterative methods:

(For self-adjoint problems/symmetric matrices, iterative
methods of choice exist: conjugate gradients for Symmetric
Positive Definite matrices, MINRES otherwise)

and any of the many possible methods for non-self-adjoint

problems/nonsymmetric matrices: GMRES , BICGSTAB ,
LSQR , QMR, IDR, ...
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Iterative methods for linear systems
This is true for any of the available iterative methods:

(For self-adjoint problems/symmetric matrices, iterative
methods of choice exist: conjugate gradients for Symmetric
Positive Definite matrices, MINRES otherwise)

and any of the many possible methods for non-self-adjoint
problems/nonsymmetric matrices: GMRES , BICGSTAB ,
LSQR, QMR , IDR, ...

But it is well know that for almost all systems we need
preconditioning

Preconditioner P such that
‘P~1Bx = P~1pb”

has much faster convergence with the appropriate iterative
methOd thaﬂ BX — b Luminy, 2022 — p.8/27



If B is a real Toeplitz matrix then

All-at-once system

A practical and guaranteed preconditioning approach: use
Pestana & W, 2015:

i apo a_i al_n,' 0 0 0

al ap a_i 0o - 1

. ai ao 0 0

° ° a'_]_ ° °

 An—1 ai apgp _ _:1 0 0
B

IS the real symmetric (Hankel) matrix

al—n

a—i
ao

a_1
ao
aq
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Thus MINRES can be robustly applied to BY — it is
symmetric but generally indefinite — and its convergence
will depend only on eigenvalues.

BUT preconditioning? — needs to be symmetric and positive
definite for MINRES

Fortunately it is well known that many Toeplitz matrices are
well approximated by related circulant matrices, C

(Strang, 1986, Chan, 1988, Chan, 1989, Tyrtishnikov, 1996/7) which
are diagonalised by an FFT in O(n log n) work: C = F*AF,

For many symmetric Toeplitz matrices we have that the
Strang or Optimal (Chan) circulant C satisfy

CB=I1+R+E

where R is of small rank and E is of small norm
=-eigenvalues clustered around 1 except for a few outliers
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(1

For example, the Strang circulant for the standard Toeplitz

matrix (as above) is

@ a1 “-lz) L a2 o1
ai apo a_—_i oo a L%J aLnT—1J a9
“uo o 13
“13] a ¢
o= “— 3]
: “3) @0 01
o2 “lmt) sl “uod0 @
a_ a_—_9 a I—%l aL%J oo aq apo
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To ensure a symmetric and positive definite preconditioner
for BY just use

[C| = F*|A[F
which is real symmetric and positive definite
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To ensure a symmetric and positive definite preconditioner
for BY just use

[C| = F*|A[F
which is real symmetric and positive definite

Theorem (Pestana & W, 2015)
IC|™'BY =J+R+E

where J is real symmetric and orthogonal with eigenvalues
+1, R is of small rank and E is of small norm

= guaranteed fast convergence because MINRES con-

vergence only depends on eigenvalues which are clustered

around +1 except for few outliers!
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To ensure a symmetric and positive definite preconditioner

for BY just use

Theorem (Pestana & W, 2015)

[C| = F*|A[F
which is real symmetric and positive definite

IC|™'BY =J+R+E

where J is real symmetric and orthogonal with eigenvalues

For the ODE problem (= = 0.2, a = —0.3,0 = 0.8):

+1, R is of small rank and E is of small norm

¢ k(B) | lterations
10 10.474 4
100 | 30.852 4
1000 | 33.887 4
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Multistep method: BDF2

k+1 4_ k 1. k—1
y'tt — 3y + 3y 2 2
3 3 — _ayk—|—1 + —fk+1,
T 3 3

with y® = yo and y—! = y_; leads to the monolithic or
all-at-once system

- - -2 4 1. -1 7
y! §Tf;‘|-§y01—§y !
Yz §7'f2—§y0

B Yy — %ng
_YE_ ngE
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where the coefficient matrix B is

1 — %CLT
4 2
—3 1 — gaT
1 4 1 2
3 3 — 347
1 4 2
i 3 —3 1—3a7
Same approach:
¢ k(B) | lterations

10 29.33 6
100 | 67.49 6
1000 | 67.67 6
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This gives a parallel-in-time method if all components are
efficiently implemented in parallel.

