Parallel Space-Time Finite Element Methods for Parabolic Optimal Control Problems

Ulrich Langer and Andreas Schafelner

Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences (ÖAW) Linz, Austria

PinT 2022: 11th Conference on Parallel-in-Time Integration 11 - 15 July 2022

Outline

1 Introduction

- 2 A localized space-time upwind scheme
- 3 A posteriori error estimation
- 4 Numerical Results
- 5 Conclusions & Outlook

1 Introduction

- 2 A localized space-time upwind scheme
- 3 A posteriori error estimation
- 4 Numerical Results
- 5 Conclusions & Outlook

Space-time Methods

What do we mean by that?

- every numerical method solving time-dependent problems is a space-time method !
- however, usually the discretization of space and time are considered "seperate", and time-stepping is used!
- for us, time is just another variable $t = x_{d+1}$!
 - we focus on (completely) unstructured decompositions of the space-time cylinder

Space-time Methods (contd.)

Why are we doing this?

- full space-time adaptivity
- full space-time parallelization
 - "easier" treatment of moving domains
- optimization problems, e.g. optimal control !

What are the disadvantages?

memory

...?

Why use a space-time approach for OC?

Optimality system:

- forward-in-time problem
- backward-in-time-problem
- both are coupled

Space-time approach: time is just another variable

- only one problem
 - however: one dimension higher
- full space-time adaptivity
 - space-time parallelization at once

Space-time tracking problem

Given y_d (desired state) and $\rho > 0$, find the state y and the control u minimizing

$$J(y,u) = \frac{1}{2} \int_{Q} |y - y_d|^2 \, \mathrm{d}Q + \frac{\varrho}{2} ||u||^2_{L_2(Q)}$$

subject to

$$\partial_t y - \Delta_x y = u \text{ in } Q = \Omega \times (0, T),$$

 $y=0 \text{ on } \Sigma=\partial\Omega\times(0,T), \quad y=0 \text{ on } \Sigma_0=\Omega\times\{0\},$

where $\Omega \subset \mathbb{R}^d$ is the spatial domain and T > 0 the final time.

0

First Order Optimality Conditions

The reduced optimality system: find $(y, p) \in Y_0 \times P_T$ such that

$$\int_{Q} \varrho \left(\partial_{t} y \, v + \nabla_{x} y \cdot \nabla_{x} v \right) + p \, v \, \mathrm{d}Q = 0,$$
$$\int_{Q} (-\partial_{t} p \, q) + \nabla_{x} p \cdot \nabla_{x} q - y \, q \, \mathrm{d}Q = -\int_{Q} y_{d} \, q \, \mathrm{d}Q,$$

for all $v, q \in V = L_2(0, T; H_0^1(\Omega))$, where $Y_0 = \{y \in W(0, T) : y = 0 \text{ on } \Sigma_0\}$, P_T analogously, and the control u was eliminated via the gradient equation

 $u + \varrho \, p = 0.$

First Order Optimality Conditions (contd.)

We observe maximal parabolic regularity (m.p.r.) holds for y and p, i.e, $\partial_t y \in L_2(Q)$ and $\Delta_x y \in L_2(Q)$, etc.

Then: the solution $(y,p) \in (Y_0 \cap H^{L,1}(Q)) \times (P_T \cap H^{L,1}(Q))$ satisfies

$$\begin{array}{l} \varrho(\partial_t y - \Delta_x y) + p = 0, \\ -\partial_t p - \Delta_x p = y_d - y, \end{array} in \ L_2(Q), \end{array}$$

2 A localized space-time upwind scheme

- 3 A posteriori error estimation
- 4 Numerical Results
- 5 Conclusions & Outlook

The main idea

Recall:

- time is just another variable
- the solution $(y, p) \in (Y_0 \cap H^{L,1}(Q)) \times (P_T \cap H^{L,1}(Q))$ satisfies

$$\begin{array}{l} \underline{\varrho}(\partial_t y - \Delta_x y) + p = 0, \\ -\partial_t p - \Delta_x p = y_d - y, \end{array} \right\} \text{ in } L_2(Q), \end{array}$$

