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Motivation and challenges




Motivation and Issues

Reaction-Diffusion (RD) systems have extensive applications in several areas
Examples

e SEIRD models: used for modelling the spread of diseases (such as COVID-19!)

e Lotka-Volterra equations: used to model predator-prey systems

...plus other examples in mathematical biology or physics!

Finding methods to efficiently solve these systems is vital.
However, they are nonlinear, time-dependent !
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Semi-linear reaction-diffusion equations

We consider, on the bounded domain 2 C R"”, the system of semi-linear RD equations

Ou—Au+f(u) = 0 in Q% (0,7),
u(z,t) = g(z,t) on 9N x (0,7), (1)
u(z,0) = wuo(z) inQ,

where u = (u1, ug, ...,uq) and £(u) = (f1(u), f2(u), ..., fa(u)).
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Ou—Au+f(u) = 0 in Q% (0,7),
u(z,t) = g(z,t) on 9N x (0,7),
u(z,0) = wuo(z) inQ,

where u = (u1, ug, ...,uq) and £(u) = (f1(u), f2(u), ..., fa(u)).

(1)

Assuming that there exists a constant C such that for all x in R", f satisfies
£l <O+ [1x]l)

and under some assumptions on g and uo, the system is well-posed (Cf. Henry '81)
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Motivation of this work

Study and develop Schwarz waveform relaxation (SWR) methods the their optimised versions for
non-linear systems of PDEs

e convergence study when applied to semi-linear RD systems.

e show superlinear convergence on bounded time intervals and linear (under conditions) over long
time by using comparison principles.

e derive optimised versions on the linear counterpart and apply them to nonlinear systems.
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SWR Methods




Introduction to SWR methods

What are Schwarz waveform relaxation (SWR) methods?

e SWR are a type of domain decomposition method - the overall domain is divided into smaller
sub-domains on which the system is solved.

e they rely on a space-time decomposition with overlapping sub-domains.
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SWR Method: two sub-domain case

Decompose the domain into overlapping sub-domains 1 = (0, 5L) and Q2 = (oL, L), o < .

Denoting g1(t) := g(0,¢) and gz2(t) := g(L,t), the SWR method gives at iteration n + 1 the

approximate solutions v, w™T! on the two sub-domains by solving the equations

vt — AvmTE L f(vrT) = 0 in Q1 % (0,7),
vn+1(0, t) = 81 (t) on (O7T)' (2)
viH(BL,t) = w"(BL,t) on (0,T),
v (2,0) = wo(x) in Oy
Ow" Tt — Aw™ T L f(wmT) = 0 in Qg x (0,7),
w't(al,t) = v"(aL,t) on (0,T), (3)
w'TH (L, t) = gat) on (0,T),
w T (2,0) = wuo(x) in Q.
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Error Analysis: Linear Convergence Estimate on unbounded intervals

We denote the errors in sub-domain Q1 by d” :=u —v" and in Q3 by " :=u—w".

Linear Convergence Estimate

Assume that 0; f; > 0, i = 1, ..., d, and that there exists a constant a satisfying 0 < a < (7/L)?,
such that —§ < 0;f; <0, j # 4. Then the errors in the Schwarz waveform relaxation algorithm

satisfy

7" 11€®(BL, )leo (4)

IN

sup [|d*" " (2, )]l
zEQ

7"l (@, )lloo, ()

IN

sup [le”" " (2, )lloo
TEQ

where v € (0,1) is given by

v= (Sm/ed) (o).
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Error Analysis: Superlinear Convergence on bounded time intervals

We denote the errors in sub-domain ©; by d” :=u —v" and in Q3 by €" :=u—w".

Superlinear Convergence Estimate

Under same assumption on application f, the errors in the Schwarz waveform relaxation algo-
rithm satisfy

sup [0 (@)l < max(eeT, erf (%) 14°(5L, Yz, (6)
sp (@ )lr < max(e' Derfe (%) le®(aL, ), ()

PinT 2022, CIRM Marseille 7/19



Ideas behind the proof of the result

e \Write the equations in term of error.
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Ideas behind the proof of the result

Let @ be a constant and @ € C**(Q x [0,T)) be a

e Write the equations in term of error. scalar function satisfying
e Linearise (some assumptions are needed on the 91
partial derivatives). ot At—at = 0, in (0, T)
e Apply a comparison principle. (see Volpert et al for a(z,t) = g(t), ondQx(0,T),
(z,0) 0 in Q.

more sophisticated variants)

Let 7> 0 and let u = (u;)1<;<a € C>' (2 x [0,7))" We assume that A(z,t) = (ai;(x,t))1<i,j<a verifies
be a function for which each component satisfies
sup [|A(z,t)[lc < @

xz€Q, t€[0,T]
d
s — Ay - Zaij(x,t)uj = 0, inQx(0,7) and that for ¢ = 1,...,d and for all ¢ € [0, T,
j=1
wi(z,t) = gi(t),on 9 x (0,T), lg: ()] < g(t)-

u;(z,0 0,in Q.

