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Introduction

I Goals:
I Performance model for PinT methods
I Static load balacing
I Dynamic load balancing

I Challenges:
I More frameworks than methods (variations with same idea)
I Large parameter space for each method

I Approach:
I Task-graph based on data-driven formulation of algorithms
I Allows to cover any implementation using schedules of the tasks
I Well known tool for load balancing techniques
I Theoretical lower runtime bound based entirely on the algorithm
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Parareal

I Decompose [0, T ] into N non-overlapping intervals

0 = T0 < T1 < ... < TN = T

I Two propagation operators:
I F expensive and high accurate
I G cheap but less accurate

I Initalization:

u0
n = G(Tn, Tn−1,u

0
n−1) for n = 1, ..., N,

I Parareal iteration:

uk+1
n = F(Tn, Tn−1,u

k
n−1)+G(Tn, Tn−1,u

k+1
n−1)−G(Tn, Tn−1,u

k
n−1)

for n = 1, ..., N and k = 0, ...
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Parareal - data driven formulation

Algorithm: Parareal

1 u0
0 ← u0

2 for i← 1 to N . Compute initial guess

3 ũ0
i ← G(Ti, Ti−1,u

0
i−1)

4 u0
i ← ũ0

i

5 for k ← 1 to N . Parareal iterations

6 foreach i ∈ {k, k + 1, . . . , N} do
7 ûk−1

i ← F(Ti, Ti−1,u
k−1
i−1 )

8 for i← k to N

9 ũk
i ← G(Ti, Ti−1,u

min(k,i−1)
i−1 )

10 uk
i ← ũk

i + ûk−1
i − ũk−1

i

I Typically only K � N iterations required
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PFASST

I Parallel Full Approximation Scheme in Space and Time (PFASST)

I Sort of Parareal approach, but ...
I Deferred correction approach instead of fine and coarse propagator
I Arbitrary hierarchy of levels
I Coarse level problems are modified using a space-time FAS correction

I Multigrid method
I Type of space-time multigrid method
I ”Smoother” in the time direction is a spectral deferred correction

(SDC) sweep

I Spectral deferred correction methods
I Pipelined version of multi-level SDC with each time slice performing

SDC sweeps in parallel
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Multigrid-reduction-in-time (MGRIT)

relaxation

restriction interpolation

I Reduction-based time-multigrid method

I In specialized two-level setting: MGRIT ≡ Parareal
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Stopping criterion

I Stopping criterion required for all three iterative methods

I Measures the quality of the solution
I Various criteria exist:

I Jump of the approximation between two iterations
I Finest-level information
I Residual at single time points
I Space-time residual
I ...

I Criteria hard to compare
I High level categorization into two groups:

I Local: Measurement of solution quality at individual points in time
I Global: Global measurement of solution quality

I Both can be formulated in a data-driven formulation
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Task Graph with communication costs

I Directed acyclic graph G = (V,E, ω, c)

I Vertices V = {v1, ...vn}
I Represent tasks

I Directed edges E ⊆ V × V
I Represent dependencies of tasks

I Node weights ω : V → R+
0

I Represent computational cost of tasks

I Edge weights c : E → R+
0

I Represent communication cost between tasks
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Allocation and schedule

I P = {p1, . . . , pNP
}

I Set of NP processes

I Allocation function A : V → P
I Assigns each task in V to a process

I Schedule S : V → R+
0

I Assigns a starting point to each task, subject to the constraints:
I ∀(vi, vj) ∈ E,S(vj) ≥ S(vi) + ω(vi) + c(vi, vj)
I ∀vi, vj ∈ V, vi 6= vj , A(vi) = A(vj)⇒ S(vi) ≥

S(vj) + ω(vj) ∨ S(vj) ≥ S(vi) + ω(vi)

I Makespan or runtime of a given allocation and schedule:

max
v∈V

(S(v) + ω(v))

I If c(e) = 0 ∀e ∈ E: Minimum possible makespan for NP =∞ is
longest path within the graph
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Schedule example

0 0

0

0 00

v1
1

v2
2

v4
2

v3
2

v5
1

I Makespan of schedule: 6

I Longest path {v1 → v2 → v5} ⇒ minimal parallel runtime: 4
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Task graph for Parareal N = 3

Algorithm: Parareal
1 u0
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i

5 ...