The set $\partial_t y$ **as a (strong) convection in time-direction**

The main idea (contd.)

decompose Q into shape-regular finite elements $K \in \mathcal{T}_h$, define conforming finite element spaces $Y_{0h} \subset Y_0, P_{Th} \subset P_T$, global upwind (downwind) test functions

$$\begin{split} v_h(x,t) &+ \theta \,\lambda_h^2 \partial_t v_h(x,t), \text{ for all } (x,t) \in K, \\ q_h(x,t) &- \theta \,\lambda_h^2 \partial_t q_h(x,t), \text{ for all } (x,t) \in K, \end{split}$$

with θ positive parameter, and $\lambda_h \in W^{1,\infty}(Q)$ globally cont.

- multiply the KKT system in $L_2(Q)$ by the resp. test functions and integrate,
 - integration by parts and boundary conditions

The (discretized) first order optimality system

The solution (y, p) satisfies the consistency identity

$$a_h(y, p; v_h, q_h) = \ell_h(v_h, q_h) \quad \forall (v_h, q_h) \in Y_{0h} \times P_{Th},$$

with the combined bilinear and linear forms

$$\begin{split} a_h(y,p;v,q) &= \sum_{K\in\mathcal{T}_h} \int_K \left[\varrho \big(\partial_t y \, v + \theta \, \lambda_h^2 \partial_t y \partial_t v + \nabla_x y \cdot \nabla_x v - \theta \, \lambda_h^2 \Delta_x y \, \partial_t v \big] \\ &+ p(v + \theta \, \lambda_h^2 \partial_t v) - \partial_t p \, q + \theta \, \lambda_h^2 \partial_t p \partial_t q + \nabla_x p \cdot \nabla_x q \\ &+ \theta \, \lambda_h^2 \Delta_x p \, \partial_t q - y(q - \theta \, \lambda_h^2 \partial_t q) \right] \mathrm{d}K \quad \text{and} \\ \ell_h(v,q) &= -\sum_{K\in\mathcal{T}_h} \int_K y_d(q - \theta \, \lambda_h^2 \partial_t q) \, \mathrm{d}K, \end{split}$$

The (discretized) first order optimality system

Find $(y_h, p_h) \in Y_{0h} \times P_{Th}$ such that

 $a_h(y_h, p_h; v_h, q_h) = \ell_h(v_h, q_h) \quad \forall (v_h, q_h) \in Y_{0h} \times P_{Th},$

with the combined bilinear and linear forms

$$\begin{split} a_h(y,p;v,q) &= \sum_{K\in\mathcal{T}_h} \int_K \left[\varrho \big(\partial_t y \, v + \theta \, \lambda_h^2 \partial_t y \partial_t v + \nabla_x y \cdot \nabla_x v - \theta \, \lambda_h^2 \Delta_x y \, \partial_t v \big) \right. \\ &+ p(v + \theta \, \lambda_h^2 \partial_t v) - \partial_t p \, q + \theta \, \lambda_h^2 \partial_t p \partial_t q + \nabla_x p \cdot \nabla_x q \\ &+ \theta \, \lambda_h^2 \Delta_x p \, \partial_t q - y(q - \theta \, \lambda_h^2 \partial_t q) \right] \mathrm{d}K \quad \text{and} \\ \ell_h(v,q) &= -\sum_{K\in\mathcal{T}_h} \int_K y_d(q - \theta \, \lambda_h^2 \partial_t q) \, \mathrm{d}K, \end{split}$$

Existence & Uniqueness

$$\|(v_h, q_h)\|_h^2 \coloneqq \varrho \left(\sum_{K \in \mathcal{T}_h} \left[\|\nabla_x v_h\|_K^2 + \theta \|\lambda_h \partial_t v_h\|_K^2 \right] + \frac{1}{2} \|v_h\|_{L_2(\Sigma_T)}^2 \right) \\ + \sum_{K \in \mathcal{T}_h} \left[\|\nabla_x q_h\|_K^2 + \theta \|\lambda_h \partial_t q_h\|_K^2 \right] + \frac{1}{2} \|q_h\|_{L_2(\Sigma_0)}^2.$$

