

MACHINE LEARNING FOR PARALLEL-IN-TIME METHODS?

Sebastian Götschel

joint work with Judith Angel, Abdul Qadir Ibrahim & Daniel Ruprecht

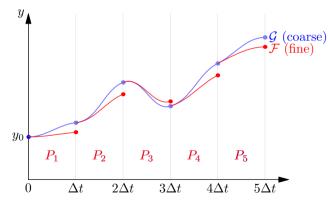
Chair Computational Mathematics Institute of Mathematics (E-10) Hamburg University of Technology

PinT Workshop 2022, Marseille

July 11, 2022

Parareal [Lions/Maday/Turinici '01]

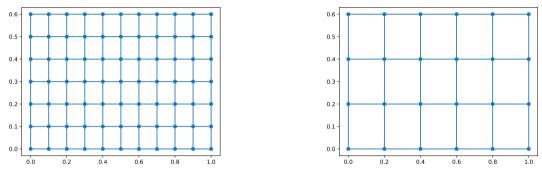
- IVP $y_t = f(t, y), y(0) = y_0$
- Compute $y(t_j)$ on a time grid $0 = t_0 < t_1 < \cdots < t_N = T$



$$\boldsymbol{Y}_{j+1}^{[k+1]} = \boldsymbol{\mathcal{F}}(\boldsymbol{Y}_{j}^{[k]}) + \, \boldsymbol{\mathcal{G}}(\boldsymbol{Y}_{j}^{[k+1]}) - \boldsymbol{\mathcal{G}}(\boldsymbol{Y}_{j}^{[k]})$$

speedup: $S(N_p) \le \min\left(\frac{N_p}{N_{it}}, \frac{\text{runtime fine}}{\text{runtime coarse}}\right)$

Spatial coarsening [Fischer/Hecht/Maday '05]



A fine mesh for \mathcal{F} and a coarse mesh for \mathcal{G} .

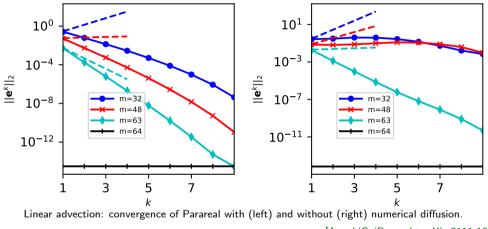
Parareal becomes

$$Y_{n+1}^{[k+1]} = \mathsf{I}\mathcal{G}(\mathsf{R}Yn^{[k+1]}) + \mathcal{F}(Y_n^{[k]}) - \mathsf{I}\mathcal{G}(\mathsf{R}Y_n^{[k]})$$

with ${\bf I}=$ interpolation and ${\bf R}=$ restriction.

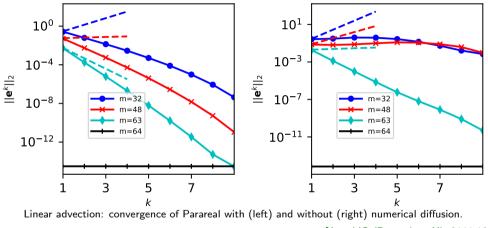
cheaper coarse propagator

But: often slow convergence with spatial coarsening



[Angel/G./Ruprecht arXiv:2111.10228]

But: often slow convergence with spatial coarsening



Can we use machine learning to improve convergence?

[Angel/G./Ruprecht arXiv:2111.10228]

Supervised learning

Given: pairs $(x, y) \in \mathcal{X} \times \mathcal{Y}$ from unknown joint probability distribution \mathcal{D} Goal: determine prediction function $h : \mathcal{X} \to \mathcal{Y}$ such that h(x) is a good predictor of true output y(x)

▶ minimize generalization error: $\min_{h \in \mathcal{H}} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell(h(x), y) \right]$

prediction function h from some fixed class \mathcal{H}

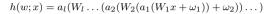
expectation wrt. distribution $\mathcal D$