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21



Task graph for Parareal N = 3

Algorithm: Parareal

1 u0
0 ← u0

2 for i← 1 to N . Initial guess

3 ũ0
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i + ûk−1
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i − ũk−1

i

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21



Task graph for Parareal N = 3

5 for k ← 1 to N . k = 1
6 foreach i ∈ {k, k + 1, . . . , N} do
7 ûk−1
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i − ũk−1

i

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1

1

9F2

1

10F3

1

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2

1

18F3

1

19G2
1

20+2

1

21G3
1

22+3

1

23F3

1

24G3
1

25+3

1

Task graph-based performance analysis of PinT methods
Jens Hahne 10/21



Task graph for Parareal N = 3

5 for k ← 1 to N . k = 1
6 foreach i ∈ {k, k + 1, . . . , N} do
7 ûk−1
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PinT parallelization strategies

I Typically static allocation of time points to processes

I Scheduling based on this allocation
I Two types of allocation:

I Block-by-block basis (each block roughly same number of time
points)

I Windowing with block-by-block (applying method multiple times)

I Example: N = 9, NP = 3
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Weighting of tasks and communication

I How to set the costs?
I Two ways:

I Theoretical model:

+ Exact and theoretical analysis
+ Independent of implementation
− Huge effort
− Not very flexible, models one problem

I Measure runtimes of operations:

• Measure any type of operation
+ Easy and flexible
− Requires implementation

I Decision depends on use case

c(v1, v2)

v1
ω(v1)

v2
ω(v2)

?
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Comparison model and PinT libraries

I Compare model with four Pint libraries:
I LibPFASST1: Fortran implementation of PFASST
I PySDC2: Python implementation of PFASST
I XBRAID3: C implementation of MGRIT
I PyMGRIT4: Python implementation of MGRIT

I Each library has a large set of pre-implemented features
I Each library requires problem-dependent functions
I Challenging to choose problem

I Different languages
I Methods with different strengths

I Pseudo spatial problem:
I Each required function sleeps only for a controllable time
I Enables large test sets in terms of task costs

1https://github.com/libpfasst/LibPFASST
2https://github.com/Parallel-in-Time/pySDC
3https://github.com/XBraid/xbraid
4https://github.com/pymgrit/pymgrit
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PFASST - setting

I LibPFASST
I Classical view
I Burn-in prediction phase

I PySDC
I Multigrid view
I Fine-sweep prediction phase

I Both:
I Local convergence criterion
I Implicit sweeper (pre-implemented)
I Cost per implicit solve: 0.05 s
I All other costs: 0 s
I Runtime of operations is measured

(reusable for other problems)
I Communication cost: 0

Parameters

Number of time intervals N
Number processes time dimension NP

Number of levels L
Number of iterations K
Convergence criterion
Two “views”
Number of sweeps on level `
Collocation nodes on level `
Predictor type
Skip fine-level sweep at start/end

Runtime communication in time
Runtime convergence criterion
Runtime SDCSweep at level `
Runtime FEvalAll at level `
Runtime FEvalSingle at level `
Runtime RestrictAll at level `
Runtime RestrictSingle at level `
Runtime InterpolateAll at level `
Runtime InterpolateSingle at level `
Runtime FAS at level `
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LibPFASST - model vs. runtime

N NP L K # Sweeps
collocation

nodes

LibPFASST

runtime
Model

L. b.
(NP =∞)

16 16 2 10 (1, 1) (5, 3) 5.06 5.05 5.04

16 16 2 10 (1, 1) (7, 5) 8.88 8.87 8.86

16 16 2 10 (2, 1) (5, 3) 7.07 7.04 7.03

16 16 2 10 (2, 1) (7, 5) 11.9 11.89 11.88

32 32 4 10 (1, 1, 1, 1) (7, 5, 3, 2) 12.16 12.12 12.11

32 32 4 10 (2, 1, 1, 1) (7, 5, 3, 2) 15.17 15.13 15.12

32 32 4 10 (1, 2, 1, 1) (7, 5, 3, 2) 16.17 16.14 16.13

32 32 4 10 (1, 1, 2, 1) (7, 5, 3, 2) 14.17 14.14 14.13

32 32 4 10 (1, 2, 2, 1) (7, 5, 3, 2) 18.18 18.14 18.13

I Actual runtime very close to predictions

I Lower bound (L.b.) and predictions very similar
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I Actual runtime very close to predictions

I Lower bound (L.b.) and predictions very similar
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PySDC - model vs. runtime

N NP L K # Sweeps
collocation

nodes

pySDC

runtime
Model

L. b.
(NP =∞)
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32 32 4 10 (1, 2, 2, 1) (7, 5, 3, 2) 19.38 18.57 15.43

I Actual runtime differs by no more than 5%

I Lower bound and predictions similiar for most settings

I Small derivations for some four-level settings (PFASST multigrid
view)
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MGRIT - setting

I XBRAID
I Global convergence criterion

I PyMGRIT
I Local and global convergence

criteria

I Both:
I Cost per time integration: 0.05 s
I All other costs: 0 s
I Runtime of operations is measured

(reusable for other problems)
I Communication cost: 0

Parameters

Number of time intervals N
Number processes time dimension NP

Number of levels L
Number of iterations K
Convergence criterion
Coarsening factor from level ` to level `+ 1
Cycle type
Nested iterations
Skip down
Number of CF -relaxations on level `

Runtime communication in time
Runtime convergence criterion
Runtime time integrator at level `
Runtime spatial restriction at level `
Runtime spatial interpolation at level `
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XBRAID - model vs. runtime

N NP L K cyc. coarsening
# CF -
relax.

skip.
down

XBRAID

runtime
Model

L.b.
(NP =∞)

4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) True 19.02 18.93 15.61
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) False 22.79 21.83 17.91
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) True 21.59 21.51 13.63
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) False 23.90 23.01 14.99

4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) True 22.81 22.66 11.88
4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) False 26.38 26.16 13.43
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) True 30.71 30.64 15.17
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) False 32.61 32.49 16.04

I Actual runtime very close to predictions

I Cluster based problem where the first communication between nodes
is especially expensive

I Theoretically further potential

I Largely due to global convergence criterion (blocking communication)
I Comparison between 256 and ∞ processes
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PyMGRIT - model vs. runtime

N NP L K cyc. coarsening
# CF -
relax.

nest.
iter.

conv.
crit.

PyMGRIT

runtime
Model

L.b.
(NP =∞)

4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) T local 19.99 19.53 18.01
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) F local 18.87 18.43 18.02
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) T local 17.69 17.17 15.09
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) F local 16.98 16.66 15.09
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) T global 24.66 23.91 18.06
4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) F global 23.28 21.94 18.01
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) T global 25.08 24.04 15.07
4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) F global 24.24 23.15 15.08

4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) T local 25.82 25.36 13.52
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) T local 26.06 25.43 16.13
4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) T global 30.91 29.97 13.49
4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) T global 35.93 34.82 16.14

I Actual runtime very close to predictions

I Same cluster based problem

I Model approaches the theoretical limit when local criterion is used

I Preceding nested iteration theoretically with zero cost
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Outlook: Use task graph for scheduling

I Parareal example: N = 6, K = 5, Cost G: 0.5 s, Cost F : 2 s
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Block-by-block:

I NP = 6 = N

I Runtime: 15.5 s
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“Other” approach:

I NP = 9

I Runtime: 10.5 s
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Conclusions

I Task-based analysis of PinT methods

I Covers large parameter space of PinT methods

I Theoretical lower runtime bound based on graph

I Runtime prediction using schedules
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I Future work:

I Load balancing strategies
I Combine model with convergence predictions
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