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ODE IVP

y′ = ay + f, y(t0) = y0

discretise: e.g.

yk+1 − yk

τ
= θayk+1 + (1 − θ)ayk + fk, y0 = y0,

k = 0, 1, . . . , ℓ with ℓτ = T gives

B




y1

y2

y3

...
yℓ




︸ ︷︷ ︸
y

=




τf1 + (1 + a(1 − θ)τ )y0

τf2

τf3

...
τf ℓ




︸ ︷︷ ︸
f

,
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where the ℓ × ℓ coefficient matrix B is




b

c b

c b
. . .

. . .

c b



,

b = 1 − aθτ , c = −1 − a(1 − θ)τ .

i.e. B is a bidiagonal Toeplitz (constant diagonal) matrix.

• forward substitution → sequential—causality
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Iterative methods for Bx = c, B ∈ R
n×n:

From x0 = 0 (typically) generate {x1, x2, . . . , xk, . . .} using
one matrix×vector product at each iteration:

Bc,B(Bc), . . . ,Bkc, . . . so that

x1∈span{c}, x2∈span{c,Bc},. . ., xk∈span{c,Bc,. . .,Bk−1c},. . .

⇒ Krylov subspace methods generally described by:

rk = pk(B)r0, rk = c − Bxk, pk ∈ Πk, pk(0) = 1

so if B = XΛX−1 then

‖rk‖ ≤ ‖X‖ ‖pk(Λ)‖ ‖X−1‖ ‖r0‖

and if B = BT so that X−1 = XT then this bound on
convergence in ‖ · ‖2 depends only on eigenvalues

Well distributed (clustered) eigenvalues ⇒ fast
convergence for symmetric matrices.
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All-at-once system

Consider y′ = ay, y(0) = y0 i.e. f = 0 ⇒ all-at-once
system

By =




b

c b

c b
. . .

. . .

c b







y1

y2

y3

...

yℓ




=




τf0 − cy0

τf1

τf2

...

τf ℓ−1




= f ,
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All-at-once system

But consider y′ = ay, y(0) = y0 i.e. f = 0 ⇒
all-at-once system

By =




b

c b

c b
. . .

. . .

c b







y1

y2

y3

...

yℓ




=




0 − cy0

0
0
...
0




= f ,

i.e. f only its first entry non-zero ⇒ with zero initial guess

y1 ∈ span
{




×
0
0
...
0




}
, y2 ∈ span

{




×
0
0
...
0



,




×
×
0
...
0




}
, . . .
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yk ∈ span
{




×
0
0
0
...
0



,




×
×
0
0
...
0



, . . . ,




×
...
×
0
...
0




}
, k = 1, 2, . . .

but solution is an exponential (non-zero for every time
step)⇒ need ℓ iterations.

Precisely: exact solution up to kτ at kth iteration, zero for
all other time steps: causality

thus solution for all ℓ time-steps only at ℓth iteration

NOT a parallel-in-time method!!
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Iterative methods for linear systems

This is true for any of the available iterative methods:

(For self-adjoint problems/symmetric matrices, iterative
methods of choice exist: conjugate gradients for Symmetric
Positive Definite matrices, MINRES otherwise)

and any of the many possible methods for non-self-adjoint
problems/nonsymmetric matrices: GMRES , BICGSTAB ,
LSQR , QMR , IDR , . . .
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Iterative methods for linear systems

This is true for any of the available iterative methods:

(For self-adjoint problems/symmetric matrices, iterative
methods of choice exist: conjugate gradients for Symmetric
Positive Definite matrices, MINRES otherwise)

and any of the many possible methods for non-self-adjoint
problems/nonsymmetric matrices: GMRES , BICGSTAB ,
LSQR , QMR , IDR , . . .

But it is well know that for almost all systems we need
preconditioning

Preconditioner P such that

“P−1Bx = P−1b”

has much faster convergence with the appropriate iterative
method than Bx = b. Luminy, 2022 – p.8/27



All-at-once system
A practical and guaranteed preconditioning approach: use
Pestana & W, 2015:
If B is a real Toeplitz matrix then




a0 a−1 · · a1−n

a1 a0 a−1 · ·
· a1 a0 · ·
· · · · a−1

an−1 · · a1 a0




︸ ︷︷ ︸
B




0 0 · 0 1
0 · 0 1 0
· 0 1 0 ·
· · · · ·
1 0 · 0 0




︸ ︷︷ ︸
Y

is the real symmetric (Hankel) matrix




a1−n · · a−1 a0

· · a−1 a0 a1

· · a0 a1 ·
a−1 · · · ·
a0 a1 · · an−1
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Thus MINRES can be robustly applied to BY — it is
symmetric but generally indefinite — and its convergence
will depend only on eigenvalues.

