Deep Learning aided solutions for wave equations

Hieu-Huu Nguyen

University of Basel Department of Mathematics and Computer Science

Collaborator: Richard Tsai from UT-Austin

PinT 2022 at C.I.R.M July 11, 2022

Example text: "A pear cut into seven pieces arranged in a ring" Output images:

Example text: "A pear cut into seven pieces arranged in a ring" Output images:

Example text: "A pear cut into seven pieces arranged in a ring" Output images:

- A text-to-image model called Imagen
- consists of a text encoding model 11B parameters, trained on 807GB of text data
- consists of several U-Net models with another 2.5B parameters, trained on 850MB of text-image data

- A text-to-image model called Imagen
- consists of a text encoding model 11B parameters, trained on 807GB of text data
- consists of several U-Net models with another 2.5B parameters, trained on 850MB of text-image data

Reference: Saharia et al. 2022; Ramesh et al. 2022

- A text-to-image model called Imagen
- consists of a text encoding model 11B parameters, trained on 807GB of text data
- consists of several U-Net models with another 2.5B parameters, trained on 850MB of text-image data

Reference: Saharia et al. 2022; Ramesh et al. 2022

Other related models: DALL-E 2

Deep Learning models to PDE

$$\mathcal{L}_c[u] = f \text{ in } \Omega$$
$$u = g \text{ on } \partial \Omega$$

 Solve PDE by minimizing "Physics" loss, e.g. PINN, DeepOnet etc. See Song, Alkhalifah, and Waheed 2021; Jagtap and Karniadakis 2021

Deep Learning models to PDE

$$\mathcal{L}_c[u] = f \text{ in } \Omega$$
$$u = g \text{ on } \partial \Omega$$

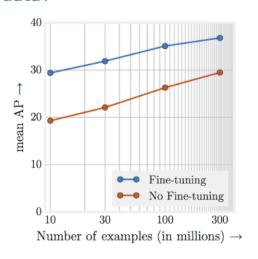
- Solve PDE by minimizing "Physics" loss, e.g. PINN, DeepOnet etc. See Song, Alkhalifah, and Waheed 2021; Jagtap and Karniadakis 2021
- Direct interpolation from pair of parameter-solution data PCA-net, FNO etc. See Z. Li et al. 2020; Kovachki et al. 2021

Deep Learning models to PDE

$$\mathcal{L}_c[u] = f \text{ in } \Omega$$
$$u = g \text{ on } \partial \Omega$$

- Solve PDE by minimizing "Physics" loss, e.g. PINN, DeepOnet etc. See Song, Alkhalifah, and Waheed 2021; Jagtap and Karniadakis 2021
- Direct interpolation from pair of parameter-solution data PCA-net, FNO etc. See Z. Li et al. 2020; Kovachki et al. 2021
- Augment standard numerical scheme Um et al. 2020;
 Siahkoohi, Louboutin, and Herrmann 2019; Kochkov et al. 2021

How much data?



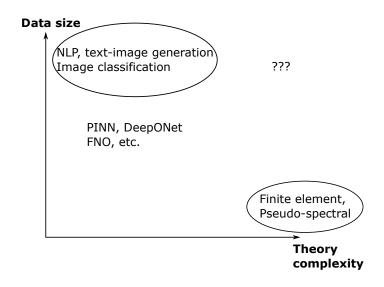
Object detection performance when pre-trained on different subsets of JFT-300M from scratch. x-axis is the dataset size in log-scale, y-axis is the detection performance in mAP@[.5,95] on COCO-minival subset.

Sun et al. 2017; De Hoop et al. 2022

How much data?

Sun et al. 2017; De Hoop et al. 2022

Theory-driven vs data-driven models



Content

Wave equation

Content

- Wave equation
- Deep learning aided parareal iteration

Content

- Wave equation
- Deep learning aided parareal iteration
- Numerical results

The second-order Wave Equation

Find solution
$$u=u(x,t)$$
 such that
$$\partial_{tt}u=c^2(x)\Delta u,\ x\in [-1,1]^2, 0\le t\le \mathcal{T},$$

The second-order Wave Equation

Find solution u = u(x, t) such that

$$\partial_{tt}u = c^2(x)\Delta u, \ x \in [-1,1]^2, 0 \le t \le T,$$

with initial conditions

$$u(x,0) = u_0(x),$$

$$\partial_t u(x,0) = p_0(x).$$

The second-order Wave Equation

Find solution u = u(x, t) such that

$$\partial_{tt} u = c^2(x) \Delta u, \ x \in [-1, 1]^2, 0 \le t \le T,$$

with initial conditions

$$u(x,0) = u_0(x),$$

$$\partial_t u(x,0) = p_0(x).$$

Boundary condition is periodic.