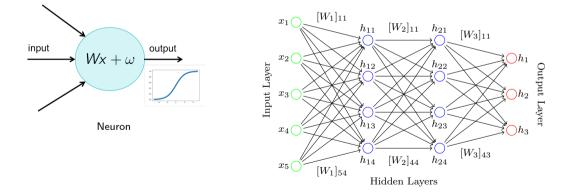
loss of the model at data point (x, y), e.g., $\ell(h(x), y) = (y - h(x))^2$

 \mathcal{D} unknown, but samples $(x_i, y_i), i = 1, \dots, N$ available; h parameterized by weights w

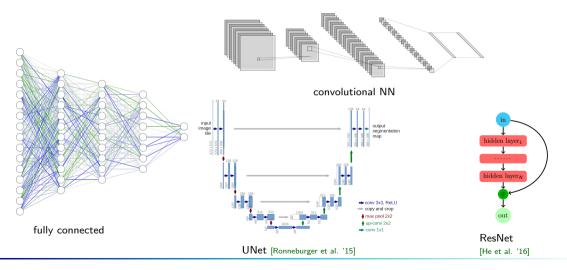
• empirical risk minimization:
$$\min_{w} \frac{1}{N} \sum_{i=1}^{N} \ell(h(w; x_i), y_i)$$

Deep neural networks





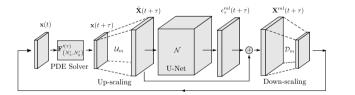
Deep neural networks: some architectures



8

Machine learning for PDEs (without aiming for completeness)

- 1. Learning multigrid operators, e.g., [Katrutsa et al. '19; Tomasi/Krause '21; ...]
- 2. Superresolution, e.g., [Kochkov et al. '21; Pathak et al. '21; ...]: coarse simulation enhanced using ML to populate the finer scales



related: learned correction for Parareal [Nguyen/Tsai '21]

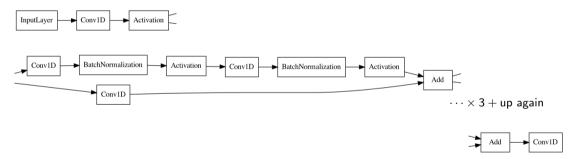
 Training neural networks as solvers, e.g., [Raissi et al. '19; Chen et al. '21; Li et al. '21; Stender et al. '22; ...], also for Parareal, e.g., [Agboh et al. '20;...]

more

machine learning

Approach 1: Superresolution

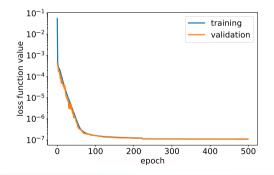
Idea: augment coarse solution by learned correction $\mathcal{G}(Y) = I\tilde{\mathcal{G}}(RY) + \Delta Y$, $\Delta Y = NN(I\tilde{\mathcal{G}}(RY))$ Data: pairs $\mathcal{F}(Y_i), I\tilde{\mathcal{G}}(RY_i)$ Output: $\Delta Y \approx \mathcal{F}(Y_i) - I\tilde{\mathcal{G}}(RY_i)$



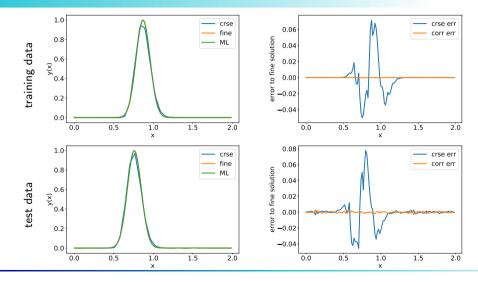
- ▶ specific to type of equation, e.g., $y_t vy_x = 0$, type of coarse/fine propagator
- somewhat flexible wrt. spatial resolution (convolutions)

Example: linear advection $y_t - vy_x = 0$

- solver: pyParareal https://github.com/Parallel-in-Time/pyParareal
- ▶ discretization: centered FD+trapezoidal rule, $N_x = 128/32$, $N_p = 10$, $N_t = 10/5$
- ► data generation from various initial conditions $y(x, t) = \exp(-\frac{x-x_0-vt}{\sigma^2})$ (varying t, x_0, v, σ)
- ▶ training: Tensorflow/Keras, ℓ_2 loss (ℓ_∞ similar), Adam optimizer

