Introducing time parallelisation within data assimilation using parareal

Rishabh Bhatt, Laurent Debreu, Arthur Vidard

Université Grenoble Alpes, INRIA, Laboratoire Jean Kuntzmann

11th Parallel-in-Time Conference

CIRM, July 15, 2022

Introduction

Motivation

- Numerical weather prediction (NWP) heavily relies on the use of high performance architectures to give forecasts in reasonable time
- Example: A climate simulation problem with 50,000 unknowns given 10,000 cores. Using 10×10 unknowns for the horizontal domain would use 500 cores.
 - ▶ More cores ⇒ performance loss
- Data assimilation (DA) is a highly sequential algorithm, why not exploit PinT methods...?

In this talk

- Coupling parareal with the data assimilation framework
- Tuning the precision levels in minimisation for running parareal adaptively
- results with a 1D shallow-water model and a theoretical speedup check
- Some of the possible improvements and future work

(ロ) (日) (日) (日) (日)

Introduction

Motivation

- Numerical weather prediction (NWP) heavily relies on the use of high performance architectures to give forecasts in reasonable time
- Example: A climate simulation problem with 50,000 unknowns given 10,000 cores. Using 10×10 unknowns for the horizontal domain would use 500 cores.
 - ▶ More cores ⇒ performance loss
- Data assimilation (DA) is a highly sequential algorithm, why not exploit PinT methods...?

In this talk

- Coupling parareal with the data assimilation framework
- Tuning the precision levels in minimisation for running parareal adaptively
- results with a 1D shallow-water model and a theoretical speedup check
- Some of the possible improvements and future work

イロト イヨト イヨト イヨト

In terms of NWP, the aim is to retrieve the *optimal* initial condition which describes the true state of the atmosphere to give an improved forecast

source: dwd.de

イロト イヨト イヨト イヨ

Data assimilation

In terms of NWP, the aim is to retrieve the *optimal* initial condition which describes the true state of the atmosphere to give an improved forecast

Available information (pressure, temperature, wind speed,...)

- numerical model describing the governing laws/physics
 - \blacktriangleright state vector of order $10^8 10^9$
- in-situ measurements, satellite data etc
 - \blacktriangleright observation vector of order 10^6-10^7

source: dwd.de

Discrete nonlinear model ${\mathcal F}$ with state variable ${\boldsymbol x}$

$$\begin{aligned} \mathbf{x}(t_0) &= \mathbf{x}_0 \\ \mathbf{x}_i &= \mathcal{F}_{t_{i-1} \to t_i}(\mathbf{x}_{i-1}) \quad i = 1, ..., N \end{aligned} \qquad \qquad N \text{ - no. of time windows} \end{aligned}$$

 ►
 ►
 ►
 ►

 </

イロト イヨト イヨト イヨト

Discrete nonlinear model \mathcal{F} with state variable \mathbf{x}

$$\begin{aligned} \mathbf{x}(t_0) &= \mathbf{x}_0 \\ \mathbf{x}_i &= \mathcal{F}_{t_{i-1} \to t_i}(\mathbf{x}_{i-1}) \quad i = 1, ..., N \end{aligned} \qquad \qquad N \text{ - no. of time windows} \end{aligned}$$

Variational DA \longrightarrow solving a least squares problem of the discrepancies between what model gives and what we observe!

イロト イロト イヨト

Discrete nonlinear model ${\mathcal F}$ with state variable ${\boldsymbol x}$

$$\begin{aligned} \mathbf{x}(t_0) &= \mathbf{x}_0 \\ \mathbf{x}_i &= \mathcal{F}_{t_{i-1} \to t_i}(\mathbf{x}_{i-1}) \quad i = 1, ..., N \end{aligned} \qquad \qquad N \text{ - no. of time windows} \end{aligned}$$

Variational DA \longrightarrow solving a least squares problem of the discrepancies between what model gives and what we observe!

- background state x^b₀
- observations y_i
- \bullet observation operator ${\cal H}$
- covariance matrices **B** and **R**

$$\min_{\mathbf{x}_{0} \in \mathbb{R}^{n}} \mathcal{J}(\mathbf{x}_{0}) = \underbrace{\frac{1}{2} \|\mathbf{x}_{0} - \mathbf{x}_{0}^{b}\|_{\mathbf{B}^{-1}}^{2}}_{\mathcal{J}_{b}(\mathbf{x}_{0})} + \underbrace{\frac{1}{2} \sum_{i=0}^{N} \|\mathbf{y}_{i} - \mathcal{H}_{i}(\mathbf{x}_{i})\|_{\mathbf{R}_{i}^{-1}}^{2}}_{\mathcal{J}_{o}(\mathbf{x}_{0})}$$
(2)

Discrete nonlinear model ${\mathcal F}$ with state variable ${\bf x}$

$$\begin{aligned} \mathbf{x}(t_0) &= \mathbf{x}_0 \\ \mathbf{x}_i &= \mathcal{F}_{t_{i-1} \to t_i}(\mathbf{x}_{i-1}) \quad i = 1, ..., N \end{aligned} \qquad \qquad N \text{ - no. of time windows} \end{aligned}$$

Variational DA \longrightarrow solving a least squares problem of the discrepancies between what model gives and what we observe!

$$\min_{\mathbf{x}_{0}\in\mathbb{R}^{n}} \mathcal{J}(\mathbf{x}_{0}) = \underbrace{\frac{1}{2} \|\mathbf{x}_{0} - \mathbf{x}_{0}^{b}\|_{\mathbf{B}^{-1}}^{2}}_{\mathcal{J}_{b}(\mathbf{x}_{0})} + \underbrace{\frac{1}{2} \sum_{i=0}^{N} \|\mathbf{y}_{i} - \mathcal{H}_{i}(\mathcal{F}_{t_{0}\to t_{i}}(\mathbf{x}_{0}))\|_{\mathbf{R}_{i}^{-1}}^{2}}_{\mathcal{J}_{o}(\mathbf{x}_{0})}$$
(2)

Bhatt, Debreu, and Vidard

Adjoint - why do we care?

minimisation algorithms involve lots of function and gradient evaluations

 $\mathcal{J}(\mathbf{x}_0) \rightarrow \text{ one model run}$

$$\nabla \mathcal{J}(\mathbf{x}_0) = \begin{pmatrix} \frac{\partial \mathcal{J}}{\partial x_1}(\mathbf{x}_0) \\ \vdots \\ \frac{\partial \mathcal{J}}{\partial x_n}(\mathbf{x}_0) \end{pmatrix} \simeq \begin{pmatrix} \frac{\mathcal{J}(\mathbf{x}_0 + \alpha \mathbf{e}_1) - \mathcal{J}(\mathbf{x}_0)}{\alpha} \\ \vdots \\ \frac{\mathcal{J}(\mathbf{x}_0 + \alpha \mathbf{e}_n) - \mathcal{J}(\mathbf{x}_0)}{\alpha} \end{pmatrix} \to n + 1 \text{ model runs}$$

Tangent linear model of \mathcal{F} (for initial perturbation $\delta \mathbf{x}_0$)

$$\delta \mathbf{x}_{i+1} = F_i \delta \mathbf{x}$$

Corresponding adjoint equations:

$$\lambda_{N} = H_{N}^{T} \mathbf{R}_{N}^{-1} [\mathbf{y}_{N} - \mathcal{H}_{N}(\mathbf{x}_{N})]$$

$$\lambda_{i} = F_{i}^{T} \lambda_{i+1} + H_{i}^{T} \mathbf{R}_{i}^{-1} [\mathbf{y}_{i} - \mathcal{H}_{i}(\mathbf{x}_{i})] \qquad i = N - 1, \dots, 1$$

$$\lambda_{0} = F_{0}^{T} \lambda_{1} + \mathbf{B}^{-1} (\mathbf{x}_{0} - \mathbf{x}_{0}^{b}) + H_{0}^{T} \mathbf{R}_{0}^{-1} [\mathbf{y}_{0} - \mathcal{H}_{0}(\mathbf{x}_{0})]$$
(3)

Solving (3) gives $\delta \mathcal{J} = (\lambda_0)^T \delta \mathbf{x}_0 \rightsquigarrow \text{cost around 3 times running forward model}$

・ロト ・日下・ ・ ヨト・

Adjoint - why do we care?

minimisation algorithms involve lots of function and gradient evaluations

 $\mathcal{J}(\mathbf{x}_0) \rightarrow \text{ one model run}$

$$\nabla \mathcal{J}(\mathbf{x}_0) = \begin{pmatrix} \frac{\partial \mathcal{J}}{\partial x_1}(\mathbf{x}_0) \\ \vdots \\ \frac{\partial \mathcal{J}}{\partial x_n}(\mathbf{x}_0) \end{pmatrix} \simeq \begin{pmatrix} \frac{\mathcal{J}(\mathbf{x}_0 + \alpha \mathbf{e}_1) - \mathcal{J}(\mathbf{x}_0)}{\alpha} \\ \vdots \\ \frac{\mathcal{J}(\mathbf{x}_0 + \alpha \mathbf{e}_n) - \mathcal{J}(\mathbf{x}_0)}{\alpha} \end{pmatrix} \to n + 1 \text{ model runs}$$

Tangent linear model of \mathcal{F} (for initial perturbation $\delta \mathbf{x}_0$)

$$\delta \mathbf{x}_{i+1} = F_i \delta \mathbf{x}$$

Corresponding adjoint equations:

$$\lambda_{N} = \boldsymbol{H}_{N}^{T} \mathbf{R}_{N}^{-1} [\mathbf{y}_{N} - \mathcal{H}_{N}(\mathbf{x}_{N})]$$

$$\lambda_{i} = \boldsymbol{F}_{i}^{T} \lambda_{i+1} + \boldsymbol{H}_{i}^{T} \mathbf{R}_{i}^{-1} [\mathbf{y}_{i} - \mathcal{H}_{i}(\mathbf{x}_{i})] \qquad i = N - 1, \dots, 1$$

$$\lambda_{0} = \boldsymbol{F}_{0}^{T} \lambda_{1} + \mathbf{B}^{-1} (\mathbf{x}_{0} - \mathbf{x}_{0}^{b}) + \boldsymbol{H}_{0}^{T} \mathbf{R}_{0}^{-1} [\mathbf{y}_{0} - \mathcal{H}_{0}(\mathbf{x}_{0})]$$
(3)

Solving (3) gives $\delta \mathcal{J} = (\lambda_0)^T \delta \mathbf{x}_0 \rightsquigarrow \text{cost}$ around 3 times running forward mode

・ロト ・ 日 ・ ・ ヨ ・ ・

Adjoint - why do we care?

