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Introduction

Motivation

Numerical weather prediction (NWP) heavily relies on the use of high performance architectures to
give forecasts in reasonable time

Example: A climate simulation problem with 50, 000 unknowns given 10, 000 cores. Using 10× 10
unknowns for the horizontal domain would use 500 cores.

I More cores =⇒ performance loss

Data assimilation (DA) is a highly sequential algorithm, why not exploit PinT methods...?

In this talk

Coupling parareal with the data assimilation framework

Tuning the precision levels in minimisation for running parareal adaptively

results with a 1D shallow-water model and a theoretical speedup check

Some of the possible improvements and future work
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Data assimilation

In terms of NWP, the aim is to retrieve the optimal initial condition which describes the true state of the
atmosphere to give an improved forecast

Available information (pressure, temperature, wind speed,...)

numerical model describing the governing laws/physics

I state vector of order 108 − 109

in-situ measurements, satellite data etc

I observation vector of order 106 − 107

source: dwd.de
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Discrete nonlinear model F with state variable x

x(t0) = x0

xi = Fti−1→ti (xi−1) i = 1, ...,N N - no. of time windows
(1)
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xi = Fti−1→ti (xi−1) i = 1, ...,N N - no. of time windows
(1)

Variational DA −→ solving a least squares problem of the discrepancies between what model gives and
what we observe!

background state xb0

observations yi

observation operator H

covariance matrices B and R

min
x0∈Rn

J (x0) =
1

2
‖x0 − xb0‖2

B−1︸ ︷︷ ︸
Jb(x0)

+
1

2

N∑
i=0

‖yi −Hi (xi )‖2

R−1
i︸ ︷︷ ︸

Jo (x0)

(2)
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Adjoint - why do we care?

minimisation algorithms involve lots of function and gradient evaluations

J (x0)→ one model run

∇J (x0) =


∂J
∂x1

(x0)

...
∂J
∂xn

(x0)

 '

J (x0 + αe1)− J (x0)

α
...

J (x0 + αen)− J (x0)

α

→ n + 1model runs

Tangent linear model of F (for initial perturbation δx0)

δxi+1 = Fiδxi

Corresponding adjoint equations:

λN = HT
N R−1

N [yN −HN(xN)]

λi = FT
i λi+1 + HT

i R−1
i [yi −Hi (xi )] i = N − 1, . . . , 1

λ0 = FT
0 λ1 + B−1(x0 − xb0) + HT

0 R−1
0 [y0 −H0(x0)]

(3)

Solving (3) gives δJ = (λ0)T δx0  cost around 3 times running forward model
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Incremental 4d-var1

Solve small sub-minimisations by sucessive
approximations

Gives a quadratic J

Tangent linear approximations (around x(k))

F(x(k) + δx(k)) ' F(x(k)) + F |x(k) δx(k)

H(x(k) + δx(k)) ' H(x(k)) + H|F(x(k))δx(k)
(4)

At kth minimisation solve

Jk (δx
(k)
0 ) =

1

2
‖δx

(k)
0 − (xb0 − x

(k)
0 )‖2

B−1 +
1

2

N∑
i=0

‖yi −Hi ◦ F(x
(k)
0 + δx

(k)
0 )‖2

R−1 (5)

I Innovation vector : di = yi −Hi ◦ F(x
(k)
0 )

I Increment vector : δx
(k)
0 = x

(k+1)
0 − x

(k)
0

1Courtier,Thépaut,Hollingsworth (1994)

Bhatt, Debreu, and Vidard Parareal within 4d-Var PinT 2022, Luminy 6 / 17



Incremental 4d-var1

Solve small sub-minimisations by sucessive
approximations

Gives a quadratic J

Tangent linear approximations (around x(k))

F(x(k) + δx(k)) ' F(x(k)) + F |x(k) δx(k)

H(x(k) + δx(k)) ' H(x(k)) + H|F(x(k))δx(k)
(4)

At kth minimisation solve

Jk (δx
(k)
0 ) =

1

2
‖δx

(k)
0 − (xb0 − x

(k)
0 )‖2

B−1 +
1

2

N∑
i=0

‖yi −Hi ◦ F(x
(k)
0 + δx

(k)
0 )‖2

R−1 (5)

I Innovation vector : di = yi −Hi ◦ F(x
(k)
0 )

I Increment vector : δx
(k)
0 = x

(k+1)
0 − x

(k)
0

1Courtier,Thépaut,Hollingsworth (1994)

Bhatt, Debreu, and Vidard Parareal within 4d-Var PinT 2022, Luminy 6 / 17



Incremental 4d-var1

Solve small sub-minimisations by sucessive
approximations

Gives a quadratic J

Tangent linear approximations (around x(k))

F(x(k) + δx(k)) ' F(x(k)) + F |x(k) δx(k)

H(x(k) + δx(k)) ' H(x(k)) + H|F(x(k))δx(k)
(4)

At kth minimisation solve

Jk (δx
(k)
0 ) =

1

2
‖δx

(k)
0 − (xb0 − x

(k)
0 )‖2

B−1 +
1

2

N∑
i=0

‖di − HiFδx
(k)
0 ‖

2
R−1 (5)

I Innovation vector : di = yi −Hi ◦ F(x
(k)
0 )

I Increment vector : δx
(k)
0 = x

(k+1)
0 − x

(k)
0

1Courtier,Thépaut,Hollingsworth (1994)