Parallel-in-time method

Parareal iteration

$$u_{n+1}^{k+1} = \mathcal{G}u_n^{k+1} + (\mathcal{F}u_n^k - \mathcal{G}u_n^k)$$

for k is the iteration and n is the time snapshot

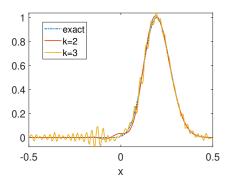
Parallel-in-time method

Parareal iteration

$$u_{n+1}^{k+1} = \mathcal{G}u_n^{k+1} + (\mathcal{F}u_n^k - \mathcal{G}u_n^k)$$

for k is the iteration and n is the time snapshot

Unstable iteration for solving hyperbolic equations!



• Introduce a neural network \mathcal{H}_{θ} to postprocess coarse solution

$$u_{n+1}^{k+1} = \frac{\mathcal{H}_{\theta}}{\mathcal{G}}u_n^{k+1} + (\mathcal{F}u_n^k - \frac{\mathcal{H}_{\theta}}{\mathcal{G}}u_n^k)$$

• Introduce a neural network \mathcal{H}_{θ} to postprocess coarse solution

$$u_{n+1}^{k+1} = \frac{\mathcal{H}_{\theta}}{\mathcal{G}}u_n^{k+1} + (\mathcal{F}u_n^k - \frac{\mathcal{H}_{\theta}}{\mathcal{G}}u_n^k)$$

Network architecture

• Introduce a neural network \mathcal{H}_{θ} to postprocess coarse solution

$$u_{n+1}^{k+1} = \frac{\mathcal{H}_{\theta}}{\mathcal{G}}u_n^{k+1} + (\mathcal{F}u_n^k - \frac{\mathcal{H}_{\theta}}{\mathcal{G}}u_n^k)$$

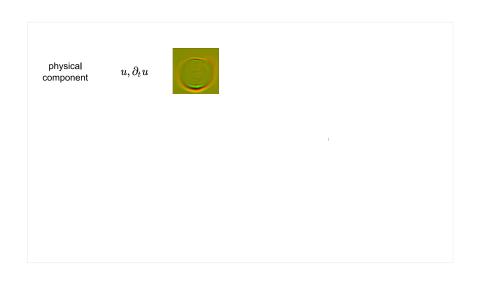
- Network architecture
- Generate training data

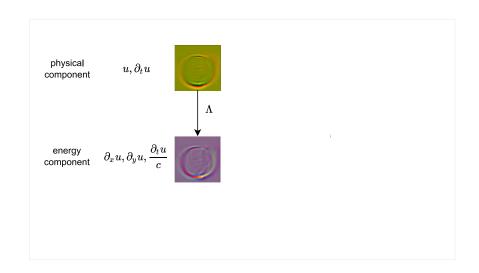
• Introduce a neural network \mathcal{H}_{θ} to postprocess coarse solution

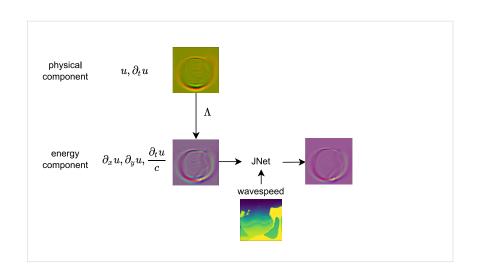
$$u_{n+1}^{k+1} = \frac{\mathcal{H}_{\theta}}{\mathcal{G}}u_n^{k+1} + (\mathcal{F}u_n^k - \frac{\mathcal{H}_{\theta}}{\mathcal{G}}u_n^k)$$

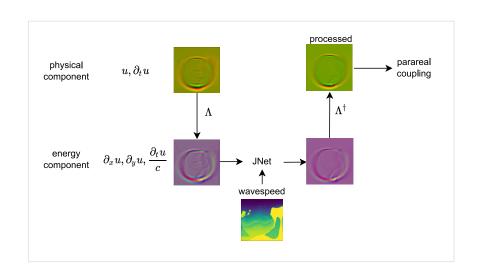
- Network architecture
- Generate training data
- Operate in the energy component

$$\|\nabla u\|_2^2 + \left\|\frac{\partial_t u}{c}\right\|_2^2 = constant$$

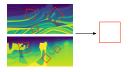




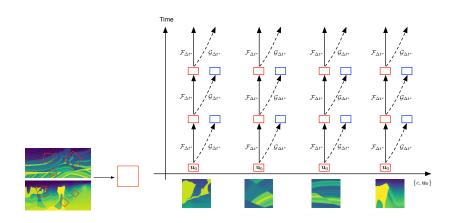




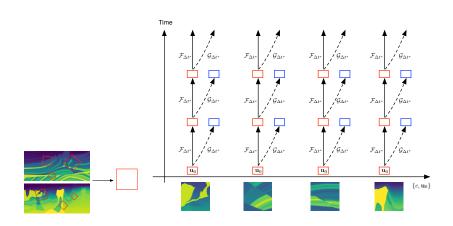
Data generation



Data generation

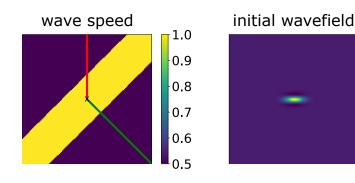


Data generation



Using the Procrustes parareal c.f. Nguyen and Tsai 2020 to generate data

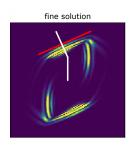
Numerical results - Refraction



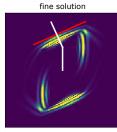
1.00

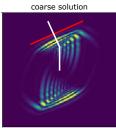
0.75

Numerical results - Refraction sequential correction

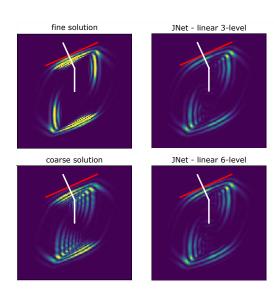


Numerical results - Refraction sequential correction

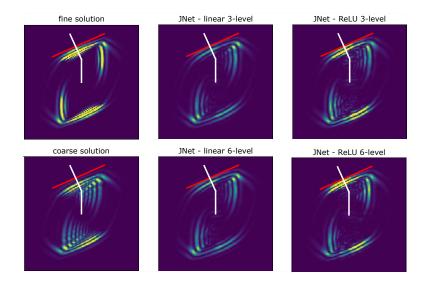


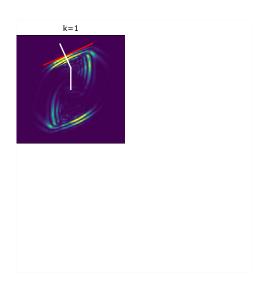


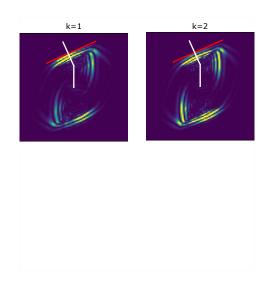
Numerical results - Refraction sequential correction

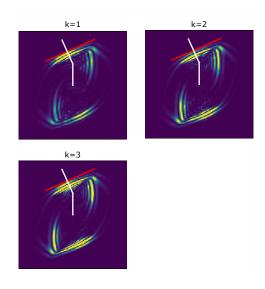


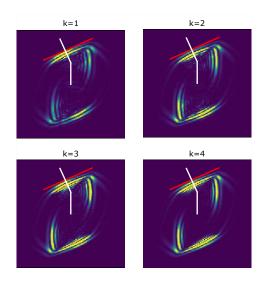
Numerical results - Refraction sequential correction



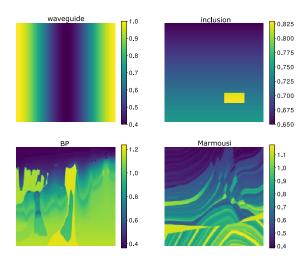




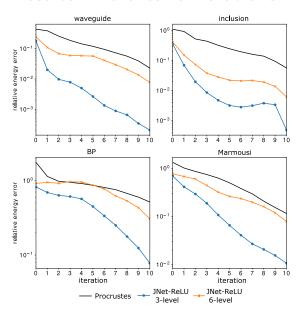




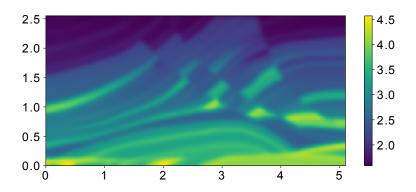
Numerical results - Parareal simulations



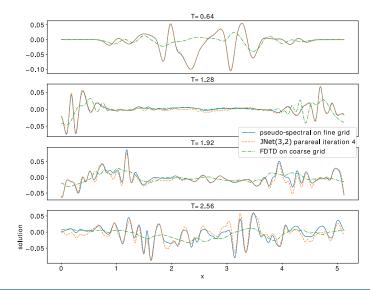
Numerical results - Parareal simulations



Numerical results - Parareal simulations on Marmousi model

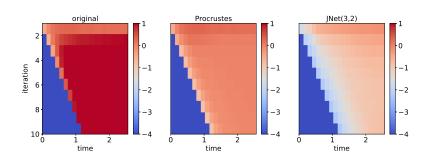


Numerical results - Parareal simulations on Marmousi model



Numerical results - Parareal simulations on Marmousi model

Energy error of solutions in log-10 scale



To sum up

- A deep neural network can stabilize parareal iteration for the wave equation
- Data must consist of stable solutions to train accurate models
- Agnostic to chosen fine/coarse numerical schemes
- Solution accuracy is gained thanks to the parareal coupling

Acknowledgement

- European Research Council Grant SWING
- National Science Foundation Grant DMS-1913209.
- Texas Advanced Computing Center