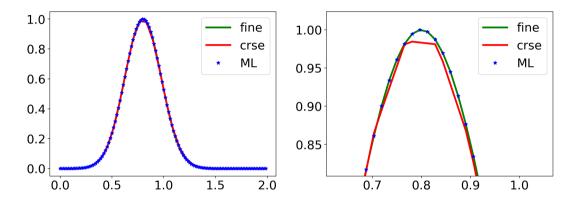


Training results



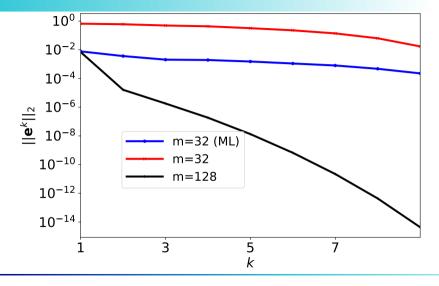
ML for PinT? | S. Götschel

Application during Parareal run



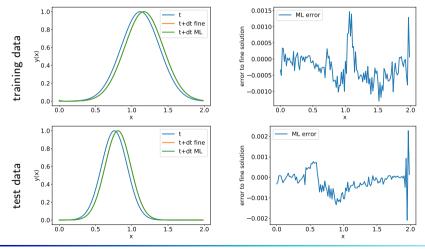
Coarse, fine, and corrected coarse solution at $t = \Delta t$. $\|\text{fine} - \text{coarse}\| = 1.6 \cdot 10^{-2}$, $\|\text{fine} - \text{ML}\| = 9.2 \cdot 10^{-5}$

However...



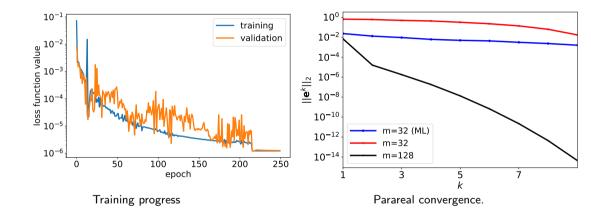
Approach 2: Learn coarse solver





ML for PinT? | S. Götschel

Well, that doesn't help



Outlook: Learn coarse solver by PINN

Idea: train mapping $Y_n \mapsto Y_{n+1}$ to replace coarse solver Physics-informed neural network: take PDE into account

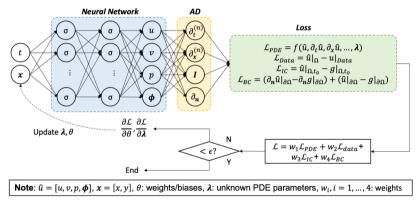
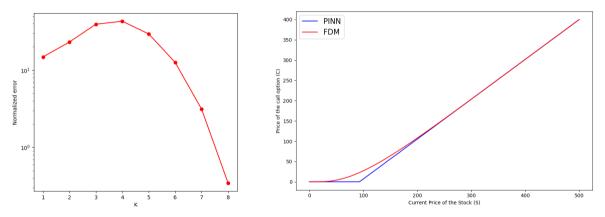


Figure: [Cai et al., arXiv:2105.09506]

First results



Left: Parareal convergence for Black-Scholes with FD-discretization; Right: PINN improves accuracy of solver.

ML to speed up Parareal convergence?

- several potential approaches: superresolution, training coarse solver
- expensive training, but reasonably good generalization
- reduced error, no improved convergence
- standard loss functions seem insufficient
- ▶ vast amount of hyperparameters for ML, better understanding required

ML to speed up Parareal convergence?

- several potential approaches: superresolution, training coarse solver
- expensive training, but reasonably good generalization
- reduced error, no improved convergence
- standard loss functions seem insufficient
- ▶ vast amount of hyperparameters for ML, better understanding required

Thank you!

sebastian.goetschel @tuhh.de