
Task graph-based performance analysis of PinT methods

Jens Hahne 1

In collaboration with: Stephanie Friedhoff1 and Matthias Bolten2

1Bergische Universität Wuppertal, Germany

Introduction

I Goals:
I Performance model for PinT methods
I Static load balacing
I Dynamic load balancing

I Challenges:
I More frameworks than methods (variations with same idea)
I Large parameter space for each method

I Approach:
I Task-graph based on data-driven formulation of algorithms
I Allows to cover any implementation using schedules of the tasks
I Well known tool for load balancing techniques
I Theoretical lower runtime bound based entirely on the algorithm

Task graph-based performance analysis of PinT methods
Jens Hahne 1/21

Introduction

I Goals:
I Performance model for PinT methods
I Static load balacing
I Dynamic load balancing

I Challenges:
I More frameworks than methods (variations with same idea)
I Large parameter space for each method

I Approach:
I Task-graph based on data-driven formulation of algorithms
I Allows to cover any implementation using schedules of the tasks
I Well known tool for load balancing techniques
I Theoretical lower runtime bound based entirely on the algorithm

Task graph-based performance analysis of PinT methods
Jens Hahne 1/21

Introduction

I Goals:
I Performance model for PinT methods
I Static load balacing
I Dynamic load balancing

I Challenges:
I More frameworks than methods (variations with same idea)
I Large parameter space for each method

I Approach:
I Task-graph based on data-driven formulation of algorithms
I Allows to cover any implementation using schedules of the tasks
I Well known tool for load balancing techniques
I Theoretical lower runtime bound based entirely on the algorithm

Task graph-based performance analysis of PinT methods
Jens Hahne 1/21

Introduction

I Goals:
I Performance model for PinT methods
I Static load balacing
I Dynamic load balancing

I Challenges:
I More frameworks than methods (variations with same idea)
I Large parameter space for each method

I Approach:
I Task-graph based on data-driven formulation of algorithms
I Allows to cover any implementation using schedules of the tasks
I Well known tool for load balancing techniques
I Theoretical lower runtime bound based entirely on the algorithm

Task graph-based performance analysis of PinT methods
Jens Hahne 1/21

Parareal

I Decompose [0, T] into N non-overlapping intervals

0 = T0 < T1 < ... < TN = T

I Two propagation operators:
I F expensive and high accurate
I G cheap but less accurate

I Initalization:

u0
n = G(Tn, Tn−1,u

0
n−1) for n = 1, ..., N,

I Parareal iteration:

uk+1
n = F(Tn, Tn−1,u

k
n−1)+G(Tn, Tn−1,u

k+1
n−1)−G(Tn, Tn−1,u

k
n−1)

for n = 1, ..., N and k = 0, ...

Task graph-based performance analysis of PinT methods
Jens Hahne 2/21

Parareal - data driven formulation

Algorithm: Parareal

1 u0
0 ← u0

2 for i← 1 to N . Compute initial guess

3 ũ0
i ← G(Ti, Ti−1,u

0
i−1)

4 u0
i ← ũ0

i

5 for k ← 1 to N . Parareal iterations

6 foreach i ∈ {k, k + 1, . . . , N} do
7 ûk−1

i ← F(Ti, Ti−1,u
k−1
i−1)

8 for i← k to N

9 ũk
i ← G(Ti, Ti−1,u

min(k,i−1)
i−1)

10 uk
i ← ũk

i + ûk−1
i − ũk−1

i

I Typically only K � N iterations required

Task graph-based performance analysis of PinT methods
Jens Hahne 3/21

PFASST

I Parallel Full Approximation Scheme in Space and Time (PFASST)

I Sort of Parareal approach, but ...
I Deferred correction approach instead of fine and coarse propagator
I Arbitrary hierarchy of levels
I Coarse level problems are modified using a space-time FAS correction

I Multigrid method
I Type of space-time multigrid method
I ”Smoother” in the time direction is a spectral deferred correction

(SDC) sweep

I Spectral deferred correction methods
I Pipelined version of multi-level SDC with each time slice performing

SDC sweeps in parallel

Task graph-based performance analysis of PinT methods
Jens Hahne 4/21

PFASST

I Parallel Full Approximation Scheme in Space and Time (PFASST)
I Sort of Parareal approach, but ...

I Deferred correction approach instead of fine and coarse propagator
I Arbitrary hierarchy of levels
I Coarse level problems are modified using a space-time FAS correction

I Multigrid method
I Type of space-time multigrid method
I ”Smoother” in the time direction is a spectral deferred correction

(SDC) sweep

I Spectral deferred correction methods
I Pipelined version of multi-level SDC with each time slice performing

SDC sweeps in parallel

Task graph-based performance analysis of PinT methods
Jens Hahne 4/21

PFASST

I Parallel Full Approximation Scheme in Space and Time (PFASST)
I Sort of Parareal approach, but ...

I Deferred correction approach instead of fine and coarse propagator
I Arbitrary hierarchy of levels
I Coarse level problems are modified using a space-time FAS correction

I Multigrid method
I Type of space-time multigrid method
I ”Smoother” in the time direction is a spectral deferred correction

(SDC) sweep

I Spectral deferred correction methods
I Pipelined version of multi-level SDC with each time slice performing

SDC sweeps in parallel

Task graph-based performance analysis of PinT methods
Jens Hahne 4/21

PFASST

I Parallel Full Approximation Scheme in Space and Time (PFASST)
I Sort of Parareal approach, but ...

I Deferred correction approach instead of fine and coarse propagator
I Arbitrary hierarchy of levels
I Coarse level problems are modified using a space-time FAS correction

I Multigrid method
I Type of space-time multigrid method
I ”Smoother” in the time direction is a spectral deferred correction

(SDC) sweep

I Spectral deferred correction methods
I Pipelined version of multi-level SDC with each time slice performing

SDC sweeps in parallel

Task graph-based performance analysis of PinT methods
Jens Hahne 4/21

Multigrid-reduction-in-time (MGRIT)

relaxation

restriction interpolation

I Reduction-based time-multigrid method

I In specialized two-level setting: MGRIT ≡ Parareal

Task graph-based performance analysis of PinT methods
Jens Hahne 5/21

Stopping criterion

I Stopping criterion required for all three iterative methods

I Measures the quality of the solution
I Various criteria exist:

I Jump of the approximation between two iterations
I Finest-level information
I Residual at single time points
I Space-time residual
I ...

I Criteria hard to compare
I High level categorization into two groups:

I Local: Measurement of solution quality at individual points in time
I Global: Global measurement of solution quality

I Both can be formulated in a data-driven formulation

Task graph-based performance analysis of PinT methods
Jens Hahne 6/21

Stopping criterion

I Stopping criterion required for all three iterative methods

I Measures the quality of the solution

I Various criteria exist:
I Jump of the approximation between two iterations
I Finest-level information
I Residual at single time points
I Space-time residual
I ...

I Criteria hard to compare
I High level categorization into two groups:

I Local: Measurement of solution quality at individual points in time
I Global: Global measurement of solution quality

I Both can be formulated in a data-driven formulation

Task graph-based performance analysis of PinT methods
Jens Hahne 6/21

Stopping criterion

I Stopping criterion required for all three iterative methods

I Measures the quality of the solution
I Various criteria exist:

I Jump of the approximation between two iterations
I Finest-level information
I Residual at single time points
I Space-time residual
I ...