Moreover we observe that GMRES with just C as
preconditioner gives even better convergence (but no
proof!)
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Preconditioning

Note that the circulant preconditioner here simply
represents preconditioning the Initial Value Problem

y' = ay + f, y(0) = yo

with the nearby periodic problem

vy =ay+f, y(0)=y(T)

for which Fourier technology gives rapid (and parallel)
application

This approach also applies for systems of ODEs and for
time-dependent PDEs = block Toeplitz/block circulant
matrices for which standard parallel technologies can be
applied in space and the periodic preconditioning only
applied in time
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PDEs: diffusion problem

ug = Au+f inQx(0,T], Q C R?orR?,
u = g on 0f,
u(x,0) = wug(x) att =0

Discretize - finite elements, mesh size h, and n spatial dofs:

U — Up_—
ML ku =16, k=1,...,%,
T

or

_AO ] _111_ _Mu0—|—7'f1_

A1 Ao u9 717

ABEX = - " : — : ?

i Al A()_ | Uy | i ng i

where Ag = M + 7K i1s symmetric positive definite and
A]_ — _M IS SymmetrlC. Luminy, 2022 — p.18/27



We use the block circulant preconditioner

- Aq A, -
A1 Ap
PBE := .

A1 Ao |

Theorem (McDonald, Pestana & W, 2018)
PrrApg is diagonalisable, has (£ — 1)n eigenvalues of 1
and n eigenvalues which cluster around 1 for small h.

= fast and £-independent convergence (with flip to be
guaranteed) of the appropriate iterative methods
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2nd part of talk: Incompressible Navier-Stokes

T x01) + (wOx,) - V)l 1
< —,u,V2U_(X, t) + Vp(x,t) = f(x,t)
\ V-.u(x,t) = 0

u: velocity, p: pressure, w: wind (= u for full N-S)

Linearisation is time-dependent Stokes equations:

 du
< 57 (01 — pVu(x,t) + Vp(x, 1)

\ V ° U(X, t) — O

f(x,t)
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Discretize: Galerkin finite elements in space, Backwards
Euler in time, constant time-step At

9

1
{AtM (0 — u* 1) + pA* + W, 0”4+ BTPF = £k
BuF =0

k=1,...,0with LAt = T.

To simplify notation define the time-dependent
advection-diffusion operator

:Fu,k: u,k:_l_llfAu, k:].,...e.

At
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This is thus the system

:Fu,l BT ul fi
B p! 0
_ M., I I
At I
:F-u,f BT u fe
B p* 0 _
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Reorder to

Fu,l BT 111 fl
_Mu .
At -
]:uﬁ BT ue fe
’ S — —
B p! 0
B pt] [0
. - '45,—_/
_ F | BT _ i
A= D
- B ) i

Important point: Saddle-point system: F' is now a
time-dependent (advection-)diffusion operator; something
we might have excellent PinT methods for!!
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Block preconditioning for Saddle-point systems

based on the observation (Murphy, Golub, W (2000))

F BT
B 0
preconditioned by

0 1(4; g ] has 3 distinct eigenvalues

[ T
0 1(5)’ 1?9 ]hadeistinct eigenvalues

where S = BF~1B* (Schur Complement)

= MINRES /GMRES terminates in 3 / 2 iterations

= want approximations F, S = 3/ 2 clusters
= fast convergence

Luminy, 2022 — p.24/27



Preconditioning the All-at-once system

use PinT method for F' and Schur complement
approximation

—1 —1 —1
where

* M, is a block diagonal matrix of pressure mass
matrices

* F, represents time-integration on the pressure space
analogous to F,,

* A, represents a block diagonal matrix of discrete
pressure Laplacians

which is essentially an identical approach to the highly
successful PCD approach for the steady-state problem
Elman, Silvester, W (2014)
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Number of GMRES iterations: driven cavity problem for

t € [0,1] (thus T = 1)

Acht 2—3 2—4 2—5 2—6 2—7
24 |25 (25) 25 (26) |24 (25) |24 (31)]|23 (28)
275 |23 (25) |23 (24) |22 (24) |23 (32) |22 (24)
276 122 (26) | 21 (26) |21 (26) |22 (28) |21 (28)
27 |21 (28) |20 (28) |21 (31)|21 (32)|20 (33
278 |20 (28) |19 (30) |20 (32) |19 (32) |19 (34)

exact subsystem solves (iterative subsystem solves)
e F-1: AIR

M —1: Chebyshev (semi-)iteration

p

F,,: matrix multiply
A1 AMG (BoomerAMG)
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