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1 Wave equation and SWR method

Wave equation

Consider a domain Ω = (0, 1), a time T > 0, and the wave equation

Lu := ∂ttu − c2∂xxu = 0 in Ω× (0, T ),
u(x, 0) = g0(x) and ∂tu(x, 0) = g1(x) for x ∈ Ω,
u(x, t) = 0 for t ∈ [0, T ] and x ∈ ∂Ω,

where c > 0 is the wave speed.
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1 Wave equation and SWR method

Schwarz waveform relaxation method

T

L̃1 a L L̃2b

Γ2 Γ1

x

t

Consider the Schwarz waveform relaxation (SWR) method: Ω = (0, b) ∪ (a, 1), with b > a, and

Lun1 = 0 in (0, b)× (0, T ),
un1(x, 0) = g0(x) and ∂tu

n
1(x, 0) = g1(x) for x ∈ (0, b),

un1(0, t) = 0 for t ∈ [0, T ],
un1(b, t)= u

n−1
2 (b, t) for t ∈ [0, T ],

and

Lun2 = 0 in (a, 1)× (0, T ),
un2(x, 0) = g0(x) and ∂tu

n
2(x, 0) = g1(x) for x ∈ (a, 1),

un2(1, t) = 0 for t ∈ [0, T ],
un2(a, t)= u

n−1
1 (a, t) for t ∈ [0, T ],

where n is the iteration index.

(Exact solution for n ≥ Tc
b−a .)
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1 Wave equation and SWR method

Numerical experiments (T = 10)
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1 Wave equation and SWR method

Numerical experiments (T = 10)
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1 Wave equation and SWR method

- T = 10

- T = 5

- T = 0.6
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1 Wave equation and SWR method

Numerical experiments

We observed that
• If T is sufficiently small then the error contracts.
• The error can propagate and grow in time.

Goal: understand/prove these behaviors to modify/improve the solution process.

(A Laplace/Fourier analysis does not reveal these behaviors.)
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2 Convergence analysis

Convergence analysis

T

L̃1 a L L̃2b

Γ2 Γ1

x

t

Let us define the iteration operator G:
G : g0 ∈ C(Γ1) 7→ g1 ∈ C(Γ2) 7→ g2 ∈ C(Γ1),
G(g0)(t) := g2(t),

for any g0 ∈ C(Γ1), where g1 := e1|Γ2 and g2 := e2|Γ1 with e1 and e2 solutions to
Le1 = 0 in (0, b)× (0, T ),

e1(x, 0) = 0 and ∂te1(x, 0) = 0 for x ∈ (0, b),
e1(0, t) = 0 and e1(b, t) = g0(t) for t ∈ [0, T ],

and
Le2 = 0 in (a, 1)× (0, T ),

e2(x, 0) = 0 and ∂te2(x, 0) = 0 for x ∈ (a, 1),
e2(1, t) = 0 and e2(a, t) = g1(t) for t ∈ [0, T ].

We study G using the operator norm ‖G‖ := sup‖g0‖∞=1 ‖G(g0)‖∞.
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2 Convergence analysis

Convergence analysis

Le1 = 0
e1(x, 0) = 0 and ∂te1(x, 0) = 0
e1(0, t) = 0 and e1(b, t) = g0(t)

L
cL̃1

c

2(L̃1+L)
c

L2

L3

L4

L5

x = 0
t = 0

x = L̃1 + L

L1

P
T̃

R1

R2

R3

R4

R5

L̃1 L
x

t

e1(P ) := ĝR(T̃ )−ĝL(T̃ ),
where

ĝR(T̃ ):=

∞∑
i=0

g0

(
T̃−
L

c
−
2i |Ω1|
c

)
HRi (T̃ ;L,|Ω1 |),

ĝL(T̃ ):=

∞∑
i=0

g0

(
T̃−
L̃1
c
−
(2i+1)|Ω1 |

c

)
HLi (T̃ ;L̃1,|Ω1|),

and

HRi (t;X, Y ) :=

{
1 if t − Xc −

2iY
c ≥ 0,

0 otherwise,

HLi (t;X, Y ) :=

{
1 if t − Xc −

(2i+1)Y
c ≥ 0,

0 otherwise.
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2 Convergence analysis

Convergence analysis

G(g0)(t)=

∞∑
i=0

{
HRi (t;L,|Ω2|)

∞∑
j=0

[
g0

(
t−
L+2i |Ω2|
c

−
L+2j |Ω1|
c

)
HRj

(
t−
L+2i |Ω2|
c

;L,|Ω1|
)

−g0
(
t−
L+2i |Ω2|
c

−
L̃1+(2j+1)|Ω1|

c

)
HLj

(
t−
L+2i |Ω2|
c

;L̃1,|Ω1|
)]

−HLi (t;L̃2,|Ω2|)
∞∑
j=0

[
g0

(
t−
L̃2+(2i+1)|Ω2|

c
−
L+2j |Ω1|
c

)
HRj

(
t−
L̃2+(2i+1)|Ω2|

c
;L,|Ω1|

)
−g0

(
t−
L̃2+(2i+1)|Ω2|

c
−
L̃1+(2j+1)|Ω1|

c

)
HLj

(
t−
L̃2+(2i+1)|Ω2|

c
;L̃1,|Ω1|

)]}
.