BUT preconditioning? – needs to be symmetric and positive
definite for MINRES

Fortunately it is well known that many Toeplitz matrices are
well approximated by related circulant matrices, C
(Strang, 1986, Chan, 1988, Chan, 1989, Tyrtishnikov, 1996/7) which
are diagonalised by an FFT in O(n logn) work: C = F⋆ΛF,

For many symmetric Toeplitz matrices we have that the
Strang or Optimal (Chan) circulant C satisfy

C−1B = I + R + E

where R is of small rank and E is of small norm

⇒eigenvalues clustered around 1 except for a few outliers
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For example, the Strang circulant for the standard Toeplitz
matrix (as above) is




a0 a−1 . . . a
−⌊n

2
⌋ a⌊n−1

2
⌋ . . . a2 a1

a1 a0 a−1 . . . a
−⌊n

2
⌋ a⌊n−1

2
⌋ . . . a2

. . . a1 a0
. . . . . . a

−⌊n

2
⌋

. . .
...

a⌊n

2
⌋ . . .

. . .
. . .

. . . . . .
. . . a⌊n−1

2
⌋

a
−⌊n−1

2
⌋

. . . . . .
. . .

. . .
. . . . . . a

−⌊n

2
⌋

...
. . . a⌊n

2
⌋ . . .

. . . a0 a−1 . . .

a−2 . . . a
−⌊n−1

2
⌋ a⌊n

2
⌋ . . . a1 a0 a1

a−1 a−2 . . . a
−⌊n−1

2
⌋ a⌊n

2
⌋ . . . a1 a0




︸ ︷︷ ︸
C

∈ R
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To ensure a symmetric and positive definite preconditioner
for BY just use

|C| = F⋆|Λ|F

which is real symmetric and positive definite
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To ensure a symmetric and positive definite preconditioner
for BY just use

|C| = F⋆|Λ|F

which is real symmetric and positive definite

Theorem (Pestana & W, 2015)

|C|−1BY = J + R + E

where J is real symmetric and orthogonal with eigenvalues
±1, R is of small rank and E is of small norm

⇒ guaranteed fast convergence because MINRES con-

vergence only depends on eigenvalues which are clustered

around ±1 except for few outliers!
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To ensure a symmetric and positive definite preconditioner
for BY just use

|C| = F⋆|Λ|F

which is real symmetric and positive definite

Theorem (Pestana & W, 2015)

|C|−1BY = J + R + E

where J is real symmetric and orthogonal with eigenvalues
±1, R is of small rank and E is of small norm

For the ODE problem (τ = 0.2, a = −0.3,θ = 0.8):

ℓ κ(B) Iterations

10 10.474 4

100 30.852 4

1000 33.887 4
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Multistep method: BDF2

yk+1 − 4
3
yk + 1

3
yk−1

τ
=

2

3
ayk+1 +

2

3
fk+1,

with y0 = y0 and y−1 = y−1 leads to the monolithic or
all-at-once system

B




y1

y2

y3

...
yℓ




︸ ︷︷ ︸
y

=




2
3
τf1 + 4

3
y0 − 1

3
y−1

2
3
τf2 − 1

3
y0

2
3
τf3

...
2
3
τf ℓ




︸ ︷︷ ︸
f
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where the coefficient matrix B is



1 − 2
3
aτ

−4
3

1 − 2
3
aτ

1
3

−4
3

1 − 2
3
aτ

. . .
. . .

. . .
1
3

−4
3

1 − 2
3
aτ



.

Same approach:

ℓ κ(B) Iterations

10 29.33 6

100 67.49 6

1000 67.67 6
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This gives a parallel-in-time method if all components are
efficiently implemented in parallel.

Moreover we observe that GMRES with just C as
preconditioner gives even better convergence (but no
proof!)
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Preconditioning

Note that the circulant preconditioner here simply
represents preconditioning the Initial Value Problem

y′ = ay + f, y(0) = y0

with the nearby periodic problem

y′ = ay + f, y(0) = y(T )

for which Fourier technology gives rapid (and parallel)
application

This approach also applies for systems of ODEs and for
time-dependent PDEs ⇒ block Toeplitz/block circulant
matrices for which standard parallel technologies can be
applied in space and the periodic preconditioning only
applied in time
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PDEs: diffusion problem

ut = ∆u + f in Ω × (0, T ], Ω ⊂ R
2 or R3,

u = g on ∂Ω,

u(x, 0) = u0(x) at t = 0

Discretize - finite elements, mesh size h, and n spatial dofs:

M
uk − uk−1

τ
+ Kuk = fk, k = 1, . . . , ℓ,

or

ABEx :=




A0

A1 A0

. . .
. . .