Lemma (Coercivity on the FE space)

There exits a constant μ_c such that

 $a_h(v_h, q_h; v_h, q_h) \ge \mu_c ||(v_h, q_h)||_h^2, \quad \forall (v_h, q_h) \in Y_{0h} \times P_{Th},$

with $\mu_c = 1/2$ for $0 < \theta \leq \frac{1}{2} \min\{\frac{\varrho}{\varrho a+b}, \frac{1}{a+b}\}$, with $a = \frac{1}{2}\overline{\lambda}_0^2 c_{\text{div}}^2$, and $b = \overline{\lambda}_0 \lambda_1 h C_{\text{F}\Omega}(\nu)^2$, where $c_{\text{div}} = \max_{K \in \mathcal{T}_h} c_{\text{div},K}$.

Existence & Uniqueness

$\mathsf{Coercivity} \Rightarrow \mathsf{Uniqueness} \Rightarrow \mathsf{Existence}$

Solve

$$\mathbf{K}_h \begin{pmatrix} \mathbf{y}_h \\ \mathbf{p}_h \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{f}_h \end{pmatrix},$$

with

$$\mathbf{K}_h = egin{pmatrix} \mathbf{K}_{yy} & \mathbf{K}_{yp} \ \mathbf{K}_{py} & \mathbf{K}_{pp} \end{pmatrix},$$

where $\mathbf{K}_h \neq \mathbf{K}_h^{\top}$, but \mathbf{K}_h positive definite!

A localized space-time upwind scheme **A priori discretization error estimates**

Generalized boundedness

$$\begin{aligned} \|(v,q)\|_{h,*}^{2} &\coloneqq \|(v,q)\|_{h}^{2} + \varrho \sum_{K \in \mathcal{T}_{h}} \theta \|\lambda_{h} \Delta_{x} v\|_{K}^{2} + 3\varrho \, \theta^{-1} \|\lambda_{h}^{-1} v\|_{Q}^{2} \\ &+ \sum_{K \in \mathcal{T}_{h}} \theta \|\lambda_{h} \Delta_{x} q\|_{K}^{2} + 3 \, \theta^{-1} \|\lambda_{h}^{-1} q\|_{Q}^{2} \end{aligned}$$

Lemma

Let $(y, p) \in (Y_{0h} + (Y_0 \cap H^{L,1}(Q))) \times P_{Th} + (P_T \cap H^{L,1}(Q)).$ There exits a constant μ_b such that

 $|a_h(y, p; v_h, q_h)| \le \mu_b ||(y, p)||_{h,*} ||(v_h, q_h)||_h, \ \forall (v_h, q_h) \in Y_{0h} \times P_{Th}.$

A best approximation estimate

Lemma (Céa-like)

Let θ be chosen such that the f.e. scheme is coercive and bounded. Then the best approximation estimate

$$\|(y - y_h, p - p_h)\|_h \le \inf_{(v_h, q_h) \in Y_{0h} \times P_{Th}} \left(\|(y - v_h, p - q_h)\|_h + \frac{\mu_b}{\mu_c} \|(y - v_h, p - q_h)\|_{h,*} \right),$$

holds, with (y_h, p_h) the solution of the finite element scheme.

A priori discretization error estimate

Theorem

Let the solution y and the adjoint solution p belong to $H^{\ell}(Q)$, with $\ell > (d+1)/2$. Let $(y_h, p_h) \in Y_{0h} \times P_{Th}$ be the solution of the f.e. scheme. Then we have the a priori discretization error estimate

$$\|(y - y_h, p - p_h)\|_h \le \left(\sum_{K \in \mathcal{T}_h} c_K(y, p) h_K^{2(s-1)}\right)^{1/2}$$

with $s = \min\{k + 1, \ell\}$, where k is the polynomial degree of the finite element functions.

