Introduction	A new predictor algorithm	Examples	Time-rescaling	Examples after time-rescaling	Conclusion

Flattening the error curve of predictor algorithms for implicit methods in IVP

PinT 2022: 11th Conference on Parallel-in-Time Integration (CIRM, Marseille, France)

Laurent O. Jay

Dept. of Mathematics, The University of Iowa, USA

July 11-15, 2022

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 </l>

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

We consider initial value problems for example for ordinary differential equations (ODEs)

$$\frac{d}{dt}x = f(t, x), \qquad x(t_0) = x_0$$

where

$$f \in \mathcal{C}^{M \geq 1},$$

e.g., with $M = \infty$.

We could in fact consider differential-algebraic equations (DAEs), time-dependent partial differential equations (PDEs), or any other type of deterministic time-dependent equations.

We consider for example implicit Runge-Kutta (IRK) methods

$$x_{n+1} = x_n + h_n \sum_{i=1}^{s} b_i f(t_n + c_i h, X_{n+1,i})$$
 for $n = 0, 1, 2, ...$

where at each step the *s* internal stages $X_{n+1,1}, \ldots, X_{n+1,s}$ must satisfy the system of nonlinear equations

$$X_{n+1,i} - x_n - h_n \sum_{j=1}^s a_{ij} f(t_n + c_j h, X_{n+1,j}) = 0$$
 for $i = 1, ..., s$.

We can consider any other type of implicit methods: multistep methods, general linear methods, the generalized- α method, etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example: the 2-stage IRK Gauss method

The 2-stage Gauss IRK method of order 4:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction 000●	A new predictor algorithm	Examples 000000000	Time-rescaling	Examples after time-rescaling	Conclusion
Main a	ssumption				

Assumption: Constant stepsizes: $h_n = h$

Advantages:

- Asymptotic expansion of global error
- Backward error analysis (ODEs: $x_n \approx \widetilde{x}(t_0 + nh), \ \widetilde{x} = f_h(t, \widetilde{x})$)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 </l>

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

- Global (componentwise!) error estimation (at $nh = \widehat{nh}$)
- Extrapolation (at $nh = \hat{n}\hat{h}$)
- No "local error estimates"/stepsize control needed
- No need to recompute Jacobian decompositions due to stepsize changes

Main disadvantage:

- May be inefficient.
 - This can be addressed by time-rescaling

To obtain accurate guesses of implicitly defined unknowns in order to reduce the number of fixed point/Newton-type (FN) iterations needed.

- An overlooked problem with great potential for improvements
- Before the first FN iteration: starting approximation algorithms
- New proposed methodology can also be applied after the first FN iteration

$$X_{n+1,k+1}^0 := \Phi_{h,n+1,k+1}(X_{n+1,k}), \qquad k = 0, 1, \dots, K_{n+1} - 1.$$

and which introduces nonlinearity in the new predictor algorithm

 Introduction
 A new predictor algorithm
 Examples
 Time-rescaling
 Examples after time-rescaling
 Conclusion

 0000
 00000000
 000
 000
 000
 000
 000

Implicit discrete dynamical systems

More generally, we consider

$$R(h, X_n, X_{n+1}) = 0, \qquad X_n, X_{n+1} \in \mathbb{R}^d$$

where

- X_0 given
- h a small parameter
- we suppose local existence and uniqueness of X_{n+1} for |h| sufficiently small

For example for IRK methods we have

$$X_n := (X_{n,1},\ldots,X_{n,s})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

and h is the stepsize.

0000		000000000	000	0000000000	000			
Λ	A new predictor algorithm							

A new predictor algorithm

Notation $X_{n+1,k}^{l}$

- I: correction level
- n+1: new time step
- k: index of FN iteration (k = 0 for a starting approximation)

<u>k = 0</u>: $X_{n+1,0}^0$ any initial starting approximation of order r_0

$$X_{n+1} - X_{n+1,0}^0 = O(h^{r_0+1}) \quad ext{for } h o 0$$

Examples for IRK methods:

- $X_{n+1,0}^0 := (x_n, \dots, x_n)$ (order $r_0 = 0$)
- additional function evaluations (M.P. Laburta, 1997)
- continuous output (I. Higueras, T. Roldán, 2005)

$$X_{n+1} := (X_{n+1,1}, X_{n+1,2})$$

Initial starting approximation of order $r_0 = 2$ given by the extrapolated values

$$X_{n+1,1,0}^0 := p_n(t_n + c_1 h), \quad X_{n+1,2,0}^0 := p_n(t_n + c_2 h)$$

where $p_n(t)$ is the degree 2 interpolation/collocation polynomial through

$$(t_{n-1}, x_{n-1}), (t_{n-1} + c_1 h, X_{n,1}), (t_{n-1} + c_2 h, X_{n,2}), (t_n, x_n).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

0000	000000000	000000000	000	000000000	000		

A new predictor algorithm

Based on error corrections

$$X_{n+1,k}^{l+1} := X_{n+1,k}^l + E_{n+1,k}^l$$
 for $l = 0, \dots, L_{n+1,k} - 1$

where

$$E_{n+1,k}^{l} := e_{k}^{l}(t_{n+1})$$

and $e_k^l(t)$ is the interpolation polynomial of degree d_k^l of exact errors of previous predicted values

$$e_k^\prime(t_{n-\ell}):=X_{n-\ell}-X_{n-\ell,k}^\prime \qquad ext{for }\ell=0,\ldots,d_k^\prime\geq 0.$$

The final predictor/terminizer at FN iteration k:

$$X_{n+1,k} := X_{n+1,k}^{L_{n+1,k}} = X_{n+1,k}^{0} + \sum_{l=0}^{L_{n+1,k}-1} E_{n+1,k}^{l}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へで

Introduction 0000	A new predictor algorithm	Examples 000000000	Time-rescaling	Examples after time-rescaling	Conclusion
A new	predictor algo	rithm			

- $E_{n+1,k}^{l}$ are embarrassingly parallel across:
 - the component indices $j = 1, \ldots, d$
 - the correction levels /
 - even the FN iterations k
- Computational cost is minimal, no evaluation of *f* needed. IVPs (ODEs, DAEs, etc.) are all treated in the same way, it is a universal approximation algorithm.
- Unifies and extends different approaches,.
- Trades time for memory, here function evaluations in FN iterations, requiring also communication, with embarrassingly parallel extrapolation procedures. In summary: less FN iterations, more memory use, but only local communication.
- the choice $d_k^l = 0$ leads to a simple implementation

Consider any initial starting algorithm $X_{n+1,0}^0$ of order $r_0 \le M-1$ with asymptotic expansion in h

$$X_{n+1} - X_{n+1,0}^0 = \sum_{m=r_0+1}^M h^m a_0^{m,0}(t_{n+1}) + o(h^M) \quad \textit{for } h o 0$$

with $a_0^{m,0}(t) \in \mathcal{C}^{M-m} \Longrightarrow$ for $h \to 0$ we have

$$X_{n+1} - X_{n+1,0}^{l+1} = \begin{cases} O(h^{p_0^{l+1}+1}) & \text{if } p_0^{l+1} \le M-1, \\ o(h^M) & \text{if } M \le p_0^{l+1}. \end{cases}$$

where $p_0^{l+1} := r_0 + l + 1 + d_0^0 + \ldots + d_0^l$

Error estimate of new predictor algorithm (k = 1)

Time-rescaling

Examples after time-rescaling

Examples

Introduction

A new predictor algorithm

Under the assumptions of Theorem (1) \Longrightarrow for $h \rightarrow 0$ we have

$$X_{n+1} - X_{n+1,1}^{l+1} = \begin{cases} O(h^{p_1^{l+1}+1}) & \text{if } p_1^{l+1} \le M-1, \\ o(h^M) & \text{if } M \le p_1^{l+1}. \end{cases}$$

where
$$p_1^{l+1} := r_1 + l + 1 + d_1^0 + \ldots + d_1^l$$
 and $r_1 := 1 + \min_{j=1,\ldots,d} p_0^{L_{i,0}}$

etc. for $k = 2, 3, ..., K_{n+1} - 1$. But remember that our goal is to have K_{n+1} small!

For $k \ge 1$ (at least one FN iteration per time-step)

$$\max_{j=1,...,s}(\Psi_{\mathrm{Tol}}(X^0_{n+1,j,k},\Delta X^0_{n+1,j,k}))\leq 1$$

where

$$\Psi_{\mathrm{Tol}}(y, \Delta y) := \max_{i=1,...,d} \left(\frac{|\Delta y_i|}{\max(\mathtt{RTol}_i \cdot |y_i|, \mathtt{ATol}_i)} \right)$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

here with $\text{RTol}_i = 10^{-10}$, $\text{ATol}_i = 10^{-14}$.