In order to maximize G(g0)(t), we look at t = T and pick any g̃0 such that

g̃0(t) =

{
1 for t = T − L+2i |Ω2|c − L+2j |Ω1|c or t = T − L̃2+(2i+1)|Ω2|c − L̃1+(2j+1)|Ω1|c ,

−1 for t = T − L+2i |Ω2|c − L̃1+(2j+1)|Ω1|c or t = T − L̃2+(2i+1)|Ω2|c − L+2j |Ω1|c .
Notice that such a function exists since red points and blue points are distinct.

This choice implies that

‖G‖ = max
‖g0‖∞=1

max
t∈[0,T ]

|G(g0)(t)| = |G(g̃0)(T )|.
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2 Convergence analysis

Convergence analysis

Hence, we get

‖G‖=
∞∑
i=0

{
HRi (T ;L,|Ω2|)

∞∑
j=0

[
HRj

(
T−
L+2i |Ω2|
c

;L,|Ω1|
)
+HLj

(
T−
L+2i |Ω2|
c

;L̃1,|Ω1|
)]

+HLi (T ;L̃2,|Ω2|)
∞∑
j=0

[
HRj

(
T−
L̃2+(2i+1)|Ω2|

c
;L,|Ω1|

)
+HLj

(
T−
L̃2+(2i+1)|Ω2|

c
;L̃1,|Ω1|

)]}
.

Using the definitions of HRj and H
L
j , we can estimate that

‖G‖ ≈
c2T 2

(|Ω1|+ |Ω2|)2
.

Moreover,

‖G‖ < 1 for T <
2min(L̃1, L̃2) + 2L

c
.

It is not best to use the SWR for large T .

What happens if we decompose also [0, T ] into “small enough” subdomains?
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3 Space-time (XT) decomposition and XT-RAS methods

Space-time decomposition and XT-RAS method
We keep the 2-subdomain space decomposition and split [0, T ] in NT overlapping subdomains:

T

a

0

1

L
b

x

t

Let us discretize our problem (using, e.g., FD or FE in space and Newmark or Leapfrog in time)
and write the discrete problem in the compact form

Au = f, A ∈ RNh×Nh,u, f ∈ RNh.

The SWR method can be easily generalized in a classical RAS form (now XT)

un+1 = un +
NXNT∑
k=1

R̃>k A
−1
k Rk(f− Aun),

where Rk and R̃k are XT restriction matrices (the usual RAS matrices including a partition of
unity) and Ak are XT matrices corresponding to the local subproblems.
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3 Space-time (XT) decomposition and XT-RAS methods

XT-RAS: Numerical experiments (T = 5, NX = 2, NT = 20)
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NT = 1

Remarks:
• There is no much gain in using a time decomposition.
• The “good information” need to propagate through the time subdomains to reach T .
• The error propagates and grows through the subdomains. → Useless subdomain solves.
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3 Space-time (XT) decomposition and XT-RAS methods

Pipeline XT-RAS method
Let us enumerate the subdomains as follows

T

ℓ

j

k = ℓ · j

x

t

We modify the XT-RAS formula:

un+1 = un +
∑
k∈Kn

R̃>k A
−1
k Rk(f− Aun),

with the set Kn defined as

Kn :=
{
k = ℓ · j : ℓ ∈ KX and j ∈ N+ with j ≤ min

(
NT ,

⌊
n

NWR

⌋
+ 1

)
and ‖Rj(f− Aun)‖∞ > ϵ

}
,

where KX := {1, 2, . . . , NX} and NWR ∈ N+ and ϵ > 0. (In what follows NWR = 4 and ϵ = 10−6.)

Notice that:
• This set defines a propagation in time of XT-RAS subsolves. The front of this propagation is

governed by the red condition while the tail by the blue condition.
• This allows us to avoid useless XT-RAS subsolves by controlling the error propagation/growth

and by avoiding the solution of “already solved” subproblems.
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3 Space-time (XT) decomposition and XT-RAS methods

Numerical experiments (T = 5, NX = 5, NT = 20, L ≈ 0.1)
(XT-RAS with no Pipeline: Iterations=62 and Solves=6200)
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4 Conclusions and future work

Conclusions:
• Convergence analysis of the SWR method for the solution of wave equations (including

damping).
• A new parallel XT-RAS framework.

Future work:
• Relations and comparison with the tent-pitching algorithm.
• Extension to 2D and 3D problems.
• Extension to true XT FE discretization on polygonal meshes.
• Test on concrete application (acoustics, geosciences, etc.)

Thank you!

58 / 58 On waveform-relaxation methods for wave-type equations Gabriele Ciaramella


	Wave equation and SWR method
	Convergence analysis
	Space-time (XT) decomposition and XT-RAS methods
	Conclusions and future work