Note: Can be extended to $\ell \leq (d+1)/2$.

1 Introduction

- 2 A localized space-time upwind scheme
- 3 A posteriori error estimation
- 4 Numerical Results
- 5 Conclusions & Outlook

Marking algorithm

Dörfler marking:

Determine set \mathcal{M} of (almost) minimal cardinality such that

$$\Xi \sum_{K \in \mathcal{T}_h} \eta_K(y_h, p_h)^2 \le \sum_{K \in \mathcal{M}} \eta_K(y_h, p_h)^2,$$

for given $\Xi \in (0, 1)$.

efficient realization as a search¹

www.ricam.oeaw.ac.at

¹PFEILER, C.-M., AND PRAETORIUS, D. Dörfler marking with minimal cardinality is a linear complexity problem. *Mathematics of Computation 89*, 326 (2020), 2735–2752.

A posteriori error estimation Error localization

Residual error indicator

Langer, Steinbach, Tröltzsch and Yang ('21) proposed the error indicator

$$(\eta_K)^2 \coloneqq h_K^2 \|p_h + \varrho(\partial_t y_h - \Delta_x y_h)\|_K^2 + h_K \| [\![\nabla_x y_h]\!]\|_{\partial K}^2 + h_K^2 \|y_d - y_h - \partial_t p_h - \Delta_x p_h\|_K^2 + h_K \| [\![\nabla_x p_h]\!]\|_{\partial K}^2$$

BUT!

$$\underline{c}\|(y-y_h,p-p_h)\|^2 \stackrel{?}{\leq} \sum_{K\in\mathcal{T}_h} (\eta_K)^2 \stackrel{?}{\leq} \overline{C}\|(y-y_h,p-p_h)\|^2$$

New Functional Error Estimator

Using the continuous inf-sup condition², we get the guaranteed upper bound

$$\frac{1}{\sqrt{2}} \| (y - \tilde{y}, p - \tilde{p}) \|_X \leq \sup_{(v,q) \in V \times V} \frac{a((y - \tilde{y}, p - \tilde{p}); (v,q))}{\sqrt{\varrho} \|v\|_V^2 + \|q\|_V^2}$$
$$\leq \dots \leq \mathfrak{M}_{\oplus}(\boldsymbol{\tau}, \boldsymbol{\sigma}, \tilde{y}, \tilde{p}),$$

with $\tau, \sigma \in H(\operatorname{div}_x, Q)$ and $\tilde{y}, \tilde{p} \in H^1(Q)$, and $\mathfrak{M}_{\oplus}(\tau, \sigma, \tilde{y}, \tilde{p})$ computable.

²U. LANGER, O. STEINBACH, F. TRÖLTZSCH AND H. YANG, Unstructured space-time finite element methods for optimal control of parabolic equation, *SIAM Journal on Scientific Computing* **43** (2021), A744–A771.

www.ricam.oeaw.ac.at

New Functional Error Estimator (contd.)

Observe

$$\mathfrak{M}_{\oplus}(\boldsymbol{\tau},\boldsymbol{\sigma},\tilde{y},\tilde{p}) \leq \sqrt{2}\,\mathfrak{M}_{+}(\boldsymbol{\tau},\boldsymbol{\sigma},\tilde{y},\tilde{p}),$$

with

$$\mathfrak{M}^{2}_{+}(\boldsymbol{\tau},\boldsymbol{\sigma},v,q) = \varrho \left[\|\boldsymbol{\tau} - \nabla_{x}v\|_{Q}^{2} + C_{\mathrm{F}\Omega}^{2} \| -\partial_{t}v + \operatorname{div}_{x}\boldsymbol{\tau} - \frac{1}{\varrho}q\|_{Q}^{2} \right] \\ + \left[\|\boldsymbol{\sigma} - \nabla_{x}q\|_{Q}^{2} + C_{\mathrm{F}\Omega}^{2} \| -y_{d} + \partial_{t}q + v + \operatorname{div}_{x}\boldsymbol{\sigma}\|_{Q}^{2} \right]$$

New Functional Error Estimator (contd.)