Introduction occord algorithm concord algorithm concord algorithm concord algorithm concord algorithm concord concord

Consider rtol > 0 and atol > 0. Then

$$egin{aligned} |r-q| &\leq \max(\texttt{rtol} \cdot |r|, \texttt{atol}) \ &\iff \quad |r-q| &\leq rac{\texttt{rtol}}{1+\texttt{rtol}} \cdot \maxig(|q|, p) \end{aligned}$$

where

$$p:=rac{ t atol}{ t rtol}(1+ t rtol).$$

Hence, when $|q| \ge p$ we have

$$\frac{|r-q|}{|r|} \leq \texttt{rtol}$$

and when $|q| \leq p$ we have $|r-q| \leq ext{atol} = p(1+ ext{rtol})/ ext{rtol}.$

Introduction A new predictor algorithm Examples Time-rescaling Examples after time-rescaling Conclusion

The periodic Arenstorf orbit

$$\begin{aligned} \frac{d}{dt}x_1 &= x_3, \qquad x_1(0) = 0.994, \\ \frac{d}{dt}x_2 &= x_4, \qquad x_2(0) = 0, \\ \frac{d}{dt}x_3 &= x_1 + 2x_4 + (\mu - 1)\frac{(x_1 + \mu)}{D_1} - \mu\frac{(x_1 + \mu - 1)}{D_2}, \qquad x_3(0) = 0, \\ \frac{d}{dt}x_4 &= x_2 - 2x_3 + (\mu - 1)\frac{x_2}{D_1} - \mu\frac{x_2}{D_2}, \quad x_4(0) = -2.0015851063790825\dots \\ D_1 &= ((x_1 + \mu)^2 + x_2^2)^{3/2}, \qquad D_2 = ((x_1 + \mu - 1)^2 + x_2^2)^{3/2}, \\ \mu &= 0.012277471. \end{aligned}$$

The solution is periodic with period T = 17.065216560157962...

The periodic Arenstorf orbit and the 2-stage Gauss method

50000 time steps on the time interval [0, 35], h = 0.0007.

Fixed-point iterations, h = 0.0007.

Fixed-point iterations, h = 0.0007.

A perturbed Kepler problem

A perturbed Kepler problem with eccentricity e = 0.6 and perturbation $\delta = 0.015$:

$$\begin{aligned} \frac{d}{dt}x_1 &= x_3 & x_1(0) = 1 - e \\ \frac{d}{dt}x_2 &= x_4 & x_2(0) = 0 \\ \frac{d}{dt}x_3 &= -x_1\left(\frac{1}{(x_1^2 + x_2^2)^{3/2}} + \frac{\delta}{(x_1^2 + x_2^2)^{5/2}}\right) & x_3(0) = 0 \\ \frac{d}{dt}x_4 &= -x_2\left(\frac{1}{(x_1^2 + x_2^2)^{3/2}} + \frac{\delta}{(x_1^2 + x_2^2)^{5/2}}\right) & x_4(0) = \sqrt{\frac{1 + e}{1 - e}} \end{aligned}$$

corresponding to the Hamiltonian:

$$H(x) = \frac{x_3^2 + x_4^2}{2} - \frac{1}{(x_1^2 + x_2^2)^{1/2}} - \frac{\delta}{3(x_1^2 + x_2^2)^{3/2}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Conclusion

Introduction A new predictor algorithm Examples occosion occosion

A perturbed Kepler problem and the 2-stage Gauss method

1000 time steps on the time interval [0, 20], h = 0.02.

A perturbed Kepler problem and the 2-stage Gauss method

Fixed-point iterations, h = 0.02.

A perturbed Kepler problem and the 2-stage Gauss method

Fixed-point iterations, h = 0.02.

A perturbed Kepler problem and the 2-stage Gauss method

Fixed-point iterations, h = 0.02.

