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Initial value problems (IVPs)

We consider initial value problems for example for ordinary
differential equations (ODEs)

d

dt
x = f (t, x), x(t0) = x0

where
f ∈ CM≥1,

e.g., with M = ∞.

We could in fact consider differential-algebraic equations (DAEs),
time-dependent partial differential equations (PDEs), or any other
type of deterministic time-dependent equations.
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Implicit methods

We consider for example implicit Runge-Kutta (IRK) methods

xn+1 = xn + hn

s∑

i=1

bi f (tn + cih,Xn+1,i ) for n = 0, 1, 2, . . .

where at each step the s internal stages Xn+1,1, . . . ,Xn+1,s must
satisfy the system of nonlinear equations

Xn+1,i − xn − hn

s∑

j=1

aij f (tn + cjh,Xn+1,j) = 0 for i = 1, . . . , s.

We can consider any other type of implicit methods: multistep
methods, general linear methods, the generalized-α method, etc.
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Example: the 2-stage IRK Gauss method

The 2-stage Gauss IRK method of order 4:

c1 a11 a12
c2 a21 a22

b1 b2

≡
1/2 −

√
3/6 1/4 1/4 −

√
3/6

1/2 +
√
3/6 1/4 +

√
3/6 1/4

1/2 1/2
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Main assumption

Assumption: Constant stepsizes: hn = h

Advantages:

Asymptotic expansion of global error

Backward error analysis (ODEs: xn ≈ x̃(t0 + nh), ˙̃x = fh(t, x̃))

Global (componentwise!) error estimation (at nh = n̂ĥ)

Extrapolation (at nh = n̂ĥ)

No ”local error estimates”/stepsize control needed

No need to recompute Jacobian decompositions due to
stepsize changes

Main disadvantage:

May be inefficient.
This can be addressed by time-rescaling
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Goal of predictor algorithms

To obtain accurate guesses of implicitly defined unknowns in order
to reduce the number of fixed point/Newton-type (FN) iterations
needed.

An overlooked problem with great potential for improvements

Before the first FN iteration: starting approximation
algorithms

New proposed methodology can also be applied after the first
FN iteration

X 0
n+1,k+1 := Φh,n+1,k+1(Xn+1,k), k = 0, 1, . . . ,Kn+1 − 1.

and which introduces nonlinearity in the new predictor
algorithm
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Implicit discrete dynamical systems

More generally, we consider

R(h,Xn,Xn+1) = 0, Xn,Xn+1 ∈ R
d

where

X0 given

h a small parameter

we suppose local existence and uniqueness of Xn+1 for |h|
sufficiently small

For example for IRK methods we have

Xn := (Xn,1, . . . ,Xn,s)

and h is the stepsize.
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A new predictor algorithm

Notation X l
n+1,k

l : correction level

n + 1: new time step

k : index of FN iteration (k = 0 for a starting approximation)

k = 0: X 0
n+1,0 any initial starting approximation of order r0

Xn+1 − X 0
n+1,0 = O(hr0+1) for h → 0

Examples for IRK methods:

X 0
n+1,0 := (xn, . . . , xn) (order r0 = 0)

additional function evaluations (M.P. Laburta, 1997)

continuous output (I. Higueras, T. Roldán, 2005)
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Initial starting approximation for the 2-stage Gauss method

Xn+1 := (Xn+1,1,Xn+1,2)

Initial starting approximation of order r0 = 2 given by the
extrapolated values

X 0
n+1,1,0 := pn(tn + c1h), X 0

n+1,2,0 := pn(tn + c2h)

where pn(t) is the degree 2 interpolation/collocation polynomial
through

(tn−1, xn−1), (tn−1 + c1h,Xn,1), (tn−1 + c2h,Xn,2), (tn, xn).
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A new predictor algorithm

Based on error corrections

X l+1
n+1,k := X l

n+1,k + E l
n+1,k for l = 0, . . . , Ln+1,k − 1

where
E l
n+1,k := e lk(tn+1)

and e lk(t) is the interpolation polynomial of degree d l
k of exact

errors of previous predicted values

e lk(tn−ℓ) := Xn−ℓ − X l
n−ℓ,k for ℓ = 0, . . . , d l

k ≥ 0.

