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Motivation and challenges



Motivation and Issues

Reaction-Diffusion (RD) systems have extensive applications in several areas

Examples

• SEIRD models: used for modelling the spread of diseases (such as COVID-19!)

• Lotka-Volterra equations: used to model predator-prey systems

...plus other examples in mathematical biology or physics!

Finding methods to efficiently solve these systems is vital.
However, they are nonlinear, time-dependent !
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Semi-linear reaction-diffusion equations

We consider, on the bounded domain Ω ⊂ Rn, the system of semi-linear RD equations

∂tu−∆u + f(u) = 0 in Ω× (0, T ),
u(x, t) = g(x, t) on ∂Ω× (0, T ),
u(x, 0) = u0(x) in Ω,

(1)

where u = (u1, u2, ..., ud) and f(u) = (f1(u), f2(u), ..., fd(u)).

Assuming that there exists a constant C such that for all x in Rn, f satisfies

‖f‖ ≤ C(1 + ‖x‖)

and under some assumptions on g and u0, the system is well-posed (Cf. Henry ’81)
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Motivation of this work

Study and develop Schwarz waveform relaxation (SWR) methods the their optimised versions for
non-linear systems of PDEs

• convergence study when applied to semi-linear RD systems.

• show superlinear convergence on bounded time intervals and linear (under conditions) over long
time by using comparison principles.

• derive optimised versions on the linear counterpart and apply them to nonlinear systems.
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SWR Methods



Introduction to SWR methods

What are Schwarz waveform relaxation (SWR) methods?

• SWR are a type of domain decomposition method - the overall domain is divided into smaller
sub-domains on which the system is solved.

• they rely on a space-time decomposition with overlapping sub-domains.
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SWR Method: two sub-domain case

Decompose the domain into overlapping sub-domains Ω1 = (0, βL) and Ω2 = (αL,L), α < β.

Denoting g1(t) := g(0, t) and g2(t) := g(L, t), the SWR method gives at iteration n + 1 the
approximate solutions vn+1, wn+1 on the two sub-domains by solving the equations

∂tv
n+1 −∆vn+1 + f(vn+1) = 0 in Ω1 × (0, T ),

vn+1(0, t) = g1(t) on (0, T ),
vn+1(βL, t) = wn(βL, t) on (0, T ),
vn+1(x, 0) = u0(x) in Ω1

(2)

∂tw
n+1 −∆wn+1 + f(wn+1) = 0 in Ω2 × (0, T ),

wn+1(αL, t) = vn(αL, t) on (0, T ),
wn+1(L, t) = g2(t) on (0, T ),
wn+1(x, 0) = u0(x) in Ω2.

(3)
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Error Analysis: Linear Convergence Estimate on unbounded intervals

We denote the errors in sub-domain Ω1 by dn := u− vn and in Ω2 by en := u−wn.

Linear Convergence Estimate

Assume that ∂ifi ≥ 0, i = 1, ..., d, and that there exists a constant a satisfying 0 < a < (π/L)2,
such that −a

d
≤ ∂ifj ≤ 0, j 6= i. Then the errors in the Schwarz waveform relaxation algorithm

satisfy

sup
x∈Ω1

‖d2n+1(x, ·)‖∞ ≤ γn‖e0(βL, ·)‖∞, (4)

sup
x∈Ω2

‖e2n+1(x, ·)‖∞ ≤ γn‖d0(αL, ·)‖∞, (5)

where γ ∈ (0, 1) is given by

γ =

(
sin(
√
aαL)

sin(
√
aβL)

)(
sin(
√
a(1− β)L)

sin(
√
a(1− α)L)

)
.
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Error Analysis: Superlinear Convergence on bounded time intervals

We denote the errors in sub-domain Ω1 by dn := u− vn and in Ω2 by en := u−wn.

Superlinear Convergence Estimate

Under same assumption on application f , the errors in the Schwarz waveform relaxation algo-
rithm satisfy

sup
x∈Ω1

‖d2n(x, ·)‖T ≤ max(eaT , 1)erfc
(
n(β − α)L√

T

)
‖d0(βL, ·)‖T , (6)

sup
x∈Ω2

‖e2n(x, ·)‖T ≤ max(eaT , 1)erfc
(
n(β − α)L√

T

)
‖e0(αL, ·)‖T , (7)
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Ideas behind the proof of the result

• Write the equations in term of error.