I Criteria hard to compare
I High level categorization into two groups:

I Local: Measurement of solution quality at individual points in time
I Global: Global measurement of solution quality

I Both can be formulated in a data-driven formulation

Task graph-based performance analysis of PinT methods
Jens Hahne 6/21

Stopping criterion

I Stopping criterion required for all three iterative methods

I Measures the quality of the solution
I Various criteria exist:

I Jump of the approximation between two iterations
I Finest-level information
I Residual at single time points
I Space-time residual
I ...

I Criteria hard to compare

I High level categorization into two groups:
I Local: Measurement of solution quality at individual points in time
I Global: Global measurement of solution quality

I Both can be formulated in a data-driven formulation

Task graph-based performance analysis of PinT methods
Jens Hahne 6/21

Stopping criterion

I Stopping criterion required for all three iterative methods

I Measures the quality of the solution
I Various criteria exist:

I Jump of the approximation between two iterations
I Finest-level information
I Residual at single time points
I Space-time residual
I ...

I Criteria hard to compare
I High level categorization into two groups:

I Local: Measurement of solution quality at individual points in time
I Global: Global measurement of solution quality

I Both can be formulated in a data-driven formulation

Task graph-based performance analysis of PinT methods
Jens Hahne 6/21

Stopping criterion

I Stopping criterion required for all three iterative methods

I Measures the quality of the solution
I Various criteria exist:

I Jump of the approximation between two iterations
I Finest-level information
I Residual at single time points
I Space-time residual
I ...

I Criteria hard to compare
I High level categorization into two groups:

I Local: Measurement of solution quality at individual points in time
I Global: Global measurement of solution quality

I Both can be formulated in a data-driven formulation

Task graph-based performance analysis of PinT methods
Jens Hahne 6/21

Task Graph with communication costs

I Directed acyclic graph G = (V,E, ω, c)

I Vertices V = {v1, ...vn}
I Represent tasks

I Directed edges E ⊆ V × V
I Represent dependencies of tasks

I Node weights ω : V → R+
0

I Represent computational cost of tasks

I Edge weights c : E → R+
0

I Represent communication cost between tasks

Task graph-based performance analysis of PinT methods
Jens Hahne 7/21

Task Graph with communication costs

I Directed acyclic graph G = (V,E, ω, c)

I Vertices V = {v1, ...vn}
I Represent tasks

I Directed edges E ⊆ V × V
I Represent dependencies of tasks

I Node weights ω : V → R+
0

I Represent computational cost of tasks

I Edge weights c : E → R+
0

I Represent communication cost between tasks

c(v1, v2) c(v1, v3)

c(v2, v4) c(v3, v4)

v1

ω(v1)

v2

ω(v2)

v3

ω(v3)

v4

ω(v4)

Task graph-based performance analysis of PinT methods
Jens Hahne 7/21

Task Graph with communication costs

I Directed acyclic graph G = (V,E, ω, c)

I Vertices V = {v1, ...vn}
I Represent tasks

I Directed edges E ⊆ V × V
I Represent dependencies of tasks

I Node weights ω : V → R+
0

I Represent computational cost of tasks

I Edge weights c : E → R+
0

I Represent communication cost between tasks

c(v1, v2) c(v1, v3)

c(v2, v4) c(v3, v4)

v1

ω(v1)

v2

ω(v2)

v3

ω(v3)

v4

ω(v4)

Task graph-based performance analysis of PinT methods
Jens Hahne 7/21

Task Graph with communication costs

I Directed acyclic graph G = (V,E, ω, c)

I Vertices V = {v1, ...vn}
I Represent tasks

I Directed edges E ⊆ V × V
I Represent dependencies of tasks

I Node weights ω : V → R+
0

I Represent computational cost of tasks

I Edge weights c : E → R+
0

I Represent communication cost between tasks

c(v1, v2) c(v1, v3)

c(v2, v4) c(v3, v4)

v1
ω(v1)

v2
ω(v2)

v3
ω(v3)

v4
ω(v4)

Task graph-based performance analysis of PinT methods
Jens Hahne 7/21

Task Graph with communication costs

I Directed acyclic graph G = (V,E, ω, c)

I Vertices V = {v1, ...vn}
I Represent tasks

I Directed edges E ⊆ V × V
I Represent dependencies of tasks

I Node weights ω : V → R+
0

I Represent computational cost of tasks

I Edge weights c : E → R+
0

I Represent communication cost between tasks

c(v1, v2) c(v1, v3)

c(v2, v4) c(v3, v4)

v1
ω(v1)

v2
ω(v2)

v3
ω(v3)

v4
ω(v4)

Task graph-based performance analysis of PinT methods
Jens Hahne 7/21

Allocation and schedule

I P = {p1, . . . , pNP
}

I Set of NP processes

I Allocation function A : V → P
I Assigns each task in V to a process

I Schedule S : V → R+
0

I Assigns a starting point to each task, subject to the constraints:
I ∀(vi, vj) ∈ E,S(vj) ≥ S(vi) + ω(vi) + c(vi, vj)
I ∀vi, vj ∈ V, vi 6= vj , A(vi) = A(vj)⇒ S(vi) ≥

S(vj) + ω(vj) ∨ S(vj) ≥ S(vi) + ω(vi)

I Makespan or runtime of a given allocation and schedule:

max
v∈V

(S(v) + ω(v))

I If c(e) = 0 ∀e ∈ E: Minimum possible makespan for NP =∞ is
longest path within the graph

Task graph-based performance analysis of PinT methods
Jens Hahne 8/21

Allocation and schedule

I P = {p1, . . . , pNP
}

I Set of NP processes

I Allocation function A : V → P
I Assigns each task in V to a process

I Schedule S : V → R+
0

I Assigns a starting point to each task, subject to the constraints:
I ∀(vi, vj) ∈ E,S(vj) ≥ S(vi) + ω(vi) + c(vi, vj)
I ∀vi, vj ∈ V, vi 6= vj , A(vi) = A(vj)⇒ S(vi) ≥

S(vj) + ω(vj) ∨ S(vj) ≥ S(vi) + ω(vi)

I Makespan or runtime of a given allocation and schedule:

max
v∈V

(S(v) + ω(v))

I If c(e) = 0 ∀e ∈ E: Minimum possible makespan for NP =∞ is
longest path within the graph

Task graph-based performance analysis of PinT methods
Jens Hahne 8/21

Allocation and schedule

I P = {p1, . . . , pNP
}

I Set of NP processes

I Allocation function A : V → P
I Assigns each task in V to a process

I Schedule S : V → R+
0

I Assigns a starting point to each task, subject to the constraints:
I ∀(vi, vj) ∈ E,S(vj) ≥ S(vi) + ω(vi) + c(vi, vj)
I ∀vi, vj ∈ V, vi 6= vj , A(vi) = A(vj)⇒ S(vi) ≥

S(vj) + ω(vj) ∨ S(vj) ≥ S(vi) + ω(vi)

I Makespan or runtime of a given allocation and schedule:

max
v∈V

(S(v) + ω(v))

