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Initial value problems (IVPs)

We consider initial value problems for example for ordinary
differential equations (ODEs)

d
EX = f(t,x), x(to) = xo

where
M>1
felC"”=",

e.g., with M = oco.
We could in fact consider differential-algebraic equations (DAEs),

time-dependent partial differential equations (PDEs), or any other
type of deterministic time-dependent equations.
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Implicit methods

We consider for example implicit Runge-Kutta (IRK) methods

S
Xp41 = Xn + hn Z bif(tn + cih, Xni1i) for n=0,1,2,...
i=1

where at each step the s internal stages X,411,1,...,Xn4+1,s must
satisfy the system of nonlinear equations

S
Sl — 5 — h,,Za,-jf(t,, +cjih, Xp11j) =0 fori=1,...,s.
j=1

We can consider any other type of implicit methods: multistep
methods, general linear methods, the generalized-a method, etc.
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Example: the 2-stage IRK Gauss method

The 2-stage Gauss IRK method of order 4:

C1 | 11 a12 1/2—\/§/6 ]./4 1/4—\/§/6
©lan an = 1/2+3/6|1/4+/3/6 1/4
| b1 b \ 1/2 1/2
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Main assumption

Assumption: Constant stepsizes: h, = h

Advantages:

Asymptotic expansion of global error

Backward error analysis (ODEs: x, ~ X(to 4 nh), X = fi(t,X))
Global (componentwise!) error estimation (at nh = nih)
Extrapolation (at nh = Ah)

No "local error estimates” /stepsize control needed

No need to recompute Jacobian decompositions due to
stepsize changes

Main disadvantage:

o May be inefficient.
This can be addressed by time-rescaling
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Goal of predictor algorithms

To obtain accurate guesses of implicitly defined unknowns in order
to reduce the number of fixed point/Newton-type (FN) iterations
needed.

@ An overlooked problem with great potential for improvements

o Before the first FN iteration: starting approximation

algorithms

@ New proposed methodology can also be applied after the first
FN iteration
Xr('l)+]_7k+1 = ¢h,n+1,k+1(Xn+1,k)7 k — 07 17 s ey Kn+1 - 1

and which introduces nonlinearity in the new predictor
algorithm
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Implicit discrete dynamical systems

More generally, we consider

R(h, Xn, Xps1) =0,  Xp, Xpr1 € RY
where
@ Xp given
@ h a small parameter

@ we suppose local existence and uniqueness of X,1 for |h|
sufficiently small

For example for IRK methods we have
Xn = Xn1,..., Xns)

and h is the stepsize.
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A new predictor algorithm

Notation X/,
@ /: correction level
@ n+ 1: new time step

@ k: index of FN iteration (k = 0 for a starting approximation)

k=20: Xr(7)+1,0 any initial starting approximation of order ry

Xn+1 — Xpy10 = O(h°*1) for h — 0
Examples for IRK methods:
® X210 :=(Xn,.-.,Xn) (order rp = 0)
@ additional function evaluations (M.P. Laburta, 1997)
@ continuous output (I. Higueras, T. Roldan, 2005)
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Initial starting approximation for the 2-stage Gauss method

Xnt1 = (Xnt1,1, Xnt+12)

Initial starting approximation of order ryp = 2 given by the
extrapolated values

Xr?+1,1,0 = pn(tn + c1h), Xr?+1,2,0 = pn(tn + c2h)

where p,(t) is the degree 2 interpolation/collocation polynomial
through

(tn—lvxn—l)a (tn—]. + Clh)Xn,l)) (tn—]. + C2h)Xn,2)) (tn,Xn)-
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A new predictor algorithm

Based on error corrections
1+1 /
Xnilk_X-i—lk—’_E"'lk fOI’/ZO,...,L,H_l’k—]_

where
I N |
Eryax = exltns1)
and e,i(t) is the interpolation polynomial of degree d/( of exact
errors of previous predicted values
e(tne) == Xo—e — Xp_gy  for £=0,...,d; >0.

The final predictor/terminizer at FN iteration k:

Lpy1,k—1

0 Ln+1,k _
Xn+1,k T XIH-Lk +1 k + § +1 k
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predictor algorithm

n
e the component indices j =1,...,d
o the correction levels /
o even the FN iterations k

E’Jrl « are embarrassingly parallel across:

Computational cost is minimal, no evaluation of f needed.
IVPs (ODEs, DAEs, etc.) are all treated in the same way, it is
a universal approximation algorithm.

Unifies and extends different approaches,.

Trades time for memory, here function evaluations in FN
iterations, requiring also communication, with embarrassingly
parallel extrapolation procedures. In summary: less FN
iterations, more memory use, but only local communication.

the choice d,’< = 0 leads to a simple implementation
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Error estimate of new starting algorithm (k = 0)

Consider any initial starting algorithm X° 110 Of orderrp < M —1
with asymptotic expansion in h

M
Xnp1 = X%10= Y h™ag"(tay1) + o(h™) for h— 0
m=ry+1
with ag"°(t) € CM=" — for h— 0 we have
O(h ' +1) if it < M — 1,
Xn+1 _ X[gii 0= ( ) Po =
’ o(hM)  if M < pitt.

