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Introduction and Motivation
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The two-level algorithm

• The time-domain is partitioned into C-points and F-points

• F-relaxation sets the residual to zero at each F-point (block Jacobi)

• the coarse system is solved sequentially
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The coarse grid equation

• The ”ideal” coarse grid equation applies Φ m-times per interval
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F This system is no less expensive to solve

• A∗ is approximated by the coarse operator Ac , where Φc ≈ Φm

(rediscretization)
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The two level algorithm is a nonlinear splitting method

A∗(u) = Ac(u)− τ (u)

Ac(uk+1)− τ (uk) = f

Ac(uk+1) = f + τ (uk)

[τ (u)]i = Φm(ui−m)− Φc(ui−m)
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The MGRIT algorithm: overview

• MGRIT extends the two level algorithm to an arbitrary number of

levels

- recursive application of the two-level algorithm

- the coarsest grid may have as few as two time-points!

• optimal scaling for parabolic problems using FCF relaxation

• becomes more efficient as total number of time-points increases
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MGRIT does not converge well for chaotic systems

The Lorenz attractor

• Non-linear

• Sensitive to perturbations

• Ill-conditioned
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The Lorenz system is a model problem for chaos

By I, Eyrian, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=2525196


dx
dt = σ(y − x),

dy
dt = x(ρ− z)− y ,
dz
dt = xy − βz

• three dimensional

• nonlinear (−xz and xy terms)

• derived by Lorenz as a simplified model of convection

• many chaotic PDEs can be modeled very accurately by finite

dimensional ODEs
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Classical MGRIT fails to converge for chaotic systems

λ ≈ 0.9

Tλ = log(10)
λ
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Lyapunov Exponents/Vectors

For the Lorenz system:

λ1: Unstable- (≈ 0.9) orbits diverge exponentially

λ2: Neutral- (= 0) phase difference in time

λ3: Stable- (≈ −14) orbits exponentially approach the strange attractor
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The θ Method



Explicit methods too unstable, implicit methods too dissipative

u′ = f (u)

ui+i = ui + hf (ui ) Forward Euler

ui+i = ui + hf (ui+1) Backward Euler

11



The θ method splits the difference

u′ = f (u)

ui+1 = ui + θhf (ui ) + (1− θ)hf (ui+1) θ method

• θ = 1: forward Euler

• θ = 0: backward Euler

• θ = 1/2: Crank-Nicolson

• What’s the best value of θ to use for a given coarsening factor, m?
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Asymptotic values of θ

Since the θ method is first order for any value of θ, i.e.

φθ(0) = φm(0)

φ′θ(0) = φ′m(0)

we can use the extra degree of freedom to find θ such that

φ′′θ(0) = φ′′m(0)

and approximate the fine-grid to second order in mh.

Forward Euler:

θm =
m + 1

2m

Backward Euler:

θm =
m − 1

2m
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The θ method approximates the fine-grid to second order, and

the continuous equation to first order
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The asymptotic values of θ better preserve Lyapunov exponents

on coarse grids
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∆ correction



τ correction is a constant correction

Ac(vk+1) = f

[Ac + ∆](vk+1) = f + τ

∆ = DuA∗(vk)−DuAc(vk)

τ = A∗(vk)− Ac(vk)−∆vk
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∆ correction is a linear correction

[Ac + ∆](vk+1) = f + τ

∆ = DuA∗(vk)−DuAc(vk)

τ = A∗(vk)− Ac(vk)−∆vk
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∆ correction is a generalization of Newton’s method

• exact method for linear systems

• quadratic convergence for nonlinear systems

[Ac + ∆](vk+1) = f + τ

If Ac is the identity, then the coarse grid equation becomes

[DuA∗(vk)]vk+1 = [DuA∗(vk)]vk + (f − A∗(vk))

vk+1 = vk − [DuA∗(vk)]−1(A∗(vk)− f)
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Results for Lorenz



optimal θ methods converge faster, ∆ correction converges

quadratically

Two-level method, Lorenz system, forward Euler fine-grid, Tf = 8Tλ

and nt = 8192
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θ method improves both stability and MGRIT convergence