I If c(e) = 0 ∀e ∈ E: Minimum possible makespan for NP =∞ is
longest path within the graph

Task graph-based performance analysis of PinT methods
Jens Hahne 8/21

Allocation and schedule

I P = {p1, . . . , pNP
}

I Set of NP processes

I Allocation function A : V → P
I Assigns each task in V to a process

I Schedule S : V → R+
0

I Assigns a starting point to each task, subject to the constraints:
I ∀(vi, vj) ∈ E,S(vj) ≥ S(vi) + ω(vi) + c(vi, vj)
I ∀vi, vj ∈ V, vi 6= vj , A(vi) = A(vj)⇒ S(vi) ≥

S(vj) + ω(vj) ∨ S(vj) ≥ S(vi) + ω(vi)

I Makespan or runtime of a given allocation and schedule:

max
v∈V

(S(v) + ω(v))

I If c(e) = 0 ∀e ∈ E: Minimum possible makespan for NP =∞ is
longest path within the graph

Task graph-based performance analysis of PinT methods
Jens Hahne 8/21

Allocation and schedule

I P = {p1, . . . , pNP
}

I Set of NP processes

I Allocation function A : V → P
I Assigns each task in V to a process

I Schedule S : V → R+
0

I Assigns a starting point to each task, subject to the constraints:
I ∀(vi, vj) ∈ E,S(vj) ≥ S(vi) + ω(vi) + c(vi, vj)
I ∀vi, vj ∈ V, vi 6= vj , A(vi) = A(vj)⇒ S(vi) ≥

S(vj) + ω(vj) ∨ S(vj) ≥ S(vi) + ω(vi)

I Makespan or runtime of a given allocation and schedule:

max
v∈V

(S(v) + ω(v))

I If c(e) = 0 ∀e ∈ E: Minimum possible makespan for NP =∞ is
longest path within the graph

Task graph-based performance analysis of PinT methods
Jens Hahne 8/21

Schedule example

0 0

0

0 00

v1
1

v2
2

v4
2

v3
2

v5
1

I Makespan of schedule: 6

I Longest path {v1 → v2 → v5} ⇒ minimal parallel runtime: 4

Task graph-based performance analysis of PinT methods
Jens Hahne 9/21

Schedule example

0 0

0

0 00

v1
1

v2
2

v4
2

v3
2

v5
1

I NP = 2

I

A(v)

v1 → p1
v2 → p1
v3 → p2
v4 → p2
v5 → p1

I Makespan of schedule: 6

I Longest path {v1 → v2 → v5} ⇒ minimal parallel runtime: 4

Task graph-based performance analysis of PinT methods
Jens Hahne 9/21

Schedule example

0 0

0

0 00

v1
1

v2
2

v4
2

v3
2

v5
1

I NP = 2

I

A(v)

v1 → p1
v2 → p1
v3 → p2
v4 → p2
v5 → p1

0 2 4 6 8

p1

p2

Runtime

P
ro

ce
ss

es

I Makespan of schedule: 6

I Longest path {v1 → v2 → v5} ⇒ minimal parallel runtime: 4

Task graph-based performance analysis of PinT methods
Jens Hahne 9/21

Schedule example

0 0

0

0 00

v1
1

v2
2

v4
2

v3
2

v5
1

I NP = 2

I

A(v)

v1 → p1
v2 → p1
v3 → p2
v4 → p2
v5 → p1

0 2 4 6 8

p1

p2

v1

Runtime

P
ro

ce
ss

es

I Makespan of schedule: 6

I Longest path {v1 → v2 → v5} ⇒ minimal parallel runtime: 4

Task graph-based performance analysis of PinT methods
Jens Hahne 9/21

Schedule example

0 0

0

0 00

v1
1

v2
2

v4
2

v3
2

v5
1

I NP = 2

I

A(v)

v1 → p1
v2 → p1
v3 → p2
v4 → p2
v5 → p1

0 2 4 6 8

p1

p2

v1 v2

Runtime

P
ro

ce
ss

es

I Makespan of schedule: 6

I Longest path {v1 → v2 → v5} ⇒ minimal parallel runtime: 4

Task graph-based performance analysis of PinT methods
Jens Hahne 9/21

Schedule example

0 0

0

0 00

v1
1

v2
2

v4
2

v3
2

v5
1

I NP = 2

I

A(v)

v1 → p1
v2 → p1
v3 → p2
v4 → p2
v5 → p1

0 2 4 6 8

p1

p2

v1 v2

v3

Runtime

P
ro

ce
ss

es

I Makespan of schedule: 6

I Longest path {v1 → v2 → v5} ⇒ minimal parallel runtime: 4

Task graph-based performance analysis of PinT methods
Jens Hahne 9/21

Schedule example

0 0

0

0 00

v1
1

v2
2

v4
2

v3
2

v5
1

I NP = 2

I

A(v)

v1 → p1
v2 → p1
v3 → p2
v4 → p2
v5 → p1

0 2 4 6 8

p1

p2

v1 v2

v3 v4

Runtime

P
ro

ce
ss

es

I Makespan of schedule: 6

I Longest path {v1 → v2 → v5} ⇒ minimal parallel runtime: 4

Task graph-based performance analysis of PinT methods
Jens Hahne 9/21

Schedule example

0 0

0

0 00

v1
1

v2
2

v4
2

v3
2

v5
1

I NP = 2

I

A(v)

v1 → p1
v2 → p1
v3 → p2
v4 → p2
v5 → p1

0 2 4 6 8

p1

p2

v1 v2 v5

v3 v4

Runtime

P
ro

ce
ss

es

I Makespan of schedule: 6

I Longest path {v1 → v2 → v5} ⇒ minimal parallel runtime: 4

Task graph-based performance analysis of PinT methods
Jens Hahne 9/21

Schedule example

0 0

0

0 00

v1
1

v2
2

v4
2

v3
2

v5
1

I NP = 2

I

A(v)

v1 → p1
v2 → p1
v3 → p2
v4 → p2
v5 → p1

0 2 4 6 8

p1

p2

v1 v2 v5

v3 v4

Runtime

P
ro

ce
ss

es

I Makespan of schedule: 6

I Longest path {v1 → v2 → v5} ⇒ minimal parallel runtime: 4

Task graph-based performance analysis of PinT methods
Jens Hahne 9/21

Schedule example

0 0

0

0 00

v1
1

v2
2

v4
2

v3
2

v5
1

I NP = 2

I

A(v)

v1 → p1
v2 → p1
v3 → p2
v4 → p2
v5 → p1

0 2 4 6 8

p1

p2

v1 v2 v5

v3 v4

Runtime

P
ro

ce
ss

es

I Makespan of schedule: 6

I Longest path {v1 → v2 → v5} ⇒ minimal parallel runtime: 4

Task graph-based performance analysis of PinT methods
Jens Hahne 9/21

Task graph for Parareal N = 3

Algorithm: Parareal
1 u0

0 ← u0

2 for i← 1 to N . Initial guess

3 ũ0
i ← G(Ti, Ti−1,u

0
i−1)

4 u0
i ← ũ0

i

5 ...

