
MACHINE LEARNING FOR PARALLEL-IN-TIME METHODS?

Sebastian Götschel

joint work with Judith Angel, Abdul Qadir Ibrahim & Daniel Ruprecht

Chair Computational Mathematics
Institute of Mathematics (E-10)

Hamburg University of Technology

PinT Workshop 2022, Marseille

July 11, 2022

Parareal [Lions/Maday/Turinici ’01]

I IVP yt = f (t, y), y(0) = y0

I Compute y(tj) on a time grid 0 = t0 < t1 < · · · < tN = T

Introduction PFASST Applications Done!

Parallelisation across time
General idea:

0 �t 2�t 3�t 4�t 5�t

y

y0

P1P1 P2P2 P3P3 P4P4 P5

G (coarse)
F (fine)

P1 P2 P3 P4 P5

To get a more accurate solution than coarse, we need to somehow
improve the initial value on each time slice.

Y
[k+1]
j+1 = F(Y

[k]
j)+ G(Y

[k+1]
j)−G(Y

[k]
j)

speedup:

S(Np) ≤ min

(
Np

Nit
,

runtime fine

runtime coarse

)

ML for PinT? | S. Götschel 2

Spatial coarsening [Fischer/Hecht/Maday ’05]

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A fine mesh for F and a coarse mesh for G.

Parareal becomes
Y

[k+1]
n+1 = IG(RYn[k+1]) + F(Y [k]

n)− IG(RY [k]
n)

with I = interpolation and R = restriction.

I cheaper coarse propagator

ML for PinT? | S. Götschel 3

But: often slow convergence with spatial coarsening

1 3 5 7
k

10 12

10 8

10 4

100
||e

k ||
2

m=32
m=48
m=63
m=64

1 3 5 7
k

10 11

10 7

10 3

101

||e
k ||

2

m=32
m=48
m=63
m=64

Linear advection: convergence of Parareal with (left) and without (right) numerical diffusion.

[Angel/G./Ruprecht arXiv:2111.10228]

Can we use machine learning to improve convergence?

ML for PinT? | S. Götschel 4

But: often slow convergence with spatial coarsening

1 3 5 7
k

10 12

10 8

10 4

100
||e

k ||
2

m=32
m=48
m=63
m=64

1 3 5 7
k

10 11

10 7

10 3

101

||e
k ||

2

m=32
m=48
m=63
m=64

Linear advection: convergence of Parareal with (left) and without (right) numerical diffusion.

[Angel/G./Ruprecht arXiv:2111.10228]
Can we use machine learning to improve convergence?

ML for PinT? | S. Götschel 4

Supervised learning

Given: pairs (x , y) ∈ X × Y from unknown joint probability distribution D
Goal: determine prediction function h : X → Y such that h(x) is a good predictor of true output y(x)

I minimize generalization error: min
h∈H

E(x,y)∼D [`(h(x), y)]

prediction function
h from some fixed
class H

expectation wrt.
distribution D

loss of the model at data
point (x , y), e.g.,
`(h(x), y) = (y − h(x))2

D unknown, but samples (xi , yi), i = 1, . . . ,N available; h parameterized by weights w

I empirical risk minimization: min
w

1

N

N∑
i=1

`(h(w ; xi), yi)

ML for PinT? | S. Götschel 5

Deep neural networks

Neuron

GD and SG GD vs. SG Beyond SG Noise Reduction Methods Second-Order Methods Conclusion

Deep neural networks

h(w; x) = al(Wl . . . (a2(W2(a1(W1x + !1)) + !2)) . . .)