Then fori =1,...,d,
lui(z, t)| < a(z,t), V(z,t) € Qr = Q x (0,T].
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Numerical results




Belousov-Zhabotinsky equations

The model:

Oru — vy Au —u(l —u —1v) =0,
Ot — UV Av — buv =0

with (b, > 0) example of non-equilibrium
thermodynamics, resulting in the establishment of
a nonlinear chemical oscillator.
e the main aspect of the reaction is its
‘excitability’

e the ratio of concentration of some ions

oscillated, causing the colour of the solution to
change.

Figure 1: Credits: Wikimedia Commons
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Belousov-Zhabotinsky equations

-
The model: o —
p——
Ou — vy Au — u(l —u —rv) =0,
OV — vy Av — buv =0 "
with (b, 7 > 0) example of non-equilibrium -
thermodynamics, resulting in the establishment of
a nonlinear chemical oscillator. !
e the main aspect of the reaction is its .
'excitability’
o the ratio of concentration of some ions Figure 1: Variable change % =1 — u = the
oscillated, causing the colour of the solution to hypOthes'S of the Theorem are verified =
linear convergence.
change.
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FitzHugh-Nagumo equations

The model:

Oru — vy Au — f(u) + ov =0,
v — vy Av—u+v=0

>
D
. 3 =
with f(u) = M —u’ — k (A, v, Vo, & > 0) 9
describes how an action potential travels through a 'E
nerve. 8
] 5]

e prototype of an excitable system (e.g., a -
neuron).
e activator-inhibitor type of system: close to the -1.0

-1.0 05 00 05 1.0

ground state, one component stimulates the coordinate x

production of both components while the
other one inhibits their growth. Figure 2: Credits: Wikipedia

PinT 2022, CIRM Marseille 10/19



FitzHugh-Nagumo equations

The model:
{ i

O — vy Au — f(u) +ov =0,
v — vy Av—u+v=0

with f(u) = \u —u® — K (A v, vy & > 0)
describes how an action potential travels through a

nerve.

e prototype of an excitable system (e.g., a

neuron). : T e #

e activator-inhibitor type of system: close to the Figure 2: The hypothesis of the Theorem are

ground state, one component stimulates the not verified BUT we still have linear
production of both components while the convergence.

other one inhibits their growth.
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Lotka-Volterra equations

The model (with migration of the populations):

Ou — vy Au — u(a — Bv) =0, <
0w — vy Av +v(y — du) =0

describe a biological system in which two species
interact, one a predator and one its prey. 0

e prey population is assumed to have an

unlimited food supply, and to reproduce TR e e e e W

exponentially unless subject to predation
Figure 3: The hypothesis of the Theorem are

e predator population grows fueled by the food not verified, we have convergence but not the
supply, minus natural death. linear one.
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Optimised SWR (OSWR) Methods




Optimised Method: Introduction

Idea: (from Y. Courvoisier thesis, University of Geneva) optimise the method for a nearby linear system

and see how it works for non-linear system. Consider RD systems of the form
dru = DOyeu — Bu, u = (u,v),

where D and B are constant in space matrices in R?*? such that the matrix D is positive definite and

the eigenvalues of B are positive.
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Optimised Method: Introduction

Idea: (from Y. Courvoisier thesis, University of Geneva) optimise the method for a nearby linear system

and see how it works for non-linear system. Consider RD systems of the form
oyu = DOyzu — Bu, u = (u,v),

where D and B are constant in space matrices in R2*? such that the matrix D is positive definite and

the eigenvalues of B are positive.

Further assumption: D and B can be diagonalised in the same basis, allowing us to diagonalise our

system. This leads to the uncoupled system

Ve = Vzﬁxx — )\217.

{ Ut = V1 Ugy — MU,

We can now focus on a single equation when obtaining our optimisation.
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Simplified Equation and Method

Focus on the one-dimensional linear RD equation:
Ut = Vlge — AU, U, A >0,

with initial condition u(z,0) = g(x).
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Simplified Equation and Method

Focus on the one-dimensional linear RD equation:
Ut = Vlge — AU, U, A >0,

with initial condition u(z,0) = g(x). SWR algorithm with Robin transmission conditions gives

orul = vOzzul — Aut, Q1 x (0, 00)
(ny +p)ut = (On, +p)uz ™", 9N x (0,00)
uy'(z,0) = g(=), O

Oruy = VOzpzuy — Auy, Q2 % (0,00)
(Ony 4+ p)uh = (Ony +p)ul™, 992 x (0,00)
u3(z,0) = g(z), Qz,

where n; and ns are the unit outward vectors of ©; and Q2 respectively, and p is the Robin parameter.
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Computation of the contraction Factor

Fourier transform in time 4+ computation of the local errors + iterate = contraction factor for our
SWR algorithm:
_iw A+ A

)

p+ Vo

where w is the Fourier frequency in time and L is the length of the overlap.