• Lorenz system, Forward Euler fine-grid, F-relax, m = 2

• Tf constant, nt varies, iteration counts to reach residual tolerance

of 1e − 10

Tf , nt

Algorithm 4, 512 4, 1024 4, 2048 4, 4096 4, 8192

MGRIT2 * 44 22 15 12

MGRIT2, θ 19 13 9 7 6

MGRIT2, ∆ * 11 8 6 6

MGRIT2, ∆, θ 8 6 5 4 4
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∆ correction extends the length of the time-domain

• Lorenz system, Forward Euler fine-grid, m = 2

• Tf , nt vary, iteration counts to reach residual tolerance of 1e − 10

Tf , nt

Algorithm 2, 4096 4, 8192 8, 16384 12, 24576

MGRIT2 10 13 64 -

MGRIT2, θ 4 5 7 -

MGRIT2, ∆ 5 6 8 94

MGRIT2, ∆, θ 3 4 5 48
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RK4-θ method allows us to reach very coarse grids for Lorenz

• 4-level method, RK4 fine-grid, 4th order θ method coarse grid,

m = 4

• Tf , nt vary, iteration counts to reach residual tolerance of 1e − 10

Tf , nt

Algorithm 2, 2048 4, 4096 8, 8192 12, 12288

MGRIT4 * * * *

MGRIT4, θ 15 29 - -

MGRIT4, ∆ * * * *

MGRIT4, ∆, θ 6 9 18 51

coarsest grids have 32 and 64 time-points, respectively!
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Low rank ∆ correction for chaotic

PDEs



∆ correction is too expensive for PDEs

• For Lorenz, the ∆i are 3× 3 matrices

• For a 1D PDE, they are nx × nx
• For a 2D PDE...

• Jacobians might not be available
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The Kuramoto-Sivashinsky (KS) equation

ut = −uxx − uxxxx − uux

u(t, 0) = u(t,L)

• Infinitely many Lyapunov exponents, λ

• Finitely many λ > 0

• Why correct for modes which already converge well?
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Low-rank ∆ correction

Given a rank k orthogonal basis for the unstable manifold: Ψi

∆̂i = (∆iΨi )ΨTi

• Only have to store the factors Ψi and ∆iΨi

• The columns of ∆iΨi are directional derivatives (matrix free)

24
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Backward Lyapunov Vectors

Given a trajectory {ui} satisfying

u0 = f0

ui+1 = Φ(ui ) + f i+1 i = 0, 1, 2, . . . , n,

the backward Lyapunov Vectors are an orthonormal set satisfying the

tangent equation

Ψi+1Ri+1 = [DuΦ(ui )]Ψi

25



Low-rank ∆ correction solves state and tangent equations si-

multaneously

• Given a trajectory u we can find the Lyapunov Vectors Ψ

• Given the Lyapunov Vectors Ψ, we can accelerate the solution of u

• So low-rank ∆ correction uses the same MGRIT cycle to solve for

both iteratively
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Results for the KS equation



Discretization

• 4th order finite-differencing in space

• 2nd order Lobatto IIIC method in time (Stiffly accurate 2nd order

Runge Kutta method)

0 1
2 - 12

1 1
2

1
2

1
2

1
2

• second order θ method constructed from combination of second

order Lobatto methods, along with stiff constraint

lim
z→−∞

φ(z) = 0
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Weak scaling

Figure 1: Tf = 4Tλ, nx = 128, nt = 128, refinement in time only
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Weak scaling

Tf = 4Tλ, nx = 128, nt = 128, refinement in both time and space

(parallel in time only)
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Future work

• space-time parallel for KS equation

• extend θ methods to wide range of ap-

plications

• convergence on arbitrary time-domains
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