In
p
u
t

L
a
y
er

O
u
tp

u
t

L
a
y
er

Hidden Layers

x5

x4

x3

x2

x1

h14

h13

h12

h11

h24

h23

h22

h21

h3

h2

h1

[W1]54

[W1]11

[W2]44

[W2]11

[W3]43

[W3]11

Figure: Illustration of a DNN

Optimization Methods for Large-Scale Machine Learning 10 of 59

ML for PinT? | S. Götschel 6

Deep neural networks: some architectures

fully connected

convolutional NN

UNet [Ronneburger et al. ’15]

in

hidden layer1

· · · · · ·

hidden layerN

⊕

out

ResNet
[He et al. ’16]

ML for PinT? | S. Götschel 7

Machine learning for PDEs (without aiming for completeness)

1. Learning multigrid operators, e.g., [Katrutsa et al. ’19; Tomasi/Krause ’21; . . .]

2. Superresolution, e.g., [Kochkov et al. ’21; Pathak et al. ’21; . . .]: coarse simulation
enhanced using ML to populate the finer scales

3

PDE Solver

Up-scaling

U-Net

Down-scaling

FIG. 1. MLPDE hybrid architecture illustrating the algorithm given by Eq. (15). The low resolution PDE time-stepper is
followed by naive up-scaling, correction using a deep neural network and down-scaling with the process repeating in a closed
feedback loop.

at regular intervals of τ in order to correct the PDE tra-
jectory computed at low resolution using ML, and also
to estimate the missing high-resolution fields. We train a
supervised neural network to model the τ -step error field
ετ (t) which is defined by the following equations.

X(t + τ) = F
(τ)
N [X(t)] , (5)

x(t + τ) = F
′(τ)
N ′ [Dm [X(t)]] , (6)

X̃(t + τ) = Um [x(t + τ)] , (7)

ετ (t + τ) = X(t + τ) − X̃(t + τ). (8)

The supervised neural network, denoted by N is trained
to obtain an estimate εml

τ (t) of the model error ετ (t)

εml
τ (t) = N

[
X̃(t)

]
. (9)

We operate the hybrid ML-PDE solver in inference mode
as follows

• Initialize: Start from the initial condition XN (t0)
and initialize the ML-estimated trajectory Xml(t0)
so that

Xml(t0) = XN (t0). (10)

• Timestep with corrections : The following equations
are computed in a loop:

x(t + τ) = F
′(τ)
N ′

[
Dm

[
Xml(t)

]]
, (11)

X̃(t + τ) = Um [x(t + τ)], (12)

εml
τ (t + τ) = N

[
X̃(t + τ)

]
, (13)

Xml(t + τ) = X̃(t + τ) + εml
τ (t + τ). (14)

Eqs. (11 - 14) above can be combined to give us a
single inference equation as follows:

Xml(t + τ) = Um

[
F

′(τ)
N ′

[
Dm

[
Xml(t)

]]]
+

N
[
Um

[
F

′(τ)
N ′

[
Dm

[
Xml(t)

]]]]
. (15)

This completes our problem definition and proposed
framework for coupling Machine Learning with a PDE
solver. In the next two sections we turn our focus to a
concrete implementation of an ML architecture which we
couple to a solver to demonstrate this framework for solv-
ing a canonical 2-dimensional fluid convection problem,
namely the Rayleigh-Bénard system of equations.

II. RAYLEIGH-BÉNARD CONVECTION (RBC)

In order to demonstrate the effectiveness of our hybrid
ML-PDE architecture, we consider a two-dimensional
Rayleigh-Bénard Convection (RBC) problem operating
in a regime that exhibits moderate levels of fine-scale tur-
bulent fluctuations. The RBC problem is modeled with
the incompressible Navier-Stokes equations formulated
under the Boussinesq approximation. Nondimensional-
ization by the Rayleigh and Prandtl numbers and sub-
tracting the steady conduction-only solution, gives the
following formulation:

∇ · u = 0, (16)

∂tu = − (u · ∇)u − ∇p +

√
Pr

Ra
∇2u + θez, (17)

∂tθ =

√
1

PrRa
∇2θ − (u · ∇) θ + u · ez. (18)

where θ and p are the (nondimensional) deviations of
temperature and pressure from the steady solution, and
u is the nondimensionalized fluid velocity. The detailed
derivation of this set of equations and the nondimen-
sionalization parameters can be found in [24]. In the
present study, the Prandtl and Rayleigh numbers are set
to Pr = 0.7 and Ra = 109, respectively.