Introduction 0000	A new predictor algorithm	Examples 000000000	Time-rescaling ●00	Examples after time-rescaling	Conclusion 000
- T -1	12				

Time-rescaling

Variable stepsizes trick: use constant stepsizes *h* after time-rescaling

$$\frac{d}{d\tau}t = \rho(t,x), \qquad \frac{d}{d\tau}x = \rho(t,x)f(t,x)$$

which is autonomous in τ with $\rho \in C^M(\mathbb{R} \times \mathbb{R}^d, \mathbb{R}^+)$ when $f \in C^M$, for example

$$\rho(t,x) := \frac{1}{(\alpha + \|Bf(t,x))\|_q^r)^p}$$

with $\alpha > 0$, q = 2m even, r = jq with $j \in \mathbb{N}$, p > 0, and B nonsingular. In the original time t the value of $\alpha > 0$ is such that

$$\frac{h}{\alpha^p} = h_{\max}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 </l>

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

Example: Time-rescaling with the mipoint rule

$$t_{n+1} = t_n + h_n$$

$$x_{n+1} = x_n + h_n f\left(t_n + \frac{h_n}{2}, \frac{x_n + x_{n+1}}{2}\right)$$

$$h_n = h\rho\left(t_n + \frac{h_n}{2}, \frac{x_n + x_{n+1}}{2}\right)$$

◆□ > ◆□ > ◆臣 > ◆臣 > 「臣 = ∽) ९ ()

Introduction A new predictor algorithm Examples **Time-rescaling** Examples after time-rescaling Conclusion

Time-rescaling of Hamiltonian systems

We consider Hamiltonian systems

$$\frac{d}{dt}x = J\nabla_x H(t,x)$$

where J is skew-symmetric. Even for H = H(x)

$$\frac{d}{d\tau}x = \rho(x)J\nabla_x H(x)$$

is not Hamiltonian. Introducing (u, s) $(s(\tau) = t, u(\tau) = H(t, x(t)),$

$$\mathbf{H}(x, u, s) := \rho(s, x)(H(s, x) - u)$$

we obtain the extended autonomous Hamiltonian system

$$\frac{d}{d\tau}x = \rho(s,x)J\nabla_x H(s,x) + (H(s,x) - u)J\nabla_x \rho(s,x)$$

$$\frac{d}{d\tau}u = \rho(s,x)\partial_t H(s,x) + (H(s,x) - u)\partial_t \rho(s,x)$$

$$\frac{d}{d\tau}s = \rho(s,x)$$

Introduction A new predictor algorithm Examples Time-rescaling Examples after time-rescaling Conclusion 0000 00000000 000 000 000 000 000 000

The periodic Arenstorf orbit and the 2-stage Gauss method

4000 time steps on the rescaled time interval [0,50] in τ , Fixed-point iterations, $h_{\tau} = 0.0125$, $s(\tau = 50) \approx 34.81$. $\rho(t,x)$: B = I, $\alpha = 0$, q = 2, r = 2, p = 1/2.

The periodic Arenstorf orbit and the 2-stage Gauss method

4000 time steps on the rescaled time interval [0,50] in τ , Fixed-point iterations, $h_{\tau} = 0.0125$, $s(\tau = 50) \approx 34.81$. $\rho(t,x)$: B = I, $\alpha = 0$, q = 2, r = 2, p = 1/2. Introduction occorrector algorithm Examples Time-rescaling conclusion occorrector algorithm concorrector and the concern occorrector occor

The periodic Arenstorf orbit and the 2-stage Gauss method

4000 time steps on the rescaled time interval [0,50] in τ , Fixed-point iterations, $h_{\tau} = 0.0125$, $s(\tau = 50) \approx 34.81$. $\rho(t,x)$: B = I, $\alpha = 0$, q = 2, r = 2, p = 1/2, Introduction 0000 A new predictor algorithm 0000000000

Examples 000000000 Time-rescaling

Examples after time-rescaling

Conclusion 000

The periodic Arenstorf orbit and the 2-stage Gauss method

4000 time steps on the rescaled time interval [0,50] in τ . Fixed-point iterations, $h_{\tau} = 0.0125$, $s(\tau = 50) \approx 34.81$. $\rho(t, x)$: B = I, $\alpha = 0$, q = 2, r = 2, p = 1/2. Introduction 0000 A new predictor algorithm 0000000000

