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Introduction and Motivation
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The two-level algorithm

e The time-domain is partitioned into C-points and F-points
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e the coarse system is solved sequentially
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The coarse grid equation

e The "ideal" coarse grid equation applies & m-times per interval
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The coarse grid equation

e The "ideal" coarse grid equation applies & m-times per interval

/ Up fo

7¢m / Um fm
A*(u) — —om / Um!| = fgm
—-om u, f,

% This system is no less expensive to solve

e A, is approximated by the coarse operator A., where &, ~ o™

(rediscretization)



The two level algorithm is a nonlinear splitting method
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The two level algorithm is a nonlinear splitting method




The MGRIT algorithm: overview

e MGRIT extends the two level algorithm to an arbitrary number of
levels

- recursive application of the two-level algorithm
- the coarsest grid may have as few as two time-points!

e optimal scaling for parabolic problems using FCF relaxation

e becomes more efficient as total number of time-points increases



MGRIT does not converge well for chaotic systems

e Non-linear
e Sensitive to perturbations

e |ll-conditioned

The Lorenz attractor



The Lorenz system is a model problem for chaos
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https://commons.wikimedia.org/w/index.php?curid=2525196

e three dimensional

e nonlinear (—xz and xy terms)

e derived by Lorenz as a simplified model of convection

e many chaotic PDEs can be modeled very accurately by finite
dimensional ODEs



Classical MGRIT fails to converge for chaotic systems
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Classical MGRIT fails to converge for chaotic systems

—— iteration 0 —— iteration 11 —— iteration 22 iteration 29
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Lyapunov Exponents/Vectors

For the Lorenz system:

A1 Unstable- (= 0.9) orbits diverge exponentially
X2 Neutral- (= 0) phase difference in time

A3 Stable- (= —14) orbits exponentially approach the strange attractor
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The 6 Method




Explicit methods too unstable, implicit methods too dissipative
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The 6 method splits the difference

u' = f(u)
uiy1 = u; + 6hf(u;) + (1 —6)hf(ujyq) 6 method
e O =1: forward Euler

e O = 0: backward Euler
e 0 =1/2: Crank-Nicolson
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The 6 method splits the difference

u' = f(u)
uiy1 = u; + 6hf(u;) + (1 —6)hf(ujyq) 6 method
e O =1: forward Euler

e O = 0: backward Euler
6 = 1/2: Crank-Nicolson

What's the best value of 6 to use for a given coarsening factor, m?
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Asymptotic values of 6

Since the 8 method is first order for any value of 6, i.e.

we can use the extra degree of freedom to find 6 such that
5(0) = ¢,(0)

and approximate the fine-grid to second order in mh.
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Asymptotic values of 6

Since the 8 method is first order for any value of 6, i.e.

we can use the extra degree of freedom to find 6 such that
5(0) = ¢,(0)
and approximate the fine-grid to second order in mh.

Forward Euler: Backward Euler:

m+1 m—1
Om = om Om = 2m
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The 6 method approximates the fine-grid to second order, and

the continuous equation to first order
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The asymptotic values of 6 better preserve Lyapunov exponents

on coarse grids
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A correction




T correction is a constant correction
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T correction is a constant correction

— 07(2)
— Oc(2)+T

ANV =f4+ T
T = A.(v) — A (vH)



/A correction is a linear correction

— 07(2)
— Oc(2) +Az+T

[Ac + AJ VY =f+7
A = D A, (VF) — DyA(vF)
T = A*(vk) — Ac(vk) — AvVF
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A correction is a generalization of Newton’s method

e exact method for linear systems

e quadratic convergence for nonlinear systems

[Ac + AV =f4 T
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A correction is a generalization of Newton’s method

e exact method for linear systems

e quadratic convergence for nonlinear systems

[Ac+A](V ) =f+7
If Ac is the identity, then the coarse grid equation becomes

DAV = (DAL + (F — AL(vF))
V= vF DAL (A) — )
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Results for Lorenz




optimal 6 methods converge faster, A correction converges
quadratically
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6 method improves both stability and MGRIT convergence