The equations (16)-(18) are solved in a 2D compu-
tational domain with unit aspect ratio, Γ=1. No-slip
(u=0), isothermal (θ=0) boundary conditions are im-
posed on the upper and lower walls, while periodicity
is applied to the lateral boundaries. The initial velocity
and pressure fluctuations are set to zero and an initial
profile on the fluctuating temperature is created with a
random seed.

related: learned correction for Parareal [Nguyen/Tsai ’21]

3. Training neural networks as solvers, e.g., [Raissi et al. ’19; Chen et al. ’21; Li et al. ’21;

Stender et al. ’22; . . .], also for Parareal, e.g., [Agboh et al. ’20;. . .]

m
ore

m
ach

in
e
learn

in
g

ML for PinT? | S. Götschel 8

Approach 1: Superresolution

Idea: augment coarse solution by learned correction G(Y) = I G̃(RY) + ∆Y , ∆Y = NN(I G̃(RY))

Data: pairs F(Yi), I G̃(RYi)

Output: ∆Y ≈ F(Yi)− I G̃(RYi)

· · · × 3 + up again

I specific to type of equation, e.g., yt − vyx = 0, type of coarse/fine propagator

I somewhat flexible wrt. spatial resolution (convolutions)

ML for PinT? | S. Götschel 9

Example: linear advection yt − vyx = 0

I solver: pyParareal https://github.com/Parallel-in-Time/pyParareal

I discretization: centered FD+trapezoidal rule, Nx = 128/32, Np = 10, Nt = 10/5

I data generation from various initial conditions y(x , t) = exp(− x−x0−vt
σ2) (varying t, x0, v , σ)

I training: Tensorflow/Keras, `2 loss (`∞ similar), Adam optimizer

0 100 200 300 400 500
epoch

10 7

10 6

10 5

10 4

10 3

10 2

10 1

lo
ss

 fu
nc

tio
n

va
lu

e

training
validation

ML for PinT? | S. Götschel 10

https://github.com/Parallel-in-Time/pyParareal

Training results
tr

ai
n

in
g

d
at

a

0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y(

x)
crse
fine
ML

0.0 0.5 1.0 1.5 2.0
x

0.04

0.02

0.00

0.02

0.04

0.06

er
ro

r t
o

fin
e

so
lu

tio
n

crse err
corr err

te
st

d
at

a

0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y(
x)

crse
fine
ML

0.0 0.5 1.0 1.5 2.0
x

0.04

0.02

0.00

0.02

0.04

0.06

0.08

er
ro

r t
o

fin
e

so
lu

tio
n

crse err
corr err

ML for PinT? | S. Götschel 11

Application during Parareal run

Coarse, fine, and corrected coarse solution at t = ∆t.

‖fine− coarse‖ = 1.6 · 10−2, ‖fine−ML‖ = 9.2 · 10−5

ML for PinT? | S. Götschel 12

However...

1 3 5 7
k

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100
||e

k ||
2

m=32 (ML)
m=32
m=128

ML for PinT? | S. Götschel 13

Approach 2: Learn coarse solver

Idea: train mapping Yn 7→ Yn+1 to replace coarse solver (using UNet as before)
tr

ai
n

in
g

d
at

a

0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y(

x)

t
t+dt fine
t+dt ML

0.0 0.5 1.0 1.5 2.0
x

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

er
ro

r t
o

fin
e

so
lu

tio
n

ML error

te
st

d
at

a

0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y(
x)

t
t+dt fine
t+dt ML

0.0 0.5 1.0 1.5 2.0
x

0.002

0.001

0.000

0.001

0.002

er
ro

r t
o

fin
e

so
lu

tio
n

ML error

ML for PinT? | S. Götschel 14

Well, that doesn’t help

0 50 100 150 200 250
epoch

10 6

10 5

10 4

10 3

10 2

10 1

lo
ss

 fu
nc

tio
n

va
lu

e

training
validation

1 3 5 7
k

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

||e
k ||

2

m=32 (ML)
m=32
m=128

Training progress Parareal convergence.