Examples 000000000 Time-rescaling

Examples after time-rescaling

Conclusion

The periodic Arenstorf orbit and the 2-stage Gauss method

4000 time steps on the rescaled time interval [0,50] in τ . Fixed-point iterations, $h_{\tau} = 0.0125$, $s(\tau = 50) \approx 34.81$. $\rho(t, x)$: B = I, $\alpha = 0$, q = 2, r = 2, p = 1/2,

The periodic Arenstorf orbit and the 2-stage Gauss method

Number of fixed-point iterations using:

- only $X_{n+1,j,0}^0 = x_n$ as the initial starting approximation: 18394.
- only the collocation polynomial as initial starting approximation, i.e., $L_{n+1,k=0} = 0$: 11326.
- the new predictor with $L_{n+1,k=0} = 1$ and $d'_{n+1,k=0} = 0$: 8248.
- the new predictor with $L_{n+1,k=0} = 2$ and $d'_{n+1,k=0} = 0$: 5977.

4000 time steps on the rescaled time interval [0, 50] in τ . Fixed-point iterations, $h_{\tau} = 0.0125$, $s(\tau = 50) \approx 34.81$. $\rho(t, x)$: B = I, $\alpha = 0$, q = 2, r = 2, p = 1/2.

A perturbed Kepler problem and the 2-stage Gauss method

4000 time steps on the rescaled time interval [0, 20] in τ . Fixed-point iterations, $h_{\tau} = 0.02$, $s(\tau = 20) \approx 13.182$. $\rho(t, x)$: B = I, $\alpha = 0$, q = 2, r = 2, p = 0.7/2.

A perturbed Kepler problem and the 2-stage Gauss method

4000 time steps on the rescaled time interval [0,20] in τ . Fixed-point iterations, $h_{\tau} = 0.02$, $s(\tau = 20) \approx 13.182$. $\rho(t,x)$: B = I, $\alpha = 0$, q = 2, r = 2, p = 0.7/2.

э

Introduction 0000 A new predictor algorithm 0000000000

Examples 000000000 Time-rescaling

Examples after time-rescaling 000000000

Conclusion 000

A perturbed Kepler problem and the 2-stage Gauss method

4000 time steps on the rescaled time interval [0, 20] in τ . Fixed-point iterations, $h_{\tau} = 0.02$, $s(\tau = 20) \approx 13.182$. $\rho(t, x)$: B = I, $\alpha = 0$, q = 2, r = 2, p = 0.7/2. Introduction 0000 A new predictor algorithm 0000000000

Examples 000000000 Time-rescaling

Examples after time-rescaling

Conclusion 000

A perturbed Kepler problem and the 2-stage Gauss method

4000 time steps on the rescaled time interval [0,20] in τ . Fixed-point iterations, $h_{\tau} = 0.02$, $s(\tau = 20) \approx 13.182$. $\rho(t,x)$: B = I, $\alpha = 0$, q = 2, r = 2, p = 0.7/2.

Introduction 0000	A new predictor algorithm	Examples 000000000	Time-rescaling 000	Examples after time-rescaling	Conclusion ●00
Conclus	sion				

A new general predictor algorithm is proposed:

- unifies, complements, and improves on current starting approximation algorithms
- can also improve FN iterates leading to a new mixed type of prediction/FN correction iterations
- uses exact errors of approximations from previous steps
- universal since applicable to any

$$R(h, X_n, X_{n+1}) = 0$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

- of arbitrarily high order
- embarrassingly parallel
- time-rescaling of the differential equations can address the efficiency issue

Introduction A new predictor algorithm Examples Time-rescaling Examples after time-rescaling Conclusion

Current/future work to be investigated/implemented

- adaptivity of highest levels $L_{n+1,k}$
- comparison of implicit versus explicit methods: implicit methods have high potential for parallelism and may be more efficient than explicit methods using fixed-point iteration or quasi-Newton methods such as Broyden iterations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めの(~

- stiff ODEs, parabolic PDEs, DAEs, integral equations, etc.
- parallel implementation
- other time-rescaling functions $\rho(t,x)$
- application to nonlinear optimization: $\min_{x \in X} f(x)$, $\dot{x} = -B(x)\nabla f(x)$ ("descent ODEs")

Introduction	A new predictor algorithm	Examples	Time-rescaling	Examples after time-rescaling	Conclusion
					000

THANK YOU FOR YOUR ATTENTION

MERCI POUR VOTRE ATTENTION