e |orenz system, Forward Euler fine-grid, F-relax, m =2

e T, constant, n; varies, iteration counts to reach residual tolerance

of 1e — 10
Tr, ng
Algorithm 4,512 44,1024 4,2048 4, 4096 4, 8192
MGRIT, * 44 22 15 12
MGRIT>,, 6 19 13 9 7 6
MGRIT,, A * 11 8 6 6
MGRIT», A, 6 8 6 5 4
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A correction extends the length of the time-domain

e |orenz system, Forward Euler fine-grid, m =2

e T, ny vary, iteration counts to reach residual tolerance of 1e — 10

Tfr ne
Algorithm 2,4096 4,8192 8, 16384 12, 24576
MGRIT, 10 13 64 -
MGRIT,, 6 4 5 7 -
MGRIT,, A 5 6 8 94
MGRIT,, A, 6 3 4 5 48
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RK4-6 method allows us to reach very coarse grids for Lorenz

e 4-level method, RK4 fine-grid, 4th order & method coarse grid,
m=4

e T, ny vary, iteration counts to reach residual tolerance of 1e — 10

Tr, ng
Algorithm 2,2048 4,4096 8, 8192 12, 12288
MGRIT, & o b &
MGRITy, 6 15 29 - -
MGRIT,4, A & & & &
MGRITy, A, 6 6 9 18 51
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RK4-6 method allows us to reach very coarse grids for Lorenz

e 4-level method, RK4 fine-grid, 4th order & method coarse grid,
m=4

e T, ny vary, iteration counts to reach residual tolerance of 1e — 10

Tr, ng
Algorithm 2,2048 4,4096 8, 8192 12, 12288
MGRIT, & o b &
MGRITy, 6 15 29 - -
MGRIT,4, A & & & &
MGRITy, A, 6 6 9 18 51

coarsest grids have 32 and 64 time-points, respectively!
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Low rank A correction for chaotic
PDEs




A correction is too expensive for PDEs

For Lorenz, the A; are 3 x 3 matrices

For a 1D PDE, they are ny x ny
For a 2D PDE...

Jacobians might not be available

22



The Kuramoto-Sivashinsky (KS) equation

U = —Uxx — U — Uy
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The Kuramoto-Sivashinsky (KS) equation

U = —Uxx — U — Uy

e Infinitely many Lyapunov exponents, A
e Finitely many A >0

e Why correct for modes which already converge well?
23



Low-rank A correction

Given a rank k orthogonal basis for the unstable manifold: W;

A= (Av)v]

24



Low-rank A correction

Given a rank k orthogonal basis for the unstable manifold: W;

A= (Av)v]

e Only have to store the factors V; and A;V;

e The columns of A;W; are directional derivatives (matrix free)

24



Backward Lyapunov Vectors

Given a trajectory {u;} satisfying

uO:fo

uip =o(u) +fi i=0,1,2 ..., n,

the backward Lyapunov Vectors are an orthonormal set satisfying the
tangent equation

Vi Rip1 = [Du®(ui)]V;

25



Low-rank A correction solves state and tangent equations si-

multaneously

e Given a trajectory u we can find the Lyapunov Vectors W

e Given the Lyapunov Vectors W, we can accelerate the solution of u

26



Low-rank A correction solves state and tangent equations si-

multaneously

e Given a trajectory u we can find the Lyapunov Vectors W
e Given the Lyapunov Vectors W, we can accelerate the solution of u

e So low-rank A correction uses the same MGRIT cycle to solve for
both iteratively

26



Results for the KS equation




e 4th order finite-differencing in space

e 2nd order Lobatto I1IC method in time (Stiffly accurate 2nd order
Runge Kutta method)
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e second order 8§ method constructed from combination of second
order Lobatto methods, along with stiff constraint

lim ¢(z) =0

Z——00
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Weak scaling

Figure 1: T = 4Ty, n. = 128, n; = 128, refinement in time only
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Weak scaling

Tr=4Ty, ny =128, ny = 128, refinement in both time and space

(parallel in time only)
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e space-time parallel for KS equation

e extend 6 methods to wide range of ap-
plications

e convergence on arbitrary time-domains

30
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