Bhatt, Debreu, and Vidard Parareal within 4d-Var PinT 2022, Luminy 6 / 17



Parareal Method3

Discrete linear model

x(t0) = x0

xi+1 = Fxi i = 1, ...,N N - no. of time windows
(6)

Description:

xk+1
0 = x0

xk+1
n+1 = G xk+1

n
prediction

+ (F − G) xkn
correction

Fine solver computations in parallel

Nice convergence for parabolic problems, not so good for hyperbolic

Error:

With parareal integrator P(k) at iteration k such that P(k)x0 = xkN , we can write 2

FN − P(k) =
N∑

p=k+1

CN
p (F − G)pGN−p (7)

2Staff and Ronquist
3J. Lions, Y. Maday, and G. Turinici (2001)
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Introducing time parallelism

Data assimilation problem: with no background info (xb0), a true observation y at tN = T and H = I .
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Introducing time parallelism

Data assimilation problem: with no background info (xb0), a true observation y at tN = T and H = I .

J(x0) =
1

2
‖FNx0 − y‖2

2

∇J(x0) = (FN)T (FNx0 − y)
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Solve −→ (FN)TP(k)︸ ︷︷ ︸
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−→ Conjugate gradient for minimisation as A∗ is symmetric
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Minimisation: Inexact conjugate gradient4

Inexact matrix-vector multiplication (a costly operation!)

By gradually increasing the inexactness of the mat-vec product, one could still produce the exact
version’s level of accuracy.

In our case, the perturbation matrix is

E(k) = A− A∗ = −(FN)T (FN − P(k))

Theorem in nutshell (a bit modified...): At icg-iteration j if

‖Ejpj‖A−1 ≤ ωj (‖b‖A−1 , ‖pj‖A, ‖r‖A−1 ) (9)

then

‖ r(xj )− rj︸ ︷︷ ︸
residual gap

‖A−1 ≤
√
ε

2
‖b‖A−1 (10)

p - direction vector

r - inexact residual

If additionally

‖rj‖A−1 ≤
√
ε

2
‖b‖A−1 (11)

then the cost function can be monitored as

J(xj )− J(x∗) ≤ εJ(x∗)

4Gratton et al, 2021
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A practical implementation

In real problems A has a huge size =⇒ impractical estimates.

Gratton et al approximated ‖pj‖A, J(xj ), ‖b‖A−1 and the termination test (11) by easily computable
quantities.

I ‖pj‖A ≈
√

1
n

Tr(A) ‖pj‖2

I J(xj ) ≈ Jj
def
= − 1

2
bT xj

I ‖b‖A−1 ≈ ‖b‖2√
λmax

j = 0, x0 = 0 and ‖b‖A−1 ≈
√

2|Jj | j = 1, 2, ..., jmax

I ‖rj‖A−1 ≤ ε
2
‖b‖A−1 by Jj−d − Jj ≤ 1

4
ε|Jj | for some integer d

But now ‖Ejpj‖A−1 also needs an approximation!

Result

If F is invertible, ‖Ej (k)pj‖A−1 and ‖P(k)pj − FNpj‖2 are rigorously the same whatever the parareal

approximation. FNpj is the corresponding exact solution.
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Well now we also need an approximation for FNpj !

Check that ξj doesn’t lie between last two norm values
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Shallow water model

1d linear shallow water model

∂η

∂t
= −H

∂u

∂x

∂u

∂t
= −g

∂η

∂x
+ µ

∂2u

∂x2

(12)

Setup: Arakawa C-grid discretisation

dx

dt
= Cx, x =

(
η
u

)

Parameters

N = 20

no. of fine time steps per time window, Nf = 100

no. of coarse time steps per time window, Ng = 20

coarse time step, ∆t = 0.05

spatial grid-step, ∆x = 1

diffusion constant, µ = 0.15

average height, H = 0.9

Coarse and fine propagators are defined
using theta scheme (θ = 0.51)

F = [(I − θδtC)−1(I + (1− θ)δtC)]Nf

G = [(I − θ∆tC)−1(I + (1− θ)∆tC)]Ng
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Exact cg

Initial condition - a gaussian at the middle of the basin/domain

Using exact CG with εcg = 10−4, takes 24 minimisation iterations
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Exact cg with parareal

Fixed stopping tolerance for parareal εp = 10−6, εcg = 10−4

On average 8.125 p-iterations per icg-iteration
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Inexact cg with practical estimates

On average 6.36 p-iterations per icg-iteration, nice!

Theoretical speedup:
N

p-iterations
=

20

6.36
= 3.1

ωj is the tolerance for the error norm ‖Ej (k)‖A−1,A
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Retreived initial condition and final results
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Conclusion and future work

Reducing the cost of the coarse solver.

I Using the Krylov enhanced parareal5 version. Choosing the right vectors for the convergence of
Krylov enhanced method because of storage issues.

Running a parallel version of adjoint - running parareal but in reverse direction leading to double
degree of parallelism. Similar error analysis for adjoint.

Current processes work on synchronicity. Introduce asynchronous methods which don’t wait for
neighbouring processes and are more linked to the spatial discretisation.

Other ways to couple DA and PinT algorithms - solving the forward and backward model together as a
system as done in ParaOpt6.

Extension to 2d model

5Gander and Petcu, 2008
6Gander, Kwok and Salomon, 2020
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