Realization: Compute

$$(\boldsymbol{\tau}_h^{(1)}, \boldsymbol{\sigma}_h^{(1)}) = \operatorname*{argmin}_{(\boldsymbol{\tau}_h, \boldsymbol{\sigma}_h) \in [V_h]^d \times [V_h]^d} \mathfrak{M}^2_+(\boldsymbol{\tau}_h, \boldsymbol{\sigma}_h, y_h, p_h)$$

Error estimator

$$\eta_{K}^{2} = \rho \left[\|\boldsymbol{\tau}_{h}^{(1)} - \nabla_{x} y_{h}\|_{K}^{2} + C_{\mathrm{F}\Omega}^{2} \| -\partial_{t} y_{h} + \operatorname{div}_{x} \boldsymbol{\tau}_{h}^{(1)} - \frac{1}{\rho} p_{h} \|_{K}^{2} \right] \\ + \left[\|\boldsymbol{\sigma}_{h}^{(1)} - \nabla_{x} p_{h}\|_{K}^{2} + C_{\mathrm{F}\Omega}^{2} \| - y_{d} + \partial_{t} p_{h} + y_{g} + \operatorname{div}_{x} \boldsymbol{\sigma}_{h}^{(1)} \|_{K}^{2} \right]$$

since

$$\|(y - y_h, p - p_h)\|_X \le \left(\sum_{K \in \mathcal{T}_h} \eta_K^2\right)^{1/2} = \mathfrak{M}_+(\boldsymbol{\tau}_h^{(1)}, \boldsymbol{\sigma}_h^{(1)}, y_h, p_h)$$

1 Introduction

- 2 A localized space-time upwind scheme
- 3 A posteriori error estimation
- 4 Numerical Results
- 5 Conclusions & Outlook

Key information

Space-time FEM implemented in MFEM,
 Linear system solved by means of flexible GMRES (FGMRES),

STOP: residual reduction by 10⁻⁸,
 Block-diagonal AMG preconditioner, i.e.,

 $\mathbf{C}_{h} = \mathsf{blockdiag}(\mathbf{C}_{yy}, \mathbf{C}_{pp}),$

with $C_{yy} = AMG(K_{yy})$ and $C_{pp} = AMG(K_{pp})$,

AMG provided by hypre

compare *efficiency index*

$$\mathbf{I}_{\text{eff}} = \frac{\left(\sum_{K \in \mathcal{T}_h} \eta_K^2\right)^{1/2}}{\|(y - y_h, p - p_h)\|}$$

parallel tests run on Quartz (LLNL)

Key information (contd.)

Standard V-cycle AMG

Algebraic MultiGrid

- black box, easy to apply
- but does not perform "optimally"

Non-linear variable step AMLI-cycle AMG

(together with P.S. Vassilevski)

- Algebraic MultiLevel Iterations
- generalization of the MG W-cycle
- main difference to V-cycle multigrid
 - instead of applying MG recursively, apply MG-preconditioned (F)GMRES

Numerical Results Smooth problem with manufactured solution

Problem description

Exact state, co-state & control (L_2 -regularization)

$$y(x,t) = (a t^{2} + b t) \left(\sum_{i=1}^{d} \sin(x_{i} \pi)\right),$$

$$p(x,t) = -\varrho \left(2 \pi^{2} a t^{2} + (2 \pi^{2} b + 2 a)t + b\right) \left(\sum_{i=1}^{d} \sin(x_{i} \pi)\right),$$

$$u(x,t) = \left(2 \pi^{2} a t^{2} + (2 \pi^{2} b + 2 a)t + b\right) \left(\sum_{i=1}^{d} \sin(x_{i} \pi)\right),$$

with
$$a = \frac{2\pi^2 + 1}{2\pi^2 + 2}$$
 and $b = 1$.