Wherep(/)+1 ::ro+/+1+d8+...+dé
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Error estimate of new pred|ctor algonthm (k =1)

Under the assumptions of Theorem (1) = for h — 0 we have

/41

[ O it <M
Xny1 — Xpi11 = y _ 1
o(h) ifM < pit

where pi™ == +1+1+dY+... +d] and
, Lo
ri:=1+minj_1  4py”

etc. for k =2,3,. Kn+1 — 1. But remember that our goal is to
have Kj11 smaII!
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A stopping criterion of FN iterations for IRK methods

For k > 1 (at least one FN iteration per time-step)

max (Wroi(X2, 10 AXD154)) <1

j=1,..s n

where

|Ayil
1\ Ay) =
Tol(ya }/) ,-:nia..)jd (max(RToli . \y,-|, ATOli)

here with RTol; = 1010, ATo1; = 1014,
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On the stopping criterion

Consider rtol > 0 and atol > 0. Then

|r — g| < max(rtol-|r|,atol)
rtol

<~ = < — s
Ir—gq| < 1 rtol max (|ql, p)
where ol
ato
= 1 tol).
P rtol( iasted)

and when |g| < p we have |r — g| < atol = p(1 + rtol)/rtol.
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The periodic Arenstorf orbit

—X1 = X3, X1(0) = 0.994,

—X2 = X, X2(0) = 0,

d + +p—1

—x3 = x1+2x4+ (p—1) (atp) ,u(Xl H ),
D, D,

—xg = xp—2x3+ (u— 1)— = ,uD x4(0) = —2.0015851063790825 . . .
D,

X3(0) = 0,

Di = (Ga+p)?+x3)%%  Dy=(0a+p—1)2+x3)>%2
p = 0.012277471.

The solution is periodic with period T = 17.065216560157962. ..
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The periodic Arenstorf orbit and the 2-stage Gauss method

Arenstorf orbit
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50000 time steps on the time interval [0,35], h = 0.0007.
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The periodic Arenstorf orbit and the 2-stage Gauss method

error of Xflﬁl © With df,c =0
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Fixed-point iterations, h = 0.0007.
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The periodic Arenstorf orbit and the 2-stage Gauss method

error of Xflﬁgk with df,c =0
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Fixed-point iterations, h = 0.0007.
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A perturbed Kepler problem

A perturbed Kepler problem with eccentricity e = 0.6 and
perturbation § = 0.015:

d

EX]' = X3 X]_(O):].—e
%Xg = X4 XQ(O) =0

d 1 5

a. . _ _ 0) =0
T ((xf TR (2 +x§>5/2> x5(0)

ix = —x ! 4 J x4(0) = SR
dt™t TP\ GE 8RR (R 4 x2) V1.

corresponding to the Hamiltonian:

Hx) = x§ —I—XE _ 1 _ 1)
-2 (< +x3)12 304 +x3)3/2
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A perturbed Kepler problem and the 2-stage Gauss method

solution in phase space
0.8 T T T

0.6
0.4

0.2

04
-0.6 +

0.8

1000 time steps on the time interval [0, 20], h = 0.02.
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A perturbed Kepler problem and the 2-stage Gauss method

108 error in Hamiltonian

H(tn, :Z?n) — H(tm :C())

Fixed-point iterations, h = 0.02.
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A perturbed Kepler problem and the 2-stage Gauss method

error of Xylu,k with dfc =0

10712 F / ‘\

10ME B e i T

10—16 . L L L
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Fixed-point iterations, h = 0.02.
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A perturbed Kepler problem and the 2-stage Gauss method

error of Xfllk with dfc =0
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Fixed-point iterations, h = 0.02.
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Time-rescaling

Variable stepsizes trick: use constant stepsizes h after
time-rescaling

Te=plt),  x=pltX)F( %)

which is autonomous in 7 with p € CM(R x RY R*) when
f € CM, for example

1
(a + [|Bf (¢, x))ll5)?

p(t,x) =

with @« > 0, g =2m even, r = jgwith j € N, p >0, and B
nonsingular. In the original time t the value of a > 0 is such that

h

P = hmax
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Example: Time-rescaling with the mipoint rule

tht1 = tn+hn
h
Xptl = Xp+ hof tn+_”’m
2 2
hn Xn+Xn+1>

hn:h th )
p<+2 2
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Time-rescaling of Hamiltonian systems

We consider Hamiltonian systems
d

X = JVH(t,x)

where J is skew-symmetric. Even for H = H(x)

%X = p(x)JVH(x)
is not Hamiltonian. Introducing (u,s) (s(7) = t, u(7) = H(t, x(t)),
H(x, u,s) := p(s,x)(H(s,x) — u)

we obtain the extended autonomous Hamiltonian system

%x = p(s,x)IVxH(s,x) + (H(s, x) — u)JVxp(s, x)
diTu = p(s,x)0tH(s,x) + (H(s, x) — u)d:p(s, x)
d

ES = p(S,X)
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The periodic Arenstorf orbit and the 2-stage Gauss method

Arenstorf orbit

05

T2
o

05

x1

4000 time steps on the rescaled time interval [0,50] in 7,
Fixed-point iterations, h, = 0.0125, s(7 = 50) ~ 34.81.
p(t,x): B=1,a=0,9g=2,r=2 p=1/2.
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The periodic Arenstorf orbit and the 2-stage Gauss method

Arenstorf orbit

05

T

4000 time steps on the rescaled time interval [0,50] in 7,
Fixed-point iterations, h, = 0.0125, s(7 = 50) ~ 34.81.
p(t,x): B=1,a=0,9g=2,r=2 p=1/2.
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The periodic Arenstorf orbit and the 2-stage Gauss method

Arenstorf orbit
35 ‘ :

30 -
25 -

20 -

T

4000 time steps on the rescaled time interval [0,50] in 7,
Fixed-point iterations, h, = 0.0125, s(7 = 50) ~ 34.81.
p(t,x): B=1,a=0,9g=2,r=2 p=1/2.
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The periodic Arenstorf orbit and the 2-stage Gauss method

error of X Lk Wlth dl = 0
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4000 time steps on the rescaled time interval [0,50] in 7.
Fixed-point iterations, h, = 0.0125, s(7 = 50) ~ 34.81.
p(t,x): B=1,a=0,9g=2,r=2 p=1/2.
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The periodic Arenstorf orbit and the 2-stage Gauss method

error of X 2% Wlth dl = 0
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4000 time steps on the rescaled time interval [0,50] in 7.
Fixed-point iterations, h, = 0.0125, s(7 = 50) ~ 34.81.
p(t,x): B=1,a=0,9g=2,r=2 p=1/2.
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The periodic Arenstorf orbit and the 2-stage Gauss method

Number of fixed-point iterations using:

0
e only Xn+1,j,0

@ only the collocation polynomial as initial starting
approximation, i.e., Ly k=0 = 0: 11326.

= X, as the initial starting approximation: 18394.

@ the new predictor with L, x—0 =1 and d:I1+1 w—o = 0: 8248.

@ the new predictor with L, x—0 =2 and d,’,JrLk:0 = 0: 5977.

4000 time steps on the rescaled time interval [0,50] in 7.
Fixed-point iterations, h; = 0.0125, s(7 = 50) ~ 34.81.
p(t,x): B=1,a=0,9g=2,r=2 p=1/2.
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A perturbed Kepler problem and the 2-stage Gauss method

4000 time steps on the rescaled time interval [0,20] in 7.
Fixed-point iterations, h, = 0.02, s(7 = 20) ~ 13.182.
p(t,x): B=1,a=0,9qg=2,r=2, p=0.7/2.
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A perturbed Kepler problem and the 2-stage Gauss method

error in Hamiltonian

-10
0 x10

25

H(S(Tn)v :En) _ H(t()v ZEU)

-3.5

4000 time steps on the rescaled time interval [0,20] in 7.
Fixed-point iterations, h, = 0.02, s(7 = 20) ~ 13.182.
p(t,x): B=1,a=0,9qg=2r=2,p=07/2,
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A perturbed Kepler problem and the 2-stage Gauss method

error of XfL 1 With dlk =0
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4000 time steps on the rescaled time interval [0,20] in 7.
Fixed-point iterations, h, = 0.02, s(7 = 20) ~ 13.182.
p(t,x): B=1,a=0,9qg=2r=2,p=07/2,
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A perturbed Kepler problem and the 2-stage Gauss method

error of XfL 9 With dlk =0

1072
k=0,1=0
— — —k=0,=1
1074 k=0,l=2
k=1,1=0
=l et S P N [
= 100k k=112 1
.:: \\\/N\/// \\\‘_{/\//// \\\/ﬁ
~s q98FL .. . - 1
‘ B .
~ 10—10 L ]
b
o ~7 N~ PECARENEN
— 1012} \\ // \\ ; \\ 1
g S~ 7 g . ~Soo—~-" S ~_-
10—14
10-16 L
5 10 15 20

4000 time steps on the rescaled time interval [0,20] in 7.
Fixed-point iterations, h, = 0.02, s(7 = 20) ~ 13.182.
p(t,x): B=1,a=0,9qg=2r=2,p=07/2,
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Conclusion

A new general predictor algorithm is proposed:

@ unifies, complements, and improves on current starting
approximation algorithms

@ can also improve FN iterates leading to a new mixed type of
prediction/FN correction iterations

@ uses exact errors of approximations from previous steps

@ universal since applicable to any
R(h, Xn, Xn+1) =0

e of arbitrarily high order
@ embarrassingly parallel

@ time-rescaling of the differential equations can address the
efficiency issue
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Current/future work to be investigated /implemented

@ adaptivity of highest levels L, 1 x

@ comparison of implicit versus explicit methods: implicit
methods have high potential for parallelism and may be more
efficient than explicit methods using fixed-point iteration or
quasi-Newton methods such as Broyden iterations

stiff ODEs, parabolic PDEs, DAEs, integral equations, etc.
parallel implementation

other time-rescaling functions p(t, x)

application to nonlinear optimization: min,ex f(x),
x = —B(x)Vf(x) ("descent ODEs")
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