14

2
p(w, \, v, p) = (p\/a) o-2vaL
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SWR algorithm:
w4+ A

)

p+ Vo

where w is the Fourier frequency in time and L is the length of the overlap.

14

2
p(w, \, v, p) = (p\/a) o-2vaL

Rewrite o« = % in the form o = i@ + % where 0 = 2.

2 2
(P=y)+y" —e oyr __ A

5 =

f(Pyy):W/ >
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Computation of the contraction Factor

Fourier transform in time 4+ computation of the local errors + iterate = contraction factor for our
SWR algorithm:
w4+ A

)

p+ Vo

where w is the Fourier frequency in time and L is the length of the overlap.

14

2
p(w, \, v, p) = (p\/a) o-2vaL

w

# in the form o = i@ + % where & = 2.

Rewrite o« =

2 2
(P=y)+y" —e oyr __ A

5 =

f(Pyy):W/ >

To optimise the contraction factor solve

i I= 'max
min max f(p, y), I = [¢, Ymaa
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Computation of the contraction Factor

Fourier transform in time 4+ computation of the local errors + iterate = contraction factor for our

SWR algorithm:
2 .
plw,\, v, p) = (p\/a) o2Vl _iwt A

)

p+ Vo

where w is the Fourier frequency in time and L is the length of the overlap.

14

w

in the form o = i@ + % where & = 2.

Rewrite o« = %

PR 2 27
flpy) = B=D Y Zf o A

(p+y?+y:-¢ =~ v
To optimise the contraction factor solve

min max f(p, y), I = [¢, Ymaa
A lot of different cases + tedious computations + different cases to be considered...but the optimal
parameter can be found!
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Numerical Results - OSWR




Discretising the OSWR method

Discretise (implicit Euler for the linear part and explicit for the nonlinear part)

Ut = VUgy — f(u)v u = [u7 U}T

For our implementation, set the following values: [a,b] = [0, 1], [0, 7] = [0, 127], v = 0.05, N = 60
and M = 200. Initial condition uo = [1 —x/2,1/2 + 2/2]" and boundary conditions w, = u; = 0.

Linear Example: f(u) = Au and v = 0.05 Non-Linear Example: f(u) = [u—uv, —u+

and A\ = 0.05. wv] T,

Solution component 1

'
'
solution component u2 solution component u2

Computed solution for linear example Computed solution for non-linear example
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Linear Example, small overlap

e We run the algorithm for values in the interval p = [0.1, \/<].

e Robin algorithm outperforms Dirichlet even when p is sub-optimal.

e Best rate of convergence obtained for p = /¢, in accordance with theory.

error in u1 - optimised
error in u1 - Dirichlet
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Non-Linear Example: small vs large overlap

e We vary the value of p from 1 to 10, with small then large overlap.

e Dirichlet fails to converge - optimised method successfully converges for p > 4.

e Best rate of convergence obtained for p = 4. (not in line with the theoretical results)

10° T 10?
\ error in u1 - optimised ‘error in u2 - oplimised
) \ error in u1 - Dirichlet error in u2 - Dirichlet
10 E‘ 10° ﬁ\
2 |
10 \\ " N
\ 10 \
\ \
1073 | \
\‘ 10 \
104 “ \
\ \
. \ 108 \
10 \ \
\ \
\ N \
‘\US ‘\ 10
|
|
107 o
0 10 2 30 40 50 6 70 80 9% 100 0 10 20 30 4 5 6 70 80 80 100
iterations iterations
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e We vary the value of p from 1 to 10, with small then large overlap.

e Dirichlet fails to converge - optimised method successfully converges for p > 4.

e Best rate of convergence obtained for p = 4. (not in line with the theoretical results)

10°
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\
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\
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Altered Boundary Conditions

o k) e OSWR remains superior over SWR
w0l | w03 1

ot \\\ | e Optimal value of p occurs at p = 1;
N i | unchanged from original boundary

conditions
» w W m % W w
toraons
Error plot: Linear Example, p = 1.

e 00 V\
\K “\‘ ] e OSWR converges rapidly even when
) | ) ‘\‘ | SWR fails to converge
\\ ‘\\ e Optimal value of p occurs at p = 4;
\ \ unchanged from original boundary
R R R ) e e e e e e e w conditions
Error plot: Non-Linear Example, p = 4.
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Overall Conclusions

e Theoretical convergence analysis for SWR applied to semi-linear RD system.
e OSWR performed as expected for the linear system.

e Additionally, the method successfully converged for the non-linear system when the Robin
parameter p was large enough.
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Overall Conclusions

e Theoretical convergence analysis for SWR applied to semi-linear RD system.
e OSWR performed as expected for the linear system.

e Additionally, the method successfully converged for the non-linear system when the Robin
parameter p was large enough.

However, it is clear further research could be done into the efficiency of this method.
Further Research Examples
e Investigate the limitation on the value of the Robin parameter p.

e Test the method on a more complex non-linear systems, such as an SEIRD model.

e Research the effectiveness of the method for higher dimensional systems.
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