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21

Task graph for Parareal N = 3

Algorithm: Parareal

1 u0
0 ← u0

2 for i← 1 to N . Initial guess

3 ũ0
i ← G(Ti, Ti−1,u

0
i−1)

4 u0
i ← ũ0

i

5 ...

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21

Task graph for Parareal N = 3

Algorithm: Parareal
1 u0

0 ← u0

2 for i← 1 to N . i = 1

3 ũ0
i ← G(Ti, Ti−1,u

0
i−1)

4 u0
i ← ũ0

i

5 ...

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21

Task graph for Parareal N = 3

Algorithm: Parareal
1 u0

0 ← u0

2 for i← 1 to N . i = 1
3 ũ0

i ← G(Ti, Ti−1,u
0
i−1)

4 u0
i ← ũ0

i

5 ...

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21

Task graph for Parareal N = 3

Algorithm: Parareal
1 u0

0 ← u0

2 for i← 1 to N . i = 2

3 ũ0
i ← G(Ti, Ti−1,u

0
i−1)

4 u0
i ← ũ0

i

5 ...

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21

Task graph for Parareal N = 3

Algorithm: Parareal
1 u0

0 ← u0

2 for i← 1 to N . i = 2
3 ũ0

i ← G(Ti, Ti−1,u
0
i−1)

4 u0
i ← ũ0

i

5 ...

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21

Task graph for Parareal N = 3

Algorithm: Parareal
1 u0

0 ← u0

2 for i← 1 to N . i = 3

3 ũ0
i ← G(Ti, Ti−1,u

0
i−1)

4 u0
i ← ũ0

i

5 ...

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21

Task graph for Parareal N = 3

Algorithm: Parareal
1 u0

0 ← u0

2 for i← 1 to N . i = 3
3 ũ0

i ← G(Ti, Ti−1,u
0
i−1)

4 u0
i ← ũ0

i

5 ...

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21

Task graph for Parareal N = 3

5 for k ← 1 to N . k = 1
6 foreach i ∈ {k, k + 1, . . . , N} do
7 ûk−1

i ← F(Ti, Ti−1,u
k−1
i−1)

8 for i← k to N

9 ũk
i ← G(Ti, Ti−1,u

min(k,i−1)
i−1)

10 uk
i ← ũk

i + ûk−1
i − ũk−1

i

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21

Task graph for Parareal N = 3

5 for k ← 1 to N . k = 1
6 foreach i ∈ {k, k + 1, . . . , N} do
7 ûk−1

i ← F(Ti, Ti−1,u
k−1
i−1)

8 for i← k to N . i = 1

9 ũk
i ← G(Ti, Ti−1,u

min(k,i−1)
i−1)

10 uk
i ← ũk

i + ûk−1
i − ũk−1

i

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21

Task graph for Parareal N = 3

5 for k ← 1 to N . k = 1
6 foreach i ∈ {k, k + 1, . . . , N} do
7 ûk−1

i ← F(Ti, Ti−1,u
k−1
i−1)

8 for i← k to N . i = 1

9 ũk
i ← G(Ti, Ti−1,u

min(k,i−1)
i−1)

10 uk
i ← ũk

i + ûk−1
i − ũk−1

i

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21

Task graph for Parareal N = 3

5 for k ← 1 to N . k = 1
6 foreach i ∈ {k, k + 1, . . . , N} do
7 ûk−1

i ← F(Ti, Ti−1,u
k−1
i−1)

8 for i← k to N . i = 2

9 ũk
i ← G(Ti, Ti−1,u

min(k,i−1)
i−1)

10 uk
i ← ũk

i + ûk−1
i − ũk−1

i

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21

Task graph for Parareal N = 3

5 for k ← 1 to N . k = 1
6 foreach i ∈ {k, k + 1, . . . , N} do
7 ûk−1

i ← F(Ti, Ti−1,u
k−1
i−1)

8 for i← k to N . i = 2

9 ũk
i ← G(Ti, Ti−1,u

min(k,i−1)
i−1)

10 uk
i ← ũk

i + ûk−1
i − ũk−1

i

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21

Task graph for Parareal N = 3

5 for k ← 1 to N . k = 1
6 foreach i ∈ {k, k + 1, . . . , N} do
7 ûk−1

i ← F(Ti, Ti−1,u
k−1
i−1)

8 for i← k to N . i = 3

9 ũk
i ← G(Ti, Ti−1,u

min(k,i−1)
i−1)

10 uk
i ← ũk

i + ûk−1
i − ũk−1

i

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21

Task graph for Parareal N = 3

5 for k ← 1 to N . k = 1
6 foreach i ∈ {k, k + 1, . . . , N} do
7 ûk−1

i ← F(Ti, Ti−1,u
k−1
i−1)

8 for i← k to N . i = 3

9 ũk
i ← G(Ti, Ti−1,u

min(k,i−1)
i−1)

10 uk
i ← ũk

i + ûk−1
i − ũk−1

i

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21

Task graph for Parareal N = 3

5 for k ← 1 to N . k = 3
6 foreach i ∈ {k, k + 1, . . . , N} do
7 ûk−1

i ← F(Ti, Ti−1,u
k−1
i−1)

8 for i← k to N . i = 3

9 ũk
i ← G(Ti, Ti−1,u

min(k,i−1)
i−1)

10 uk
i ← ũk

i + ûk−1
i − ũk−1

i

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21

PinT parallelization strategies

I Typically static allocation of time points to processes

I Scheduling based on this allocation
I Two types of allocation:

I Block-by-block basis (each block roughly same number of time
points)

I Windowing with block-by-block (applying method multiple times)

I Example: N = 9, NP = 3

Task graph-based performance analysis of PinT methods
Jens Hahne 11/21

PinT parallelization strategies

I Typically static allocation of time points to processes

I Scheduling based on this allocation

I Two types of allocation:

I Block-by-block basis (each block roughly same number of time
points)

I Windowing with block-by-block (applying method multiple times)

I Example: N = 9, NP = 3

Task graph-based performance analysis of PinT methods
Jens Hahne 11/21

PinT parallelization strategies

I Typically static allocation of time points to processes

I Scheduling based on this allocation
I Two types of allocation:

I Block-by-block basis (each block roughly same number of time
points)

I Windowing with block-by-block (applying method multiple times)

I Example: N = 9, NP = 3

Task graph-based performance analysis of PinT methods
Jens Hahne 11/21

PinT parallelization strategies

I Typically static allocation of time points to processes

I Scheduling based on this allocation
I Two types of allocation:

I Block-by-block basis (each block roughly same number of time
points)

I Windowing with block-by-block (applying method multiple times)

I Example: N = 9, NP = 3

Process 1

Process 2

Process 3T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

Task graph-based performance analysis of PinT methods
Jens Hahne 11/21

PinT parallelization strategies

I Typically static allocation of time points to processes

I Scheduling based on this allocation
I Two types of allocation:

I Block-by-block basis (each block roughly same number of time
points)

I Windowing with block-by-block (applying method multiple times)

I Example: N = 9, NP = 3

Window 1

Window 2

Window 3

Process 1

Process 2

Process 3

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
Task graph-based performance analysis of PinT methods
Jens Hahne 11/21

Weighting of tasks and communication

I How to set the costs?
I Two ways:

I Theoretical model:

+ Exact and theoretical analysis
+ Independent of implementation
− Huge effort
− Not very flexible, models one problem

I Measure runtimes of operations:

• Measure any type of operation
+ Easy and flexible
− Requires implementation

I Decision depends on use case

c(v1, v2)

v1
ω(v1)

v2
ω(v2)

?

Task graph-based performance analysis of PinT methods
Jens Hahne 12/21

Weighting of tasks and communication

I How to set the costs?

I Two ways:
I Theoretical model:

+ Exact and theoretical analysis
+ Independent of implementation
− Huge effort
− Not very flexible, models one problem

I Measure runtimes of operations:

• Measure any type of operation
+ Easy and flexible
− Requires implementation

I Decision depends on use case

c(v1, v2)

v1
ω(v1)

v2
ω(v2)

?

Task graph-based performance analysis of PinT methods
Jens Hahne 12/21

Weighting of tasks and communication

I How to set the costs?
I Two ways:

I Theoretical model:

+ Exact and theoretical analysis
+ Independent of implementation
− Huge effort
− Not very flexible, models one problem

I Measure runtimes of operations:

• Measure any type of operation
+ Easy and flexible
− Requires implementation

I Decision depends on use case

c(v1, v2)

v1
ω(v1)

v2
ω(v2)

?

Task graph-based performance analysis of PinT methods
Jens Hahne 12/21

Weighting of tasks and communication

I How to set the costs?
I Two ways:

I Theoretical model:

+ Exact and theoretical analysis
+ Independent of implementation
− Huge effort
− Not very flexible, models one problem

I Measure runtimes of operations:

• Measure any type of operation
+ Easy and flexible
− Requires implementation

I Decision depends on use case

c(v1, v2)

v1
ω(v1)

v2
ω(v2)

?

Task graph-based performance analysis of PinT methods
Jens Hahne 12/21

Comparison model and PinT libraries

I Compare model with four Pint libraries:
I LibPFASST1: Fortran implementation of PFASST
I PySDC2: Python implementation of PFASST
I XBRAID3: C implementation of MGRIT
I PyMGRIT4: Python implementation of MGRIT

I Each library has a large set of pre-implemented features
I Each library requires problem-dependent functions
I Challenging to choose problem

I Different languages
I Methods with different strengths

I Pseudo spatial problem:
I Each required function sleeps only for a controllable time
I Enables large test sets in terms of task costs

1https://github.com/libpfasst/LibPFASST
2https://github.com/Parallel-in-Time/pySDC
3https://github.com/XBraid/xbraid
4https://github.com/pymgrit/pymgrit

Task graph-based performance analysis of PinT methods
Jens Hahne 13/21

https://github.com/libpfasst/LibPFASST
https://github.com/Parallel-in-Time/pySDC
https://github.com/XBraid/xbraid
https://github.com/pymgrit/pymgrit

Comparison model and PinT libraries

I Compare model with four Pint libraries:
I LibPFASST1: Fortran implementation of PFASST
I PySDC2: Python implementation of PFASST
I XBRAID3: C implementation of MGRIT
I PyMGRIT4: Python implementation of MGRIT

I Each library has a large set of pre-implemented features

I Each library requires problem-dependent functions
I Challenging to choose problem

I Different languages
I Methods with different strengths

I Pseudo spatial problem:
I Each required function sleeps only for a controllable time
I Enables large test sets in terms of task costs

1https://github.com/libpfasst/LibPFASST
2https://github.com/Parallel-in-Time/pySDC
3https://github.com/XBraid/xbraid
4https://github.com/pymgrit/pymgrit

Task graph-based performance analysis of PinT methods
Jens Hahne 13/21

https://github.com/libpfasst/LibPFASST
https://github.com/Parallel-in-Time/pySDC
https://github.com/XBraid/xbraid
https://github.com/pymgrit/pymgrit

Comparison model and PinT libraries

I Compare model with four Pint libraries:
I LibPFASST1: Fortran implementation of PFASST
I PySDC2: Python implementation of PFASST
I XBRAID3: C implementation of MGRIT
I PyMGRIT4: Python implementation of MGRIT

I Each library has a large set of pre-implemented features
I Each library requires problem-dependent functions

I Challenging to choose problem
I Different languages
I Methods with different strengths

I Pseudo spatial problem:
I Each required function sleeps only for a controllable time
I Enables large test sets in terms of task costs

1https://github.com/libpfasst/LibPFASST
2https://github.com/Parallel-in-Time/pySDC
3https://github.com/XBraid/xbraid
4https://github.com/pymgrit/pymgrit

Task graph-based performance analysis of PinT methods
Jens Hahne 13/21

https://github.com/libpfasst/LibPFASST
https://github.com/Parallel-in-Time/pySDC
https://github.com/XBraid/xbraid
https://github.com/pymgrit/pymgrit

Comparison model and PinT libraries

I Compare model with four Pint libraries:
I LibPFASST1: Fortran implementation of PFASST
I PySDC2: Python implementation of PFASST
I XBRAID3: C implementation of MGRIT
I PyMGRIT4: Python implementation of MGRIT

I Each library has a large set of pre-implemented features
I Each library requires problem-dependent functions
I Challenging to choose problem

I Different languages
I Methods with different strengths

I Pseudo spatial problem:
I Each required function sleeps only for a controllable time
I Enables large test sets in terms of task costs

1https://github.com/libpfasst/LibPFASST
2https://github.com/Parallel-in-Time/pySDC
3https://github.com/XBraid/xbraid
4https://github.com/pymgrit/pymgrit

Task graph-based performance analysis of PinT methods
Jens Hahne 13/21

https://github.com/libpfasst/LibPFASST
https://github.com/Parallel-in-Time/pySDC
https://github.com/XBraid/xbraid
https://github.com/pymgrit/pymgrit

Comparison model and PinT libraries

I Compare model with four Pint libraries:
I LibPFASST1: Fortran implementation of PFASST
I PySDC2: Python implementation of PFASST
I XBRAID3: C implementation of MGRIT
I PyMGRIT4: Python implementation of MGRIT

I Each library has a large set of pre-implemented features
I Each library requires problem-dependent functions
I Challenging to choose problem

I Different languages
I Methods with different strengths

I Pseudo spatial problem:
I Each required function sleeps only for a controllable time
I Enables large test sets in terms of task costs

1https://github.com/libpfasst/LibPFASST
2https://github.com/Parallel-in-Time/pySDC
3https://github.com/XBraid/xbraid
4https://github.com/pymgrit/pymgrit

Task graph-based performance analysis of PinT methods
Jens Hahne 13/21

https://github.com/libpfasst/LibPFASST
https://github.com/Parallel-in-Time/pySDC
https://github.com/XBraid/xbraid
https://github.com/pymgrit/pymgrit

PFASST - setting

I LibPFASST
I Classical view
I Burn-in prediction phase

I PySDC
I Multigrid view
I Fine-sweep prediction phase

I Both:
I Local convergence criterion
I Implicit sweeper (pre-implemented)
I Cost per implicit solve: 0.05 s
I All other costs: 0 s
I Runtime of operations is measured

(reusable for other problems)
I Communication cost: 0

Parameters

Number of time intervals N
Number processes time dimension NP

Number of levels L
Number of iterations K
Convergence criterion
Two “views”
Number of sweeps on level `
Collocation nodes on level `
Predictor type
Skip fine-level sweep at start/end

Runtime communication in time
Runtime convergence criterion
Runtime SDCSweep at level `
Runtime FEvalAll at level `
Runtime FEvalSingle at level `
Runtime RestrictAll at level `
Runtime RestrictSingle at level `
Runtime InterpolateAll at level `
Runtime InterpolateSingle at level `
Runtime FAS at level `

Task graph-based performance analysis of PinT methods
Jens Hahne 14/21

LibPFASST - model vs. runtime

N NP L K # Sweeps
collocation

nodes

LibPFASST

runtime
Model

L. b.
(NP =∞)

16 16 2 10 (1, 1) (5, 3) 5.06 5.05 5.04

16 16 2 10 (1, 1) (7, 5) 8.88 8.87 8.86

16 16 2 10 (2, 1) (5, 3) 7.07 7.04 7.03

16 16 2 10 (2, 1) (7, 5) 11.9 11.89 11.88

32 32 4 10 (1, 1, 1, 1) (7, 5, 3, 2) 12.16 12.12 12.11

32 32 4 10 (2, 1, 1, 1) (7, 5, 3, 2) 15.17 15.13 15.12

32 32 4 10 (1, 2, 1, 1) (7, 5, 3, 2) 16.17 16.14 16.13

32 32 4 10 (1, 1, 2, 1) (7, 5, 3, 2) 14.17 14.14 14.13

32 32 4 10 (1, 2, 2, 1) (7, 5, 3, 2) 18.18 18.14 18.13

I Actual runtime very close to predictions

I Lower bound (L.b.) and predictions very similar

Task graph-based performance analysis of PinT methods
Jens Hahne 15/21

LibPFASST - model vs. runtime

N NP L K # Sweeps
collocation

nodes

LibPFASST

runtime
Model

L. b.
(NP =∞)

16 16 2 10 (1, 1) (5, 3) 5.06 5.05 5.04

16 16 2 10 (1, 1) (7, 5) 8.88 8.87 8.86

16 16 2 10 (2, 1) (5, 3) 7.07 7.04 7.03

16 16 2 10 (2, 1) (7, 5) 11.9 11.89 11.88

32 32 4 10 (1, 1, 1, 1) (7, 5, 3, 2) 12.16 12.12 12.11

32 32 4 10 (2, 1, 1, 1) (7, 5, 3, 2) 15.17 15.13 15.12

32 32 4 10 (1, 2, 1, 1) (7, 5, 3, 2) 16.17 16.14 16.13

32 32 4 10 (1, 1, 2, 1) (7, 5, 3, 2) 14.17 14.14 14.13

32 32 4 10 (1, 2, 2, 1) (7, 5, 3, 2) 18.18 18.14 18.13

I Actual runtime very close to predictions

I Lower bound (L.b.) and predictions very similar

Task graph-based performance analysis of PinT methods
Jens Hahne 15/21

LibPFASST - model vs. runtime

N NP L K # Sweeps
collocation

nodes

LibPFASST

runtime
Model

L. b.
(NP =∞)

16 16 2 10 (1, 1) (5, 3) 5.06 5.05 5.04

16 16 2 10 (1, 1) (7, 5) 8.88 8.87 8.86

16 16 2 10 (2, 1) (5, 3) 7.07 7.04 7.03

16 16 2 10 (2, 1) (7, 5) 11.9 11.89 11.88

32 32 4 10 (1, 1, 1, 1) (7, 5, 3, 2) 12.16 12.12 12.11

32 32 4 10 (2, 1, 1, 1) (7, 5, 3, 2) 15.17 15.13 15.12

32 32 4 10 (1, 2, 1, 1) (7, 5, 3, 2) 16.17 16.14 16.13

32 32 4 10 (1, 1, 2, 1) (7, 5, 3, 2) 14.17 14.14 14.13

32 32 4 10 (1, 2, 2, 1) (7, 5, 3, 2) 18.18 18.14 18.13

I Actual runtime very close to predictions

I Lower bound (L.b.) and predictions very similar

Task graph-based performance analysis of PinT methods
Jens Hahne 15/21

PySDC - model vs. runtime

N NP L K # Sweeps
collocation

nodes

pySDC

runtime
Model

L. b.
(NP =∞)

16 16 2 10 (1, 1) (5, 3) 5.22 5.00 5.00
16 16 2 10 (1, 1) (7, 5) 9.45 8.99 8.99
16 16 2 10 (2, 1) (5, 3) 7.38 7.07 7.07
16 16 2 10 (2, 1) (7, 5) 12.78 12.23 12.23

32 32 4 10 (1, 1, 1, 1) (7, 5, 3, 2) 12.82 12.34 12.34
32 32 4 10 (2, 1, 1, 1) (7, 5, 3, 2) 16.23 15.57 15.56
32 32 4 10 (1, 2, 1, 1) (7, 5, 3, 2) 17.16 16.41 16.30
32 32 4 10 (1, 1, 2, 1) (7, 5, 3, 2) 14.96 14.26 13.22
32 32 4 10 (1, 2, 2, 1) (7, 5, 3, 2) 19.38 18.57 15.43

I Actual runtime differs by no more than 5%

I Lower bound and predictions similiar for most settings

I Small derivations for some four-level settings (PFASST multigrid
view)

Task graph-based performance analysis of PinT methods
Jens Hahne 16/21

PySDC - model vs. runtime

N NP L K # Sweeps
collocation

nodes

pySDC

runtime
Model

L. b.
(NP =∞)

16 16 2 10 (1, 1) (5, 3) 5.22 5.00 5.00
16 16 2 10 (1, 1) (7, 5) 9.45 8.99 8.99
16 16 2 10 (2, 1) (5, 3) 7.38 7.07 7.07
16 16 2 10 (2, 1) (7, 5) 12.78 12.23 12.23

32 32 4 10 (1, 1, 1, 1) (7, 5, 3, 2) 12.82 12.34 12.34
32 32 4 10 (2, 1, 1, 1) (7, 5, 3, 2) 16.23 15.57 15.56
32 32 4 10 (1, 2, 1, 1) (7, 5, 3, 2) 17.16 16.41 16.30
32 32 4 10 (1, 1, 2, 1) (7, 5, 3, 2) 14.96 14.26 13.22
32 32 4 10 (1, 2, 2, 1) (7, 5, 3, 2) 19.38 18.57 15.43

I Actual runtime differs by no more than 5%

I Lower bound and predictions similiar for most settings

I Small derivations for some four-level settings (PFASST multigrid
view)

Task graph-based performance analysis of PinT methods
Jens Hahne 16/21

PySDC - model vs. runtime

N NP L K # Sweeps
collocation

nodes

pySDC

runtime
Model

L. b.
(NP =∞)

16 16 2 10 (1, 1) (5, 3) 5.22 5.00 5.00
16 16 2 10 (1, 1) (7, 5) 9.45 8.99 8.99
16 16 2 10 (2, 1) (5, 3) 7.38 7.07 7.07
16 16 2 10 (2, 1) (7, 5) 12.78 12.23 12.23

32 32 4 10 (1, 1, 1, 1) (7, 5, 3, 2) 12.82 12.34 12.34
32 32 4 10 (2, 1, 1, 1) (7, 5, 3, 2) 16.23 15.57 15.56
32 32 4 10 (1, 2, 1, 1) (7, 5, 3, 2) 17.16 16.41 16.30
32 32 4 10 (1, 1, 2, 1) (7, 5, 3, 2) 14.96 14.26 13.22
32 32 4 10 (1, 2, 2, 1) (7, 5, 3, 2) 19.38 18.57 15.43

I Actual runtime differs by no more than 5%

I Lower bound and predictions similiar for most settings

I Small derivations for some four-level settings (PFASST multigrid
view)

Task graph-based performance analysis of PinT methods
Jens Hahne 16/21

PySDC - model vs. runtime

N NP L K # Sweeps
collocation

nodes

pySDC

runtime
Model

L. b.
(NP =∞)

16 16 2 10 (1, 1) (5, 3) 5.22 5.00 5.00
16 16 2 10 (1, 1) (7, 5) 9.45 8.99 8.99
16 16 2 10 (2, 1) (5, 3) 7.38 7.07 7.07
16 16 2 10 (2, 1) (7, 5) 12.78 12.23 12.23

32 32 4 10 (1, 1, 1, 1) (7, 5, 3, 2) 12.82 12.34 12.34
32 32 4 10 (2, 1, 1, 1) (7, 5, 3, 2) 16.23 15.57 15.56
32 32 4 10 (1, 2, 1, 1) (7, 5, 3, 2) 17.16 16.41 16.30
32 32 4 10 (1, 1, 2, 1) (7, 5, 3, 2) 14.96 14.26 13.22
32 32 4 10 (1, 2, 2, 1) (7, 5, 3, 2) 19.38 18.57 15.43

I Actual runtime differs by no more than 5%

I Lower bound and predictions similiar for most settings

I Small derivations for some four-level settings (PFASST multigrid
view)

Task graph-based performance analysis of PinT methods
Jens Hahne 16/21

MGRIT - setting

I XBRAID
I Global convergence criterion

I PyMGRIT
I Local and global convergence

criteria

I Both:
I Cost per time integration: 0.05 s
I All other costs: 0 s
I Runtime of operations is measured

(reusable for other problems)
I Communication cost: 0

Parameters

Number of time intervals N
Number processes time dimension NP

Number of levels L
Number of iterations K
Convergence criterion
Coarsening factor from level ` to level `+ 1
Cycle type
Nested iterations
Skip down
Number of CF -relaxations on level `

Runtime communication in time
Runtime convergence criterion
Runtime time integrator at level `
Runtime spatial restriction at level `
Runtime spatial interpolation at level `

Task graph-based performance analysis of PinT methods
Jens Hahne 17/21

XBRAID - model vs. runtime

N NP L K cyc. coarsening
CF -
relax.

skip.
down

XBRAID

runtime
Model

L.b.
(NP =∞)

4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) True 19.02 18.93 15.61
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) False 22.79 21.83 17.91
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) True 21.59 21.51 13.63
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) False 23.90 23.01 14.99

4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) True 22.81 22.66 11.88
4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) False 26.38 26.16 13.43
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) True 30.71 30.64 15.17
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) False 32.61 32.49 16.04

I Actual runtime very close to predictions

I Cluster based problem where the first communication between nodes
is especially expensive

I Theoretically further potential

I Largely due to global convergence criterion (blocking communication)
I Comparison between 256 and ∞ processes

Task graph-based performance analysis of PinT methods
Jens Hahne 18/21

XBRAID - model vs. runtime

N NP L K cyc. coarsening
CF -
relax.

skip.
down

XBRAID

runtime
Model

L.b.
(NP =∞)

4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) True 19.02 18.93 15.61
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) False 22.79 21.83 17.91
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) True 21.59 21.51 13.63
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) False 23.90 23.01 14.99

4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) True 22.81 22.66 11.88
4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) False 26.38 26.16 13.43
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) True 30.71 30.64 15.17
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) False 32.61 32.49 16.04

I Actual runtime very close to predictions

I Cluster based problem where the first communication between nodes
is especially expensive

I Theoretically further potential

I Largely due to global convergence criterion (blocking communication)
I Comparison between 256 and ∞ processes

Task graph-based performance analysis of PinT methods
Jens Hahne 18/21

XBRAID - model vs. runtime

N NP L K cyc. coarsening
CF -
relax.

skip.
down

XBRAID

runtime
Model

L.b.
(NP =∞)

4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) True 19.02 18.93 15.61
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) False 22.79 21.83 17.91
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) True 21.59 21.51 13.63
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) False 23.90 23.01 14.99

4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) True 22.81 22.66 11.88
4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) False 26.38 26.16 13.43
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) True 30.71 30.64 15.17
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) False 32.61 32.49 16.04

I Actual runtime very close to predictions
I Cluster based problem where the first communication between nodes

is especially expensive

I Theoretically further potential

I Largely due to global convergence criterion (blocking communication)
I Comparison between 256 and ∞ processes

Task graph-based performance analysis of PinT methods
Jens Hahne 18/21

XBRAID - model vs. runtime

N NP L K cyc. coarsening
CF -
relax.

skip.
down

XBRAID

runtime
Model

L.b.
(NP =∞)

4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) True 19.02 18.93 15.61
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) False 22.79 21.83 17.91
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) True 21.59 21.51 13.63
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) False 23.90 23.01 14.99

4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) True 22.81 22.66 11.88
4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) False 26.38 26.16 13.43
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) True 30.71 30.64 15.17
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) False 32.61 32.49 16.04

I Actual runtime very close to predictions
I Cluster based problem where the first communication between nodes

is especially expensive

I Theoretically further potential
I Largely due to global convergence criterion (blocking communication)

I Comparison between 256 and ∞ processes

Task graph-based performance analysis of PinT methods
Jens Hahne 18/21

XBRAID - model vs. runtime

N NP L K cyc. coarsening
CF -
relax.

skip.
down

XBRAID

runtime
Model

L.b.
(NP =∞)

4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) True 19.02 18.93 15.61
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) False 22.79 21.83 17.91
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) True 21.59 21.51 13.63
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) False 23.90 23.01 14.99

4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) True 22.81 22.66 11.88
4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) False 26.38 26.16 13.43
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) True 30.71 30.64 15.17
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) False 32.61 32.49 16.04

I Actual runtime very close to predictions
I Cluster based problem where the first communication between nodes

is especially expensive

I Theoretically further potential
I Largely due to global convergence criterion (blocking communication)
I Comparison between 256 and ∞ processes

Task graph-based performance analysis of PinT methods
Jens Hahne 18/21

PyMGRIT - model vs. runtime

N NP L K cyc. coarsening
CF -
relax.

nest.
iter.

conv.
crit.