The final predictor/terminizer at FN iteration k :

Xn+1,k := X
Ln+1,k

n+1,k = X 0
n+1,k +

Ln+1,k−1∑

l=0

E l
n+1,k
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A new predictor algorithm

E l
n+1,k are embarrassingly parallel across:

the component indices j = 1, . . . , d
the correction levels l
even the FN iterations k

Computational cost is minimal, no evaluation of f needed.
IVPs (ODEs, DAEs, etc.) are all treated in the same way, it is
a universal approximation algorithm.

Unifies and extends different approaches,.

Trades time for memory, here function evaluations in FN
iterations, requiring also communication, with embarrassingly
parallel extrapolation procedures. In summary: less FN
iterations, more memory use, but only local communication.

the choice d l
k = 0 leads to a simple implementation
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Error estimate of new starting algorithm (k = 0)

Theorem (1)

Consider any initial starting algorithm X 0
n+1,0 of order r0 ≤ M − 1

with asymptotic expansion in h

Xn+1 − X 0
n+1,0 =

M∑

m=r0+1

hmam,0
0 (tn+1) + o(hM) for h → 0

with am,0
0 (t) ∈ CM−m =⇒ for h → 0 we have

Xn+1 − X l+1
n+1,0 =

{
O(hp

l+1
0 +1) if pl+1

0 ≤ M − 1,

o(hM) if M ≤ pl+1
0 .

where pl+1
0 := r0 + l + 1 + d0

0 + . . .+ d l
0
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Error estimate of new predictor algorithm (k = 1)

Theorem (2)

Under the assumptions of Theorem (1) =⇒ for h → 0 we have

Xn+1 − X l+1
n+1,1 =

{
O(hp

l+1
1 +1) if pl+1

1 ≤ M − 1,

o(hM) if M ≤ pl+1
1 .

where pl+1
1 := r1 + l + 1 + d0

1 + . . .+ d l
1 and

r1 := 1 + minj=1,...,d p
L
·,0

0

etc. for k = 2, 3, . . . ,Kn+1 − 1. But remember that our goal is to
have Kn+1 small!
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A stopping criterion of FN iterations for IRK methods

For k ≥ 1 (at least one FN iteration per time-step)

max
j=1,...,s

(ΨTol(X
0
n+1,j ,k ,∆X 0

n+1,j ,k)) ≤ 1

where

ΨTol(y ,∆y) := max
i=1,...,d

( |∆yi |
max(RToli · |yi |, AToli )

)

here with RToli = 10−10, AToli = 10−14.
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On the stopping criterion

Lemma

Consider rtol > 0 and atol > 0. Then

|r − q| ≤ max(rtol · |r |, atol)

⇐⇒ |r − q| ≤ rtol

1 + rtol
·max (|q|, p)

where

p :=
atol

rtol
(1 + rtol).

Hence, when |q| ≥ p we have

|r − q|
|r | ≤ rtol

and when |q| ≤ p we have |r − q| ≤ atol = p(1 + rtol)/rtol.
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The periodic Arenstorf orbit

d

dt
x1 = x3, x1(0) = 0.994,

d

dt
x2 = x4, x2(0) = 0,

d

dt
x3 = x1 + 2x4 + (µ − 1)

(x1 + µ)

D1
− µ

(x1 + µ− 1)

D2
, x3(0) = 0,

d

dt
x4 = x2 − 2x3 + (µ − 1)

x2
D1

− µ
x2
D2

, x4(0) = −2.0015851063790825 . . . ,

D1 = ((x1 + µ)2 + x22 )
3/2, D2 = ((x1 + µ− 1)2 + x22 )

3/2,

µ = 0.012277471.

The solution is periodic with period T = 17.065216560157962 . . .
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The periodic Arenstorf orbit and the 2-stage Gauss method
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50000 time steps on the time interval [0, 35], h = 0.0007.



Introduction A new predictor algorithm Examples Time-rescaling Examples after time-rescaling Conclusion

The periodic Arenstorf orbit and the 2-stage Gauss method
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The periodic Arenstorf orbit and the 2-stage Gauss method
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A perturbed Kepler problem

A perturbed Kepler problem with eccentricity e = 0.6 and
perturbation δ = 0.015:

d

dt
x1 = x3 x1(0) = 1− e

d

dt
x2 = x4 x2(0) = 0

d

dt
x3 = −x1

(
1

(x21 + x22 )
3/2

+
δ

(x21 + x22 )
5/2

)
x3(0) = 0

d

dt
x4 = −x2

(
1

(x21 + x22 )
3/2

+
δ

(x21 + x22 )
5/2

)
x4(0) =

√
1 + e

1− e

corresponding to the Hamiltonian:

H(x) =
x23 + x24

2
− 1

(x21 + x22 )
1/2

− δ

3(x21 + x22 )
3/2
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A perturbed Kepler problem and the 2-stage Gauss method
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A perturbed Kepler problem and the 2-stage Gauss method
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A perturbed Kepler problem and the 2-stage Gauss method
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A perturbed Kepler problem and the 2-stage Gauss method
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Time-rescaling

Variable stepsizes trick: use constant stepsizes h after
time-rescaling

d

dτ
t = ρ(t, x),

d

dτ
x = ρ(t, x)f (t, x)

which is autonomous in τ with ρ ∈ CM(R ×R
d ,R+) when

f ∈ CM , for example

ρ(t, x) :=
1

(α+ ‖Bf (t, x))‖rq)p

with α > 0, q = 2m even, r = jq with j ∈ N, p > 0, and B
nonsingular. In the original time t the value of α > 0 is such that

h

αp
= hmax
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Example: Time-rescaling with the mipoint rule

tn+1 = tn + hn

xn+1 = xn + hnf

(
tn +

hn
2
,
xn + xn+1

2

)

hn = hρ

(
tn +

hn
2
,
xn + xn+1

2

)
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Time-rescaling of Hamiltonian systems

We consider Hamiltonian systems

d

dt
x = J∇xH(t, x)

where J is skew-symmetric. Even for H = H(x)

d

dτ
x = ρ(x)J∇xH(x)

is not Hamiltonian. Introducing (u, s) (s(τ) = t, u(τ) = H(t, x(t)),

H(x , u, s) := ρ(s, x)(H(s, x) − u)

we obtain the extended autonomous Hamiltonian system

d

dτ
x = ρ(s, x)J∇xH(s, x) + (H(s, x) − u)J∇xρ(s, x)

d

dτ
u = ρ(s, x)∂tH(s, x) + (H(s, x) − u)∂tρ(s, x)

d

dτ
s = ρ(s, x)
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The periodic Arenstorf orbit and the 2-stage Gauss method

-1.5 -1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

4000 time steps on the rescaled time interval [0, 50] in τ ,
Fixed-point iterations, hτ = 0.0125, s(τ = 50) ≈ 34.81.
ρ(t, x): B = I , α = 0, q = 2, r = 2, p = 1/2.
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The periodic Arenstorf orbit and the 2-stage Gauss method
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The periodic Arenstorf orbit and the 2-stage Gauss method
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The periodic Arenstorf orbit and the 2-stage Gauss method
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The periodic Arenstorf orbit and the 2-stage Gauss method
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The periodic Arenstorf orbit and the 2-stage Gauss method

Number of fixed-point iterations using:

only X 0
n+1,j ,0 = xn as the initial starting approximation: 18394.

only the collocation polynomial as initial starting
approximation, i.e., Ln+1,k=0 = 0: 11326.

the new predictor with Ln+1,k=0 = 1 and d l
n+1,k=0 = 0: 8248.

the new predictor with Ln+1,k=0 = 2 and d l
n+1,k=0 = 0: 5977.

4000 time steps on the rescaled time interval [0, 50] in τ .
Fixed-point iterations, hτ = 0.0125, s(τ = 50) ≈ 34.81.
ρ(t, x): B = I , α = 0, q = 2, r = 2, p = 1/2.
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A perturbed Kepler problem and the 2-stage Gauss method
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A perturbed Kepler problem and the 2-stage Gauss method
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A perturbed Kepler problem and the 2-stage Gauss method
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A perturbed Kepler problem and the 2-stage Gauss method
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Conclusion

A new general predictor algorithm is proposed:

unifies, complements, and improves on current starting
approximation algorithms

can also improve FN iterates leading to a new mixed type of
prediction/FN correction iterations

uses exact errors of approximations from previous steps

universal since applicable to any

R(h,Xn,Xn+1) = 0

of arbitrarily high order

embarrassingly parallel

time-rescaling of the differential equations can address the
efficiency issue
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Current/future work to be investigated/implemented

adaptivity of highest levels Ln+1,k

comparison of implicit versus explicit methods: implicit
methods have high potential for parallelism and may be more
efficient than explicit methods using fixed-point iteration or
quasi-Newton methods such as Broyden iterations

stiff ODEs, parabolic PDEs, DAEs, integral equations, etc.

parallel implementation

other time-rescaling functions ρ(t, x)

application to nonlinear optimization: minx∈X f (x),
ẋ = −B(x)∇f (x) (”descent ODEs”)
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