A1 A0







u1

u2
...
uℓ


 =




Mu0 + τ f1
τ f2

...
τ fℓ


 ,

where A0 = M + τK is symmetric positive definite and
A1 = −M is symmetric. Luminy, 2022 – p.18/27



We use the block circulant preconditioner

PBE :=




A0 A1

A1 A0

. . .
. . .

A1 A0


 .

Theorem (McDonald, Pestana & W, 2018)

P−1
BEABE is diagonalisable, has (ℓ − 1)n eigenvalues of 1

and n eigenvalues which cluster around 1 for small h.

⇒ fast and ℓ-independent convergence (with flip to be
guaranteed) of the appropriate iterative methods
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2nd part of talk: Incompressible Navier-Stokes





∂u

∂t
(x, t) + (w(x, t) · ∇)u(x, t)

−µ∇2u(x, t) + ∇p(x, t) = f(x, t)

∇ · u(x, t) = 0

u: velocity, p: pressure, w: wind (= u for full N-S)

Linearisation is time-dependent Stokes equations:





∂u

∂t
(x, t) − µ∇2u(x, t) + ∇p(x, t) = f(x, t)

∇ · u(x, t) = 0
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Discretize: Galerkin finite elements in space, Backwards
Euler in time, constant time-step ∆t

{ 1

∆t
Mu

(
uk − uk−1

)
+ µAuu

k + Wu,ku
k + BTpk = fk

Buk = 0
, k =

k = 1, . . . , ℓ with ℓ∆t = T .

To simplify notation define the time-dependent
advection-diffusion operator

Fu,k =
Mu

∆t
+ Wu,k + µAu, k = 1, . . . ℓ.
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This is thus the system




Fu,1 BT

B

−Mu

∆t

. . .

Fu,ℓ BT

. . . B







u1

p1

...

uℓ

pℓ




=




f1

0
...

fℓ

0



.
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Reorder to



Fu,1 BT

−Mu

∆t

. . .
. . .

. . . Fu,ℓ BT

B
. . .

B




︸ ︷︷ ︸

A=









F BT

B












u1

...
uℓ

p1

...

pℓ




︸ ︷︷ ︸






u

p







=




f1

...
fℓ

0
...
0




;

Important point: Saddle-point system: F is now a
time-dependent (advection-)diffusion operator; something
we might have excellent PinT methods for!!

Luminy, 2022 – p.23/27



Block preconditioning for Saddle-point systems

based on the observation (Murphy, Golub, W (2000))

[
F BT

B 0

]

preconditioned by

•

[
F 0
0 S

]
has 3 distinct eigenvalues

•

[
F BT

0 S

]
has 2 distinct eigenvalues

where S = BF−1BT (Schur Complement)

⇒ MINRES /GMRES terminates in 3 / 2 iterations

⇒ want approximations F̂ , Ŝ ⇒ 3 / 2 clusters
⇒ fast convergence
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Preconditioning the All-at-once system

use PinT method for F and Schur complement
approximation

S−1 ≈ M−1
p FpA

−1
p

where

• Mp is a block diagonal matrix of pressure mass
matrices

• Fp represents time-integration on the pressure space
analogous to Fu

• Ap represents a block diagonal matrix of discrete
pressure Laplacians

which is essentially an identical approach to the highly
successful PCD approach for the steady-state problem
Elman, Silvester, W (2014)
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Number of GMRES iterations: driven cavity problem for
t ∈ [0, 1] (thus T = 1)

∆x
∆t 2−3 2−4 2−5 2−6 2−7

2−4 25 (25) 25 (26) 24 (25) 24 (31) 23 (28)

2−5 23 (25) 23 (24) 22 (24) 23 (32) 22 (24)

2−6 22 (26) 21 (26) 21 (26) 22 (28) 21 (28)

2−7 21 (28) 20 (28) 21 (31) 21 (32) 20 (33)

2−8 20 (28) 19 (30) 20 (32) 19 (32) 19 (34)

exact subsystem solves (iterative subsystem solves)

• F−1

u
: AIR

• M−1

p
: Chebyshev (semi-)iteration

• Fp: matrix multiply

• A−1

p
: AMG (BoomerAMG)
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