• Linearise (some assumptions are needed on the
partial derivatives).

• Apply a comparison principle. (see Volpert et al for
more sophisticated variants)

Let T > 0 and let u = (uj)1≤j≤d ∈ C2,1(Ω× [0, T ))d

be a function for which each component satisfies

∂tui −∆ui +

d∑
j=1

aij(x, t)uj = 0, in Ω× (0, T )

ui(x, t) = gi(t), on ∂Ω× (0, T ),

ui(x, 0) = 0, in Ω.

Let ã be a constant and ũ ∈ C2,1(Ω× [0, T )) be a
scalar function satisfying

∂ũ

∂t
−∆ũ− ãũ = 0, in Ω× (0, T )

ũ(x, t) = g̃(t), on ∂Ω× (0, T ),

ũ(x, 0) = 0, in Ω.

We assume that A(x, t) = (aij(x, t))1≤i,j≤d verifies

sup
x∈Ω, t∈[0,T ]

‖A(x, t)‖∞ ≤ ã

and that for i = 1, ..., d and for all t ∈ [0, T ],

|gi(t)| ≤ g̃(t).

Then for i = 1, ..., d,
|ui(x, t)| ≤ ũ(x, t), ∀(x, t) ∈ ΩT = Ω× (0, T ].
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ũ(x, 0) = 0, in Ω.

We assume that A(x, t) = (aij(x, t))1≤i,j≤d verifies

sup
x∈Ω, t∈[0,T ]

‖A(x, t)‖∞ ≤ ã
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and that for i = 1, ..., d and for all t ∈ [0, T ],

|gi(t)| ≤ g̃(t).

Then for i = 1, ..., d,
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−∆ũ− ãũ = 0, in Ω× (0, T )
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and that for i = 1, ..., d and for all t ∈ [0, T ],

|gi(t)| ≤ g̃(t).

Then for i = 1, ..., d,
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Numerical results



Belousov-Zhabotinsky equations

The model:{
∂tu− νu∆u− u(1− u− rv) = 0,

∂tv − νv∆v − buv = 0

with (b, r > 0) example of non-equilibrium
thermodynamics, resulting in the establishment of
a nonlinear chemical oscillator.

• the main aspect of the reaction is its
’excitability’

• the ratio of concentration of some ions
oscillated, causing the colour of the solution to
change.

Figure 1: Credits: Wikimedia Commons
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Figure 1: Variable change ū = 1− u⇒ the
hypothesis of the Theorem are verified ⇒
linear convergence.
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FitzHugh-Nagumo equations

The model:{
∂tu− νu∆u− f(u) + σv = 0,

∂tv − νv∆v − u+ v = 0

with f(u) = λu− u3 − κ (λ, νu, νv, κ > 0)
describes how an action potential travels through a
nerve.

• prototype of an excitable system (e.g., a
neuron).

• activator-inhibitor type of system: close to the
ground state, one component stimulates the
production of both components while the
other one inhibits their growth. Figure 2: Credits: Wikipedia
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Figure 2: The hypothesis of the Theorem are
not verified BUT we still have linear
convergence.
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Lotka-Volterra equations

The model (with migration of the populations):{
∂tu− νu∆u− u(α− βv) = 0,

∂tv − νv∆v + v(γ − δu) = 0

describe a biological system in which two species
interact, one a predator and one its prey.

• prey population is assumed to have an
unlimited food supply, and to reproduce
exponentially unless subject to predation

• predator population grows fueled by the food
supply, minus natural death.
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Figure 3: The hypothesis of the Theorem are
not verified, we have convergence but not the
linear one.
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Optimised SWR (OSWR) Methods



Optimised Method: Introduction

Idea: (from Y. Courvoisier thesis, University of Geneva) optimise the method for a nearby linear system
and see how it works for non-linear system. Consider RD systems of the form

∂tu = D∂xxu−Bu, u = (u, v),

where D and B are constant in space matrices in R2×2 such that the matrix D is positive definite and
the eigenvalues of B are positive.
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and see how it works for non-linear system. Consider RD systems of the form

∂tu = D∂xxu−Bu, u = (u, v),

where D and B are constant in space matrices in R2×2 such that the matrix D is positive definite and
the eigenvalues of B are positive.