minimisation algorithms involve lots of function and gradient evaluations

 $\mathcal{J}(\mathbf{x}_0) \rightarrow \text{ one model run}$

$$\nabla \mathcal{J}(\mathbf{x}_0) = \begin{pmatrix} \frac{\partial \mathcal{J}}{\partial x_1}(\mathbf{x}_0) \\ \vdots \\ \frac{\partial \mathcal{J}}{\partial x_n}(\mathbf{x}_0) \end{pmatrix} \simeq \begin{pmatrix} \frac{\mathcal{J}(\mathbf{x}_0 + \alpha \mathbf{e}_1) - \mathcal{J}(\mathbf{x}_0)}{\alpha} \\ \vdots \\ \frac{\mathcal{J}(\mathbf{x}_0 + \alpha \mathbf{e}_n) - \mathcal{J}(\mathbf{x}_0)}{\alpha} \end{pmatrix} \to n + 1 \text{ model runs}$$

Tangent linear model of \mathcal{F} (for initial perturbation $\delta \mathbf{x}_0$)

$$\delta \mathbf{x}_{i+1} = F_i \delta \mathbf{x}$$

Corresponding adjoint equations:

$$\lambda_{N} = \boldsymbol{H}_{N}^{T} \mathbf{R}_{N}^{-1} [\mathbf{y}_{N} - \mathcal{H}_{N}(\mathbf{x}_{N})]$$

$$\lambda_{i} = \boldsymbol{F}_{i}^{T} \lambda_{i+1} + \boldsymbol{H}_{i}^{T} \mathbf{R}_{i}^{-1} [\mathbf{y}_{i} - \mathcal{H}_{i}(\mathbf{x}_{i})] \qquad i = N - 1, \dots, 1$$

$$\lambda_{0} = \boldsymbol{F}_{0}^{T} \lambda_{1} + \mathbf{B}^{-1} (\mathbf{x}_{0} - \mathbf{x}_{0}^{b}) + \boldsymbol{H}_{0}^{T} \mathbf{R}_{0}^{-1} [\mathbf{y}_{0} - \mathcal{H}_{0}(\mathbf{x}_{0})]$$
(3)

Solving (3) gives $\delta \mathcal{J} = (\lambda_0)^T \delta \mathbf{x}_0 \rightsquigarrow$ cost around 3 times running forward model

・ロト ・日下・ ・ ヨト・

- Solve small sub-minimisations by sucessive approximations
- Gives a quadratic J

Tangent linear approximations (around $\mathbf{x}^{(k)}$)

$$\mathcal{F}(\mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)}) \simeq \mathcal{F}(\mathbf{x}^{(k)}) + F|_{\mathbf{x}^{(k)}} \delta \mathbf{x}^{(k)}$$

$$\mathcal{H}(\mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)}) \simeq \mathcal{H}(\mathbf{x}^{(k)}) + H|_{\mathcal{F}(\mathbf{x}^{(k)})} \delta \mathbf{x}^{(k)}$$
(4)

イロト イロト イヨト

• At *k*th minimisation solve

$$J^{k}(\delta \mathbf{x}_{0}^{(k)}) = \frac{1}{2} \|\delta \mathbf{x}_{0}^{(k)} - (\mathbf{x}_{0}^{b} - \mathbf{x}_{0}^{(k)})\|_{\mathbf{B}^{-1}}^{2} + \frac{1}{2} \sum_{i=0}^{N} \|\mathbf{y}_{i} - \mathcal{H}_{i} \circ \mathcal{F}(\mathbf{x}_{0}^{(k)} + \delta \mathbf{x}_{0}^{(k)})\|_{\mathbf{R}^{-1}}^{2}$$
(5)

- Innovation vector : $\mathbf{d}_i = \mathbf{y}_i \mathcal{H}_i \circ \mathcal{F}(\mathbf{x}_0^{(\kappa)})$
- lncrement vector : $\delta x_0^{(k)} = x_0^{(k+1)} x_0^{(k)}$

¹Courtier, Thépaut, Hollingsworth (1994)

- Solve small sub-minimisations by sucessive approximations
- Gives a quadratic J

Tangent linear approximations (around $\mathbf{x}^{(k)}$)

$$\mathcal{F}(\mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)}) \simeq \mathcal{F}(\mathbf{x}^{(k)}) + \mathcal{F}|_{\mathbf{x}^{(k)}} \delta \mathbf{x}^{(k)}$$

$$\mathcal{H}(\mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)}) \simeq \mathcal{H}(\mathbf{x}^{(k)}) + \mathcal{H}|_{\mathcal{F}(\mathbf{x}^{(k)})} \delta \mathbf{x}^{(k)}$$
(4)

イロト イロト イヨト

• At kth minimisation solve

$$J^{k}(\delta \mathbf{x}_{0}^{(k)}) = \frac{1}{2} \|\delta \mathbf{x}_{0}^{(k)} - (\mathbf{x}_{0}^{b} - \mathbf{x}_{0}^{(k)})\|_{\mathbf{B}^{-1}}^{2} + \frac{1}{2} \sum_{i=0}^{N} \|\mathbf{y}_{i} - \mathcal{H}_{i} \circ \mathcal{F}(\mathbf{x}_{0}^{(k)} + \delta \mathbf{x}_{0}^{(k)})\|_{\mathbf{R}^{-1}}^{2}$$
(5)

lnnovation vector :
$$\mathbf{d}_i = \mathbf{y}_i - \mathcal{H}_i \circ \mathcal{F}(\mathbf{x}_0^{(k)})$$