PyMGRIT

runtime
Model

L.b.
(NP =∞)

4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) T local 19.99 19.53 18.01
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) F local 18.87 18.43 18.02
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) T local 17.69 17.17 15.09
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) F local 16.98 16.66 15.09
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) T global 24.66 23.91 18.06
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) F global 23.28 21.94 18.01
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) T global 25.08 24.04 15.07
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) F global 24.24 23.15 15.08

4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) T local 25.82 25.36 13.52
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) T local 26.06 25.43 16.13
4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) T global 30.91 29.97 13.49
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) T global 35.93 34.82 16.14

I Actual runtime very close to predictions

I Same cluster based problem

I Model approaches the theoretical limit when local criterion is used

I Preceding nested iteration theoretically with zero cost

Task graph-based performance analysis of PinT methods
Jens Hahne 19/21

PyMGRIT - model vs. runtime

N NP L K cyc. coarsening
CF -
relax.

nest.
iter.

conv.
crit.

PyMGRIT

runtime
Model

L.b.
(NP =∞)

4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) T local 19.99 19.53 18.01
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) F local 18.87 18.43 18.02
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) T local 17.69 17.17 15.09
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) F local 16.98 16.66 15.09
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) T global 24.66 23.91 18.06
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) F global 23.28 21.94 18.01
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) T global 25.08 24.04 15.07
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) F global 24.24 23.15 15.08

4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) T local 25.82 25.36 13.52
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) T local 26.06 25.43 16.13
4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) T global 30.91 29.97 13.49
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) T global 35.93 34.82 16.14

I Actual runtime very close to predictions
I Same cluster based problem

I Model approaches the theoretical limit when local criterion is used

I Preceding nested iteration theoretically with zero cost

Task graph-based performance analysis of PinT methods
Jens Hahne 19/21

PyMGRIT - model vs. runtime

N NP L K cyc. coarsening
CF -
relax.

nest.
iter.

conv.
crit.

PyMGRIT

runtime
Model

L.b.
(NP =∞)

4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) T local 19.99 19.53 18.01
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) F local 18.87 18.43 18.02
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) T local 17.69 17.17 15.09
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) F local 16.98 16.66 15.09
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) T global 24.66 23.91 18.06
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) F global 23.28 21.94 18.01
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) T global 25.08 24.04 15.07
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) F global 24.24 23.15 15.08

4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) T local 25.82 25.36 13.52
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) T local 26.06 25.43 16.13
4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) T global 30.91 29.97 13.49
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) T global 35.93 34.82 16.14

I Actual runtime very close to predictions
I Same cluster based problem

I Model approaches the theoretical limit when local criterion is used

I Preceding nested iteration theoretically with zero cost

Task graph-based performance analysis of PinT methods
Jens Hahne 19/21

PyMGRIT - model vs. runtime

N NP L K cyc. coarsening
CF -
relax.

nest.
iter.

conv.
crit.

PyMGRIT

runtime
Model

L.b.
(NP =∞)

4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) T local 19.99 19.53 18.01
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) F local 18.87 18.43 18.02
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) T local 17.69 17.17 15.09
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) F local 16.98 16.66 15.09
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) T global 24.66 23.91 18.06
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) F global 23.28 21.94 18.01
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) T global 25.08 24.04 15.07
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) F global 24.24 23.15 15.08

4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) T local 25.82 25.36 13.52
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) T local 26.06 25.43 16.13
4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) T global 30.91 29.97 13.49
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) T global 35.93 34.82 16.14

I Actual runtime very close to predictions
I Same cluster based problem

I Model approaches the theoretical limit when local criterion is used

I Preceding nested iteration theoretically with zero cost

Task graph-based performance analysis of PinT methods
Jens Hahne 19/21

Outlook: Use task graph for scheduling

I Parareal example: N = 6, K = 5, Cost G: 0.5 s, Cost F : 2 s

0 4 8 12 16

p1

p2

p3

p4

p5

p6

p7

p8

p9

Runtime

P
ro

ce
ss

es

Block-by-block:

I NP = 6 = N

I Runtime: 15.5 s

Task graph-based performance analysis of PinT methods
Jens Hahne 20/21

Outlook: Use task graph for scheduling

I Parareal example: N = 6, K = 5, Cost G: 0.5 s, Cost F : 2 s

0 4 8 12 16

p1

p2

p3

p4

p5

p6

p7

p8

p9

Runtime

P
ro

ce
ss

es

Block-by-block:

I NP = 6 = N

I Runtime: 15.5 s

0 4 8 12 16

p1

p2

p3

p4

p5

p6

p7

p8

p9

Runtime

P
ro

ce
ss

es

“Other” approach:

I NP = 9

I Runtime: 10.5 s

Task graph-based performance analysis of PinT methods
Jens Hahne 20/21

Conclusions

I Task-based analysis of PinT methods

I Covers large parameter space of PinT methods

I Theoretical lower runtime bound based on graph

I Runtime prediction using schedules

0 0

0

0 00

v1
1

v2
2

v4
2

v3
2

v5
1

I Future work:

I Load balancing strategies
I Combine model with convergence predictions

This project has received funding from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 955701. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and Belgium, France,
Germany, Switzerland. This work is supported by the BMBF (project TIME-X; grant no.
16HPC046K).

Task graph-based performance analysis of PinT methods
Jens Hahne 21/21

Conclusions

I Task-based analysis of PinT methods

I Covers large parameter space of PinT methods

I Theoretical lower runtime bound based on graph

I Runtime prediction using schedules

0 0

0

0 00

v1
1

v2
2

v4
2

v3
2

v5
1

I Future work:

I Load balancing strategies
I Combine model with convergence predictions

This project has received funding from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 955701. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and Belgium, France,
Germany, Switzerland. This work is supported by the BMBF (project TIME-X; grant no.
16HPC046K).

Task graph-based performance analysis of PinT methods
Jens Hahne 21/21

Conclusions

I Task-based analysis of PinT methods

I Covers large parameter space of PinT methods

I Theoretical lower runtime bound based on graph

I Runtime prediction using schedules

0 0

0

0 00

v1
1

v2
2

v4
2

v3
2

v5
1

I Future work:

I Load balancing strategies
I Combine model with convergence predictions

This project has received funding from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 955701. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and Belgium, France,
Germany, Switzerland. This work is supported by the BMBF (project TIME-X; grant no.
16HPC046K).

Task graph-based performance analysis of PinT methods
Jens Hahne 21/21

Conclusions

I Task-based analysis of PinT methods

I Covers large parameter space of PinT methods

I Theoretical lower runtime bound based on graph

I Runtime prediction using schedules

0 0

0

0 00

v1
1

v2
2

v4
2

v3
2

v5
1

I Future work:

I Load balancing strategies
I Combine model with convergence predictions

This project has received funding from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 955701. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and Belgium, France,
Germany, Switzerland. This work is supported by the BMBF (project TIME-X; grant no.
16HPC046K).

Task graph-based performance analysis of PinT methods
Jens Hahne 21/21

Conclusions

I Task-based analysis of PinT methods

I Covers large parameter space of PinT methods

I Theoretical lower runtime bound based on graph

I Runtime prediction using schedules

0 0

0

0 00

v1
1

v2
2

v4
2

v3
2

v5
1

I Future work:
I Load balancing strategies
I Combine model with convergence predictions

This project has received funding from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 955701. The JU receives support from the
European Union’s Horizon 2020 research and innovation programme and Belgium, France,
Germany, Switzerland. This work is supported by the BMBF (project TIME-X; grant no.
16HPC046K).

Task graph-based performance analysis of PinT methods
Jens Hahne 21/21