Further assumption: D and B can be diagonalised in the same basis, allowing us to diagonalise our
system. This leads to the uncoupled system

{
ũt = ν1ũxx − λ1ũ,

ṽt = ν2ṽxx − λ2ṽ.

We can now focus on a single equation when obtaining our optimisation.
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Simplified Equation and Method

Focus on the one-dimensional linear RD equation:

ut = νuxx − λu, ν, λ > 0,

with initial condition u(x, 0) = g(x).

SWR algorithm with Robin transmission conditions gives


∂tu

n
1 = ν∂xxu

n
1 − λun1 , Ω1 × (0,∞)

(∂n1 + p)un1 = (∂n1 + p)un−1
2 , ∂Ω1 × (0,∞)

un1 (x, 0) = g(x), Ω1


∂tu

n
2 = ν∂xxu

n
2 − λun2 , Ω2 × (0,∞)

(∂n2 + p)un2 = (∂n2 + p)un−1
1 , ∂Ω2 × (0,∞)

un2 (x, 0) = g(x), Ω2,

where n1 and n2 are the unit outward vectors of Ω1 and Ω2 respectively, and p is the Robin parameter.
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Computation of the contraction Factor

Fourier transform in time + computation of the local errors + iterate ⇒ contraction factor for our
SWR algorithm:

ρ(ω, λ, ν, p) =

∣∣∣∣∣
(
p−
√
α

p+
√
α

)2

e−2
√
αL

∣∣∣∣∣ , α :=
iω + λ

ν

where ω is the Fourier frequency in time and L is the length of the overlap.

Rewrite α = iω+λ
ν

in the form α = iω̃ + λ
ν
, where ω̃ = ω

ν
.

f(p, y) =
(p− y)2 + y2 − ε
(p+ y)2 + y2 − εe

−2yL, ε =
λ

ν

To optimise the contraction factor solve

min
p>0

max
y∈I

f(p, y), I = [ε, ymax]

A lot of different cases + tedious computations + different cases to be considered...but the optimal
parameter can be found!
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Fourier transform in time + computation of the local errors + iterate ⇒ contraction factor for our
SWR algorithm:
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Numerical Results - OSWR



Discretising the OSWR method

Discretise (implicit Euler for the linear part and explicit for the nonlinear part)

ut = νuxx − f(u), u = [u, v]T

For our implementation, set the following values: [a, b] = [0, 1], [0, T ] = [0, 12π], ν = 0.05, N = 60

and M = 200. Initial condition u0 = [1− x/2, 1/2 + x/2]T and boundary conditions ua = ub = 0.

Linear Example: f(u) = λu and ν = 0.05

and λ = 0.05.

Computed solution for linear example

Non-Linear Example: f(u) = [u−uv,−u+

uv]T .

Computed solution for non-linear example
PinT 2022, CIRM Marseille 15/19



Linear Example, small overlap

• We run the algorithm for values in the interval p = [0.1,
√
ε].

• Robin algorithm outperforms Dirichlet even when p is sub-optimal.

• Best rate of convergence obtained for p =
√
ε, in accordance with theory.
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Non-Linear Example: small vs large overlap

• We vary the value of p from 1 to 10, with small then large overlap.

• Dirichlet fails to converge - optimised method successfully converges for p ≥ 4.

• Best rate of convergence obtained for p = 4. (not in line with the theoretical results)
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Altered Boundary Conditions

Error plot: Linear Example, p = 1.

• OSWR remains superior over SWR

• Optimal value of p occurs at p = 1;
unchanged from original boundary
conditions

Error plot: Non-Linear Example, p = 4.

• OSWR converges rapidly even when
SWR fails to converge

• Optimal value of p occurs at p = 4;
unchanged from original boundary
conditions
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Overall Conclusions



Overall Conclusions

• Theoretical convergence analysis for SWR applied to semi-linear RD system.

• OSWR performed as expected for the linear system.

• Additionally, the method successfully converged for the non-linear system when the Robin
parameter p was large enough.

However, it is clear further research could be done into the efficiency of this method.

Further Research Examples

• Investigate the limitation on the value of the Robin parameter p.

• Test the method on a more complex non-linear systems, such as an SEIRD model.

• Research the effectiveness of the method for higher dimensional systems.
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