• Increment vector :
$$\delta \mathbf{x}_0^{(k)} = \mathbf{x}_0^{(k+1)} - \mathbf{x}_0^{(k)}$$

¹Courtier, Thépaut, Hollingsworth (1994)

- Solve small sub-minimisations by sucessive approximations
- Gives a quadratic J

Tangent linear approximations (around $\mathbf{x}^{(k)}$)

$$\mathcal{F}(\mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)}) \simeq \mathcal{F}(\mathbf{x}^{(k)}) + F|_{\mathbf{x}^{(k)}} \delta \mathbf{x}^{(k)}$$

$$\mathcal{H}(\mathbf{x}^{(k)} + \delta \mathbf{x}^{(k)}) \simeq \mathcal{H}(\mathbf{x}^{(k)}) + H|_{\mathcal{F}(\mathbf{x}^{(k)})} \delta \mathbf{x}^{(k)}$$
(4)

イロト イロト イヨト

• At kth minimisation solve

$$J^{k}(\delta \mathbf{x}_{0}^{(k)}) = \frac{1}{2} \|\delta \mathbf{x}_{0}^{(k)} - (\mathbf{x}_{0}^{b} - \mathbf{x}_{0}^{(k)})\|_{\mathbf{B}^{-1}}^{2} + \frac{1}{2} \sum_{i=0}^{N} \|\mathbf{d}_{i} - H_{i}F\delta \mathbf{x}_{0}^{(k)}\|_{\mathbf{R}^{-1}}^{2}$$
(5)

• •

► Innovation vector :
$$\mathbf{d}_i = \mathbf{y}_i - \mathcal{H}_i \circ \mathcal{F}(\mathbf{x}_0^{(k)})$$

• Increment vector : $\delta \mathbf{x}_0^{(k)} = \mathbf{x}_0^{(k+1)} - \mathbf{x}_0^{(k)}$

¹Courtier, Thépaut, Hollingsworth (1994)

Discrete linear model

$$\begin{aligned} \mathbf{x}(t_0) &= \mathbf{x}_0 \\ \mathbf{x}_{i+1} &= F\mathbf{x}_i \quad i = 1, \dots, N \end{aligned} \qquad \qquad N \text{ - no, of time windows} \end{aligned} \tag{6}$$

Description:

- Fine solver computations in parallel
- Nice convergence for parabolic problems, not so good for hyperbolic

Error:

With parareal integrator P(k) at iteration k such that $P(k) {f x}_0 = {f x}_N^k$, we can write 2

$$F^{N} - P(k) = \sum_{p=k+1}^{N} C_{p}^{N} (F - G)^{p} G^{N-p}$$
(7)

イロト イロト イヨト

Staff and Ronquist

³J. Lions, Y. Maday, and G. Turinici (2001)

Discrete linear model

$$\mathbf{x}(t_0) = \mathbf{x}_0$$

$$\mathbf{x}_{i+1} = F\mathbf{x}_i \quad i = 1, ..., N$$

$$N - \text{no. of time windows}$$

$$(6)$$

Description:

• Fine solver computations in parallel

• Nice convergence for parabolic problems, not so good for hyperbolic

Error:

With parareal integrator ${\cal P}(k)$ at iteration k such that ${\cal P}(k){f x}_0={f x}_N^k$, we can write 2

$$F^{N} - P(k) = \sum_{p=k+1}^{N} C_{p}^{N} (F - G)^{p} G^{N-p}$$
(7)

イロト イロト イヨト

Staff and Ronquist

³J. Lions, Y. Maday, and G. Turinici (2001)

Discrete linear model

$$\begin{aligned} \mathbf{x}(t_0) &= \mathbf{x}_0 \\ \mathbf{x}_{i+1} &= F\mathbf{x}_i \quad i = 1, \dots, N \end{aligned} \qquad \qquad N \text{ - no, of time windows} \end{aligned} \tag{6}$$

Description:

- Fine solver computations in parallel
- Nice convergence for parabolic problems, not so good for hyperbolic

Error:

With parareal integrator P(k) at iteration k such that $P(k)\mathbf{x}_0=\mathbf{x}_N^k$, we can write 2

$$F^{N} - P(k) = \sum_{p=k+1}^{N} C_{p}^{N} (F - G)^{p} G^{N-p}$$
(7)

< □ > < □ > < □ > < 三 >

Staff and Ronquist

³J. Lions, Y. Maday, and G. Turinici (2001)

Discrete linear model

$$\mathbf{x}(t_0) = \mathbf{x}_0$$

$$\mathbf{x}_{i+1} = F\mathbf{x}_i \quad i = 1, \dots, N \qquad \qquad N - \text{no, of time windows}$$
(6)

Description:

- Fine solver computations in parallel
- Nice convergence for parabolic problems, not so good for hyperbolic

Error:

With parareal integrator P(k) at iteration k such that $P(k)\mathbf{x}_0 = \mathbf{x}_N^k$, we can write ²

$$F^{N} - P(k) = \sum_{p=k+1}^{N} C_{p}^{N} (F - G)^{p} G^{N-p}$$
⁽⁷⁾

²Staff and Ronquist

³J. Lions, Y. Maday, and G. Turinici (2001)

Data assimilation problem: with no background info (\mathbf{x}_0^b) , a true observation \mathbf{y} at $t_N = T$ and H = I.

メロト メタト メヨト メヨト

Data assimilation problem: with no background info (\mathbf{x}_0^b) , a true observation \mathbf{y} at $t_N = T$ and H = I.

$$J(\mathbf{x}_0) = \frac{1}{2} \| F^N \mathbf{x}_0 - \mathbf{y} \|_2^2$$
$$\nabla J(\mathbf{x}_0) = (F^N)^T (F^N \mathbf{x}_0 - \mathbf{y})$$

イロト イロト イヨト イヨト

Data assimilation problem: with no background info (\mathbf{x}_0^b) , a true observation \mathbf{y} at $t_N = T$ and H = I.

$$J(\mathbf{x}_0) = \frac{1}{2} \| F^N \mathbf{x}_0 - \mathbf{y} \|_2^2$$
$$\nabla J(\mathbf{x}_0) = (F^N)^T (F^N \mathbf{x}_0 - \mathbf{y})$$

Optimality condition: $\nabla J(\mathbf{x}_0) = 0 \implies$ Solving linear system $\underbrace{(F^N)^T F^N}_{A^*} \mathbf{x}_0 = \underbrace{(F^N)^T \mathbf{y}}_{\mathbf{b}}$

・ロト ・聞ト ・ ヨト ・ ヨト

Data assimilation problem: with no background info (\mathbf{x}_0^b) , a true observation \mathbf{y} at $t_N = T$ and H = I.

$$J(\mathbf{x}_0) = \frac{1}{2} \| F^N \mathbf{x}_0 - \mathbf{y} \|_2^2$$
$$\nabla J(\mathbf{x}_0) = (F^N)^T (F^N \mathbf{x}_0 - \mathbf{y})$$

Optimality condition: $\nabla J(\mathbf{x}_0) = 0 \implies$ Solving linear system $\underbrace{(F^N)^T F^N}_{A^*} \mathbf{x}_0 = \underbrace{(F^N)^T \mathbf{y}}_{\mathbf{b}}$

Idea:

Parareal for forward integration i.e. $F^N \approx P(k)$

$$abla J(\mathbf{x}_0) \approx (F^N)^T (P(k) \mathbf{x}_0 - \mathbf{y})$$

Solve
$$\longrightarrow \underbrace{(F^N)^T P(k)}_A \mathbf{x}_0 = \underbrace{(F^N)^T \mathbf{y}}_{\mathbf{b}}$$

< □ > < □ > < □ > < 三 >

Data assimilation problem: with no background info (\mathbf{x}_0^b) , a true observation \mathbf{y} at $t_N = T$ and H = I.

$$J(\mathbf{x}_0) = \frac{1}{2} \| F^N \mathbf{x}_0 - \mathbf{y} \|_2^2$$
$$\nabla J(\mathbf{x}_0) = (F^N)^T (F^N \mathbf{x}_0 - \mathbf{y})$$

Optimality condition: $\nabla J(\mathbf{x}_0) = 0 \implies$ Solving linear system $\underbrace{(F^N)^T F^N}_{A^*} \mathbf{x}_0 = \underbrace{(F^N)^T \mathbf{y}}_{\mathbf{b}}$

Idea:

Parareal for forward integration i.e. $F^N \approx P(k)$

$$\nabla J(\mathbf{x}_0) \approx (F^N)^T (P(k) \mathbf{x}_0 - \mathbf{y})$$

Solve
$$\longrightarrow \underbrace{(F^N)^T P(k)}_A \mathbf{x}_0 = \underbrace{(F^N)^T \mathbf{y}}_{\mathbf{b}}$$

< □ > < □ > < □ > < 三 >

 \rightarrow Conjugate gradient for minimisation as A^* is symmetric

Inexact matrix-vector multiplication (a costly operation!)

$$E(k) = A - A^* = -(F^N)^T(F^N - P(k))$$

$$\|E_j p_j\|_{A^{-1}} \le \omega_j \left(\|\mathbf{b}\|_{A^{-1}}, \|\mathbf{p}_j\|_A, \|\mathbf{r}\|_{A^{-1}} \right)$$

$$\|\underbrace{\mathbf{r}(\mathbf{x}_j) - \mathbf{r}_j}_{\text{recidual range}} \|_{A^{-1}} \le \frac{\sqrt{\epsilon}}{2} \|\mathbf{b}\|_{A^{-1}}$$
(10)

・ロト ・日下・ ・ ヨト・

$$J(\mathbf{x}_j) - J(\mathbf{x}_*) \le \epsilon J(\mathbf{x}_*)$$

- Inexact matrix-vector multiplication (a costly operation!)
- By gradually increasing the inexactness of the mat-vec product, one could still produce the exact version's level of accuracy.
- In our case, the perturbation matrix is

$$E(k) = A - A^* = -(F^N)^T (F^N - P(k))$$

Theorem in nutshell (a bit modified...): At icg-iteration *j* if

$$\|E_{j}p_{j}\|_{A^{-1}} \leq \omega_{j}(\|\mathbf{b}\|_{A^{-1}}, \|\mathbf{p}_{j}\|_{A}, \|\mathbf{r}\|_{A^{-1}})$$

then

$$\|\underbrace{\mathbf{r}(\mathbf{x}_j) - \mathbf{r}_j}_{\text{residual rap}}\|_{A^{-1}} \le \frac{\sqrt{\epsilon}}{2} \|\mathbf{b}\|_{A^{-1}}$$
(10)

p - direction vector

r - inexact residual

<ロ> <日 > <日 > <日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1 > < 1

residual gap

If additionally

then the cost function can be monitored as

$$J(\mathbf{x}_j) - J(\mathbf{x}_*) \le \epsilon J(\mathbf{x}_*)$$

- Inexact matrix-vector multiplication (a costly operation!)
- By gradually increasing the inexactness of the mat-vec product, one could still produce the exact version's level of accuracy.
- In our case, the perturbation matrix is

$$E(k) = A - A^* = -(F^N)^T (F^N - P(k))$$

Theorem in nutshell (a bit modified...): At icg-iteration *j* if

$$\|E_j p_j\|_{A^{-1}} \le \omega_j (\|\mathbf{b}\|_{A^{-1}}, \|\mathbf{p}_j\|_A, \|\mathbf{r}\|_{A^{-1}})$$

then

$$\|\underbrace{\mathbf{r}(\mathbf{x}_j) - \mathbf{r}_j}_{\mathbf{r}_j}\|_{A^{-1}} \le \frac{\sqrt{\epsilon}}{2} \|\mathbf{b}\|_{A^{-1}}$$
(10)

p - direction vector

r - inexact residual

residual gap

If additionally

then the cost function can be monitored as

$$J(\mathbf{x}_j) - J(\mathbf{x}_*) \le \epsilon J(\mathbf{x}_*)$$

- Inexact matrix-vector multiplication (a costly operation!)
- By gradually increasing the inexactness of the mat-vec product, one could still produce the exact version's level of accuracy.
- In our case, the perturbation matrix is

$$E(k) = A - A^* = -(F^N)^T(F^N - P(k))$$

Theorem in nutshell (a bit modified...): At icg-iteration *j* if

$$\|\mathsf{\textit{E}}_{j}\mathsf{\textit{p}}_{j}\|_{A^{-1}} \leq \omega_{j}\left(\|\mathbf{b}\|_{A^{-1}},\|\mathbf{p}_{j}\|_{A},\|\mathbf{r}\|_{A^{-1}}\right)$$

then

$$\|\underbrace{\mathbf{r}(\mathbf{x}_j) - \mathbf{r}_j}_{\text{residual gap}}\|_{A^{-1}} \le \frac{\sqrt{\epsilon}}{2} \|\mathbf{b}\|_{A^{-1}}$$
(10)

p - direction vector
r - inexact residual

(9)

If additionally

then the cost function can be monitored as

$$J(\mathbf{x}_j) - J(\mathbf{x}_*) \le \epsilon J(\mathbf{x}_*)$$

(11)

- Inexact matrix-vector multiplication (a costly operation!)
- By gradually increasing the inexactness of the mat-vec product, one could still produce the exact version's level of accuracy.
- In our case, the perturbation matrix is

$$E(k) = A - A^* = -(F^N)^T(F^N - P(k))$$

Theorem in nutshell (a bit modified...): At icg-iteration j if

$$\|\boldsymbol{E}_{j}\boldsymbol{\rho}_{j}\|_{A^{-1}} \leq \omega_{j}\left(\|\mathbf{b}\|_{A^{-1}},\|\mathbf{p}_{j}\|_{A},\|\mathbf{r}\|_{A^{-1}}\right)$$

then

$$\|\underbrace{\mathbf{r}(\mathbf{x}_{j}) - \mathbf{r}_{j}}_{\text{residual gap}}\|_{A^{-1}} \le \frac{\sqrt{\epsilon}}{2} \|\mathbf{b}\|_{A^{-1}}$$
(10)

p - direction vector
r - inexact residual

If additionally

 $\|\mathbf{r}_j\|_{A^{-1}} \le \frac{\sqrt{\epsilon}}{2} \|\mathbf{b}\|_{A^{-1}} \tag{11}$

(9)

then the cost function can be monitored as

$$J(\mathbf{x}_j) - J(\mathbf{x}_*) \leq \epsilon J(\mathbf{x}_*)$$

⁴Gratton et al, 2021

- In real problems A has a huge size \implies impractical estimates.
- Gratton et al approximated $\|\mathbf{p}_j\|_{\mathcal{A}}, J(\mathbf{x}_j), \|\mathbf{b}\|_{\mathcal{A}^{-1}}$ and the termination test (11) by easily computable quantities.
 - $||\mathbf{p}_j||_A \approx \sqrt{\frac{1}{n}} \mathrm{Tr}(A) ||\mathbf{p}_j||_2$
 - $\blacktriangleright J(\mathbf{x}_j) \approx J_j \stackrel{\text{def}}{=} -\frac{1}{2} b^T \mathbf{x}_j$
 - ► $\|\mathbf{b}\|_{A^{-1}} \approx \frac{\|\mathbf{b}\|_2}{\sqrt{\lambda_{\max}}}$ $j = 0, \mathbf{x}_0 = 0$ and $\|\mathbf{b}\|_{A^{-1}} \approx \sqrt{2|J_j|}$ $j = 1, 2, ..., j_{\max}$
 - ▶ $\|\mathbf{r}_j\|_{A^{-1}} \le \frac{\epsilon}{2} \|\mathbf{b}\|_{A^{-1}}$ by $J_{j-d} J_j \le \frac{1}{4} \epsilon |J_j|$ for some integer d
- But now $||E_i\mathbf{p}_i||_{A^{-1}}$ also needs an approximation!

Result

If F is invertible, $||E_j(k)\mathbf{p}_j||_{A^{-1}}$ and $||P(k)\mathbf{p}_j - F^N\mathbf{p}_j||_2$ are rigorously the same whatever the parareal approximation. $F^N\mathbf{p}_j$ is the corresponding exact solution.

イロト イヨト イヨト イヨト

- In real problems A has a huge size \implies impractical estimates.
- Gratton et al approximated $\|\mathbf{p}_j\|_A$, $J(\mathbf{x}_j)$, $\|\mathbf{b}\|_{A^{-1}}$ and the termination test (11) by easily computable quantities.
 - $||\mathbf{p}_j||_A \approx \sqrt{\frac{1}{n} \operatorname{Tr}(A)} \, ||\mathbf{p}_j||_2$
 - $J(\mathbf{x}_j) \approx J_j \stackrel{\text{def}}{=} -\frac{1}{2} b^T \mathbf{x}_j$
 - $\|\mathbf{b}\|_{A^{-1}} \approx \frac{\|\mathbf{b}\|_2}{\sqrt{\lambda_{\max}}} \quad j = 0, \, \mathbf{x}_0 = 0 \quad \text{ and } \quad \|\mathbf{b}\|_{A^{-1}} \approx \sqrt{2|J_j|} \quad j = 1, 2, ..., j_{\max}$
 - ▶ $\|\mathbf{r}_j\|_{A^{-1}} \leq \frac{\epsilon}{2} \|\mathbf{b}\|_{A^{-1}}$ by $J_{j-d} J_j \leq \frac{1}{4} \epsilon |J_j|$ for some integer d
- But now $||E_i \mathbf{p}_i||_{A^{-1}}$ also needs an approximation!

Result

If F is invertible, $||E_j(k)\mathbf{p}_j||_{A^{-1}}$ and $||P(k)\mathbf{p}_j - F^N\mathbf{p}_j||_2$ are rigorously the same whatever the parareal approximation. $F^N\mathbf{p}_j$ is the corresponding exact solution.

(ロ) (日) (日) (日) (日)

- In real problems A has a huge size \implies impractical estimates.
- Gratton et al approximated $\|\mathbf{p}_j\|_A$, $J(\mathbf{x}_j)$, $\|\mathbf{b}\|_{A^{-1}}$ and the termination test (11) by easily computable quantities.
 - $||\mathbf{p}_j||_A \approx \sqrt{\frac{1}{n} \operatorname{Tr}(A)} \, ||\mathbf{p}_j||_2$
 - $J(\mathbf{x}_j) \approx J_j \stackrel{\text{def}}{=} -\frac{1}{2} b^T \mathbf{x}_j$
 - $\|\mathbf{b}\|_{A^{-1}} \approx \frac{\|\mathbf{b}\|_2}{\sqrt{\lambda_{\max}}} \quad j = 0, \, \mathbf{x}_0 = 0 \quad \text{ and } \quad \|\mathbf{b}\|_{A^{-1}} \approx \sqrt{2|J_j|} \quad j = 1, 2, ..., j_{\max}$
 - ► $\|\mathbf{r}_j\|_{A^{-1}} \le \frac{\epsilon}{2} \|\mathbf{b}\|_{A^{-1}}$ by $J_{j-d} J_j \le \frac{1}{4} \epsilon |J_j|$ for some integer d
- But now $||E_i \mathbf{p}_i||_{A^{-1}}$ also needs an approximation!

Result

If F is invertible, $||E_j(k)\mathbf{p}_j||_{A^{-1}}$ and $||P(k)\mathbf{p}_j - F^N\mathbf{p}_j||_2$ are rigorously the same whatever the parareal approximation. $F^N\mathbf{p}_j$ is the corresponding exact solution.

(ロ) (日) (日) (日) (日)

- In real problems A has a huge size \implies impractical estimates.
- Gratton et al approximated ||p_j||_A, J(x_j), ||b||_{A-1} and the termination test (11) by easily computable quantities.
 - $||\mathbf{p}_j||_A \approx \sqrt{\frac{1}{n} \operatorname{Tr}(A)} ||\mathbf{p}_j||_2$
 - $J(\mathbf{x}_j) \approx J_j \stackrel{\text{def}}{=} -\frac{1}{2} b^T \mathbf{x}_j$
 - $||\mathbf{b}||_{A^{-1}} \approx \frac{||\mathbf{b}||_2}{\sqrt{\lambda_{\max}}} \quad j = 0, \, \mathbf{x}_0 = 0 \quad \text{and} \quad ||\mathbf{b}||_{A^{-1}} \approx \sqrt{2|J_j|} \quad j = 1, 2, ..., j_{\max}$
 - ▶ $\|\mathbf{r}_j\|_{A^{-1}} \le \frac{\epsilon}{2} \|\mathbf{b}\|_{A^{-1}}$ by $J_{j-d} J_j \le \frac{1}{4} \epsilon |J_j|$ for some integer d
- But now $||E_i \mathbf{p}_i||_{A^{-1}}$ also needs an approximation!

Result

If F is invertible, $||E_j(k)\mathbf{p}_j||_{A^{-1}}$ and $||P(k)\mathbf{p}_j - F^N\mathbf{p}_j||_2$ are rigorously the same whatever the parareal approximation. $F^N\mathbf{p}_i$ is the corresponding exact solution.

< ロ > < 回 > < 回 > < 回 > < 回 >

Well now we also need an approximation for $F^N \mathbf{p}_j$!

æ

イロト イロト イヨト イヨト

Well now we also need an approximation for $F^N \mathbf{p}_i$!

• similar profile for $||E_j\mathbf{p}_j||_{A^{-1}}$

PinT 2022, Luminy 11 / 17

2

イロト イロト イヨト

Well now we also need an approximation for $F^N \mathbf{p}_i$!

• similar profile for $||E_j \mathbf{p}_i||_{A^{-1}}$

• Start with parareal with a reasonable tolerance and then use previous parareal iterates to approximate $\|\mathbf{p}_i\|$ for subsequent icg-iterations

イロト イロト イヨト

Well now we also need an approximation for $F^N \mathbf{p}_i$!

• similar profile for $||E_j \mathbf{p}_i||_{A^{-1}}$

- Start with parareal with a reasonable tolerance and then use previous parareal iterates to approximate $\|\mathbf{p}_i\|$ for subsequent icg-iterations
- Check that ξ_i doesn't lie between last two norm values

DI	D		
L'hatt	Dobrou	and	Vidard
Dilatt.	Debleu	. anu	VIUaru

イロト イロト イヨト

Shallow water model

1d linear shallow water model

$$\frac{\partial \eta}{\partial t} = -H \frac{\partial u}{\partial x}
\frac{\partial u}{\partial t} = -g \frac{\partial \eta}{\partial x} + \mu \frac{\partial^2 u}{\partial x^2}$$
(12)

Setup: Arakawa C-grid discretisation

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = C\mathbf{x}, \qquad \mathbf{x} = \begin{pmatrix} \eta \\ u \end{pmatrix}$$

Parameters

• N = 20

- no. of fine time steps per time window, $N_f = 100$
- no. of coarse time steps per time window, $N_g = 20$
- coarse time step, $\Delta t = 0.05$
- spatial grid-step, $\Delta x = 1$
- diffusion constant, $\mu = 0.15$
- average height, H = 0.9

Coarse and fine propagators are defined using theta scheme $(heta={ extsf{0.51}})$

$$F = [(I - \theta \delta tC)^{-1}(I + (1 - \theta) \delta tC)]^{N_f}$$

$$G = [(I - \theta \Delta tC)^{-1}(I + (1 - \theta) \Delta tC)]^{N_g}$$

・ロト ・日下・ ・ ヨト・

Shallow water model

1d linear shallow water model

$$\frac{\partial \eta}{\partial t} = -H \frac{\partial u}{\partial x}
\frac{\partial u}{\partial t} = -g \frac{\partial \eta}{\partial x} + \mu \frac{\partial^2 u}{\partial x^2}$$
(12)

Setup: Arakawa C-grid discretisation

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = C\mathbf{x}, \qquad \mathbf{x} = \begin{pmatrix} \eta \\ u \end{pmatrix}$$

Parameters

• *N* = 20

- no. of fine time steps per time window, $N_f = 100$
- no. of coarse time steps per time window, $N_g = 20$
- coarse time step, $\Delta t = 0.05$
- spatial grid-step, $\Delta x = 1$
- diffusion constant, $\mu = 0.15$
- average height, H = 0.9

Coarse and fine propagators are defined using theta scheme ($\theta = 0.51$)

$$F = [(I - \theta \delta t C)^{-1} (I + (1 - \theta) \delta t C)]^{N_f}$$

$$G = [(I - \theta \Delta tC)^{-1}(I + (1 - \theta)\Delta tC)]^{N_g}$$

< □ > < □ > < □ > < 三 >

Exact cg

- Initial condition a gaussian at the middle of the basin/domain
- $\bullet\,$ Using exact CG with $\epsilon_{\rm cg}=10^{-4},$ takes 24 minimisation iterations

Exact cg with parareal

- $\bullet\,$ Fixed stopping tolerance for parareal $\epsilon_{\rm p}=10^{-6},\;\epsilon_{\rm cg}=10^{-4}$
- On average 8.125 p-iterations per icg-iteration

< □ > < □ > < □ > < 三 >

Inexact cg with practical estimates

- On average 6.36 p-iterations per icg-iteration, nice!
- Theoretical speedup: $\frac{N}{\text{p-iterations}} = \frac{20}{6.36} = 3.1$

• ω_j is the tolerance for the error norm $\|E_j(k)\|_{A^{-1},A}$

Retreived initial condition and final results

Bhatt, Debreu, and Vidard

PinT 2022, Luminy 16 / 17

- Reducing the cost of the coarse solver.
 - Using the Krylov enhanced parareal⁵ version. Choosing the right vectors for the convergence of Krylov enhanced method because of storage issues.
- Running a parallel version of adjoint running parareal but in reverse direction leading to double degree of parallelism. Similar error analysis for adjoint.
- Current processes work on synchronicity. Introduce asynchronous methods which don't wait for neighbouring processes and are more linked to the spatial discretisation.
- Other ways to couple DA and PinT algorithms solving the forward and backward model together as a system as done in ParaOpt⁶.
- Extension to 2d model

⁵Gander and Petcu, 2008

⁶Gander, Kwok and Salomon, 2020