ML for PinT? | S. Götschel 15

Outlook: Learn coarse solver by PINN

Idea: train mapping Yn 7→ Yn+1 to replace coarse solver
Physics-informed neural network: take PDE into accountPhysics-informed neural networks (PINNs) for fluid mechanics: A review 3

Fig. 1: Schematic of a physics-informed neural network (PINN). A fully-connected neural network, with time and space
coordinates (t,x) as inputs, is used to approximate the multi-physics solutions û = [u,v, p,f]. The derivatives of û with
respect to the inputs are calculated using automatic differentiation (AD) and then used to formulate the residuals of the
governing equations in the loss function, that is generally composed of multiple terms weighted by different coefficients.
The parameters of the neural network q and the unknown PDE parameters l can be learned simultaneously by minimizing
the loss function.

multi-physics problem, where the solutions include the
velocity (u,v), pressure p and a scalar field f , which are
coupled in a PDE system f . The schematic in Fig. 1
represents most of the typical problems in fluid mechanics.
For instance, the PDEs considered here can be the
Boussinesq approximation of the Navier-Stokes equations,
where f is the temperature. Following the paradigm in
Fig. 1, we will describe the governing equations, the loss
function and the neural network configurations of PINNs
case-by-case in the rest of this paper.

2.2 Recent Advances of PINNs

First proposed in [19,20], see also [15], PINNs have
attracted a lot of attention in the scientific computing
community as well as the fluid mechanics community.
Here, we review some related works regarding the
methodology and the application to fluid mechanics.

Beneficial due to the high flexibility and the expressive
ability in function approximation, PINNs have been
extended to solve various classes of PDEs, e.g.,
integro-differential equations [21], fractional
equations [21], surfaces PDEs [22] and stochastic
differential equations [23]. A variational formulation of
PINNs based on the Galerkin method (hp-VPINN) was
proposed to deal with PDEs with non-smooth
solutions [24]. In addition, the variational hp-VPINN
considered domain decomposition, and similar pointwise
versions were also studied in CPINN [25], and

XPINN [26]. A general parallel implementation of PINNs
with domain decomposition for flow problems is presented
in [27]; the NVIDIA library SimNet [28] is also a very
efficient implementation of PINNs. Another important
extension is the uncertainty quantification for the PDE
solutions inferred by neural networks [29,30,31,32,33].
This has been studied by using the Bayesian
framework [33]. Moreover, some other researches on
PINNs focused on the development of the neural network
architecture and the training, e.g., using multi-fidelity
framework [34], adaptive activation functions [35] and
dynamic weights of the loss function [36], hard
constraints [37] and CNN-based network architectures [38],
which can improve the performance of PINNs on different
problems. On the theoretical side, some recent works [39,
40,41] have provided more guarantees and insights into the
convergence of PINNs.

The development of the methodology has inspired a
number of applications in other fields, especially in fluid
mechanics where the flow phenomena can be described by
the NSE. In [15], the vanilla PINN was proposed to infer
the unknown parameters (e.g., the coefficient of the
convection term) in the NS equations based on velocity
measurements for the 2D flow over a cylinder. Following
this work, PINNs were then applied to various flows [10,
11,12,13,14,42,43,44,45,46,47,48,49], covering the
applications on compressible flows [13], biomedical
flows [14,42,50], turbulent convection flows [48], free
boundary and Stefan problems [47], etc. The main

Figure: [Cai et al., arXiv:2105.09506]

ML for PinT? | S. Götschel 16

First results

Left: Parareal convergence for Black-Scholes with FD-discretization; Right: PINN improves accuracy of solver.

ML for PinT? | S. Götschel 17

Summary

ML to speed up Parareal convergence?

I several potential approaches: superresolution, training coarse solver

I expensive training, but reasonably good generalization

I reduced error, no improved convergence

I standard loss functions seem insufficient

I vast amount of hyperparameters for ML, better understanding required

Thank you!

sebastian.goetschel@tuhh.de

ML for PinT? | S. Götschel 18

Summary

ML to speed up Parareal convergence?

I several potential approaches: superresolution, training coarse solver

I expensive training, but reasonably good generalization

I reduced error, no improved convergence

I standard loss functions seem insufficient

I vast amount of hyperparameters for ML, better understanding required

Thank you!

sebastian.goetschel@tuhh.de

ML for PinT? | S. Götschel 18

