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Current state-of-the-art Deep Learning models

Example text: “A pear cut into seven pieces arranged in a ring”
Output images:
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Current state-of-the-art Deep Learning models

o A text-to-image model called Imagen

@ consists of a text encoding model 11B parameters, trained
on 807GB of text data

@ consists of several U-Net models with another 2.5B
parameters, trained on 850MB of text-image data
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Other related models: DALL-E 2
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Deep Learning models to PDE

Lfu = finQ
u = gonodf)

@ Solve PDE by minimizing "“Physics” loss, e.g. PINN,
DeepOnet etc. See Song, Alkhalifah, and Waheed 2021,
Jagtap and Karniadakis 2021
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Deep Learning models to PDE

Lfu = finQ
u = gonodf)

@ Solve PDE by minimizing "“Physics” loss, e.g. PINN,
DeepOnet etc. See Song, Alkhalifah, and Waheed 2021;
Jagtap and Karniadakis 2021

@ Direct interpolation from pair of parameter-solution data
PCA-net, FNO etc. See Z. Li et al. 2020; Kovachki et al.
2021

@ Augment standard numerical scheme Um et al. 2020;
Siahkoohi, Louboutin, and Herrmann 2019; Kochkov et al.
2021



How much data?
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Object detection performance when pre-trained on different subsets of JFT-300M from scratch. x-axis is
the dataset size in log-scale, y-axis is the detection performance in mAP@I.5,.95] on COCO-minival subset

Sun et al. 2017; De Hoop et al. 2022



How much data?

~e- PCA-Net = DeepONet -+ PARA-Net -=+- FNO
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Sun et al. 2017; De Hoop et al. 2022



Theory-driven vs data-driven models

Data size

LP, text-image generation
mage classification

?7??

PINN, DeepONet
FNO, etc.

Finite element,
Pseudo-spectral

Theory
complexity
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@ Wave equation
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The second-order Wave Equation

Find solution u = u(x, t) such that

Onu = 2(x)Au, x € [-1,17,0<t< T,
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The second-order Wave Equation

Find solution u = u(x, t) such that
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with initial conditions

u(x,0) = wup(x),
Oru(x,0) = po(x).
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The second-order Wave Equation

Find solution u = u(x, t) such that
Owu = (x)Au, xe[-1,12,0<t< T,
with initial conditions

u(x,0) = wup(x),

Oru(x,0) = po(x).

Boundary condition is periodic.
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Parallel-in-time method

o Parareal iteration
uptt = Guftt + (Ful — Guy)

for k is the iteration and n is the time snapshot
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Parallel-in-time method

o Parareal iteration
uptt = Gutt + (Ful — Guy)

for k is the iteration and n is the time snapshot

o Unstable iteration for solving hyperbolic equations!




DL-aided parareal

@ Introduce a neural network 7/, to postprocess coarse solution

ukt = HoGuf ™ + (Fuf — H,Guf)
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DL-aided parareal

@ Introduce a neural network 7/, to postprocess coarse solution

uply = HoGuy™ + (Fuy = HoGup)

» Network architecture
» Generate training data

o Operate in the energy component
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JNet

similar to U-Net c.f. Ronneberger, Fischer, and Brox 2015
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similar to U-Net c.f. Ronneberger, Fischer, and Brox 2015
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JNet

similar to U-Net c.f. Ronneberger, Fischer, and Brox 2015
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Data generation
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Data generation
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Data generation
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Using the Procrustes parareal c.f. Nguyen and Tsai 2020 to
generate data
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Numerical results - Refraction

wave speed initial wavefield
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Numerical results - Refraction sequential correction

fine solution
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Numerical results - Refraction sequential correction

fine solution INet - linear 3-level




Numerical results - Refraction sequential correction

fine solution JNet - linear 3-level JNet - ReLU 3-level
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Numerical results - Refraction parareal correction
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Numerical results - Parareal simulations
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Numerical results - Parareal simulations

relative energy error
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Numerical results - Parareal simulations on
Marmousi model
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Numerical results - Parareal simulations on
Marmousi model
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Numerical results - Parareal simulations on
Marmousi model

Energy error of solutions in log-10 scale
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To sum up

@ A deep neural network can stabilize parareal iteration for the
wave equation

@ Data must consist of stable solutions to train accurate
models

@ Agnostic to chosen fine/coarse numerical schemes

@ Solution accuracy is gained thanks to the parareal coupling
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