Convergence history & Efficiency indices (d + 1 = 3)

Convergence history & Efficiency indices (d + 1 = 4)

Solver performance (d + 1 = 3)

Outer (F)GMRES iterations for d + 1 = 3, with solution times in parantheses, using 1152 cores on Quartz; for k = 1 and $\rho = 0.01$.

l	#dofs	AMLI-cycle		V-cycle		F-cycle	
		0	NI	0	NI	0	NI
0	71874	17 (0.33 s)	21 (0.41 s)	17 (0.88 s)	20 (0.93 s)	14 (1.03 s)	17 (1.07 s)
1	549250	18 (0.79 s)	2 (0.09 s)	19 (0.63 s)	3 (0.51 s)	14 (0.96 s)	2 (0.57 s)
2	4293378	18 (2.24 s)	3 (0.43 s)	23 (5.84 s)	3 (5.14 s)	14 (6.12 s)	2 (4.29 s)
3	33949186	22 (5.51 s)	2 (0.52 s)	35 (9.01 s)	2 (8.70 s)	14 (8.96 s)	2 (7.07s)
4	270011394	27 (25.43 s)	2 (1.78 s)	173 (91.71 s)	2 (12.51 s)	34 (36.90 s)	4 (13.99 s)

Solver performance (d + 1 = 3)

Number of FGMRES iterations for a residual reduction of 10^{-8} (d + 1 = 3)

Local problem size $\sim 470\,000$ dofs.

A. Schafelner, Space-time FEM for Parabolic Optimal Control

Solver performance (d + 1 = 4)

Outer (F)GMRES iterations for d + 1 = 4, with solution times in parantheses, using 1152 cores on Quartz; for k = 1 and $\rho = 0.01$.

l	#dofs	AMLI-cycle		V-cycle		F-cycle	
		0	NI	0	NI	0	NI
0	79458	18 (0.38 s)	23 (0.49 s)	17 (0.97 s)	22 (0.99 s)	14 (1.13 s)	18 (1.18 s)
4	832834	21 (0.95 s)	4 (0.18 s)	20 (0.66 s)	4 (0.45 s)	16 (1.28 s)	3 (0.52 s)
8	12422274	26 (2.49 s)	5 (0.45 s)	28 (5.89 s)	5 (5.42 s)	20 (8.93 s)	3 (6.75 s)
12	193208578	32 (14.98 s)	5 (2.09 s)	35 (18.45 s)	6 (12.28 s)	24 (23.97 s)	4 (10.79 s)

Solver performance (d + 1 = 4)

Local problem size $\sim 110\,000$ – $180\,000$ dofs.

Numerical Results Discontinous target state

Problem description

Target state

$$y_d(x,t) = \begin{cases} 1 & \sqrt{|x-0.5|^2 + (t-0.5)^2} \le \frac{1}{4} \\ 0 & \text{otherwise.} \end{cases}$$

Exact solution and optimal control

Not known!

Projection of the discontinuous target function y_d onto a finite element function on a refined mesh, for d + 1 = 3; cuts through the space-time cylinder at t = 0.3, 0.5, 0.7.

Projection of the discontinuous target function y_d onto a finite element function on a refined mesh, for d + 1 = 3; a contour plot of y_d in the space-time cylinder.

L_2 -regularization (d+1=3)

L_2 -regularization (d+1=3)

L_2 -regularization (d+1=3)

L_2 -regularization (d+1=4)

t = 0.3

L_2 -regularization (d+1=4)

L_2 -regularization (d+1=4)

1 Introduction

- 2 A localized space-time upwind scheme
- 3 A posteriori error estimation
- 4 Numerical Results
- 5 Conclusions & Outlook

Conclusions

Adaptive space-time Optimal Control:

- stable space-time FE scheme for all-at-once discretizations,
 - Iocalized a priori error estimates,
 - a posteriori error techniques:
 - residual error indicators
 - functional error estimators

Inumerical results up to d + 1 = 4,

Outlook & Work in progress

Solvers

- Parallelization
- Energy regularization, i.e. $u \notin L_2(Q)$, but $u \in L_2(0,T; H^{-1}(\Omega))$
- Application to non-linear, (time-periodic) problems
- Goal-oriented a posteriori error estimates

References:

- LANGER, U., AND S., A. Adaptive space-time finite element methods for parabolic optimal control problems. Journal of Numerical Mathematics (2021). first published online by de Gruyter Nov. 3, 2021, https://doi.org/10.1515/jnma-2021-0059.
- [2] LANGER, U., AND S., A. Simultaneous space-time finite element methods for parabolic optimal control problems. DK Report 2021-04, 2021. accepted for publication in the LSSC2021 proceedings, Lecture Notes in Computer Science (LNCS), v. 13127, Chapter 36.
- [3] S., A. Space-time Finite Element Methods. PhD thesis, Johannes Kepler University Linz, 2021.

Thank you!

Appendix

Some remarks on $\boldsymbol{\theta}$

I on linear elements, i.e, k = 1: a = 0, i.e.,

$$\mu_c = \frac{1}{2} \quad \text{for} \quad 0 < \theta \leq \frac{1}{2} \min\left\{\frac{\varrho}{\overline{\lambda}_0 \lambda_1 h C_{\text{F}\Omega}(\nu)^2}, \frac{1}{\overline{\lambda}_0 \lambda_1 h C_{\text{F}\Omega}(\nu)^2}\right\}$$

• on uniform meshes, i.e., $h_K \equiv h$ for all $K \in \mathcal{T}_h$: b = 0, i.e.

$$\mu_c = \frac{1}{2}$$
 for $\theta = \frac{1}{\overline{\lambda}_0^2 c_{\text{div}}^2}$,

and $\lambda_h \equiv h$ for all $K \in \mathcal{T}_h$

The mesh density function λ_h

Let $\lambda_h \in W^{1,\infty}(Q)$ be globally continuous, with

 $0 < \underline{\lambda}_0 h_K \le \lambda_h(x,t) \le \overline{\lambda}_0 h_K$ and $|\partial_t \lambda(x,t)| \le \lambda_1$,

for a.e. $(x,t) \in K$, $K \in \mathcal{T}_h$, where $\underline{\lambda}_0, \overline{\lambda}_0, \lambda_1$ positive.

The mesh density function λ_h (contd.)

How to realize λ_h ? Let

$$\lambda_h(x,t) = \sum_{i=1}^{n_h} h_i \,\varphi_i(x,t),$$

where

I n_h is the number of vertices of \mathcal{T}_h ,

 $\blacksquare \varphi_i$ is the linear f.e. function associated with vertex x_i ,

 \blacksquare h_i is the averaged edge length in the vertex x_i , i.e.,

$$h_i = \frac{1}{|E(i)|} \sum_{e \in E(i)} h_e,$$

with $E(i) = \{ e \subset \mathcal{T}_h : e \text{ is an edge } \land \overline{e} \cap x_i \neq \emptyset \}.$

Work in progress

Energy regularization:

$$u \notin L_2(Q)$$
, but $u \in L_2(0,T;H^{-1}(\Omega))$, thus
$$J(y,u) = \int_Q |y-y_d|^2 \, \mathrm{d}Q + \frac{\varrho}{2} \|u\|_{L_2(0,T;H^{-1}(\Omega))}^2$$

we know³

$$||u||_{L_2(0,T;H^{-1}(\Omega))}^2 = ||\nabla_x w_u||_Q^2 = \langle u, w_u \rangle_Q$$

where $w_u \in V = L_2(0,T;H_0^1(\Omega))$ is the unique solution of

$$\int_{Q} \nabla_x w_u \cdot \nabla_x v \, \mathrm{d}Q = \langle u, v \rangle_Q \quad \forall v \in V.$$

Manufactured smooth solution:

