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Analysis of all-at-once systems

Consider
ut = uxx, x ∈ R/Z, t ∈ [0, T ].

Parallel-in-time integration using backward Euler yields linear system

Anx = b, An = JNt ⊗ INx + INt ⊗QNx ∈ RN×N , x, b ∈ RN ,

with

JNt =
1

ht


1
−1 1

. . .
. . .

−1 1

 , QNx =
1

h2x


2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

 .

We want to compute the spectrum of these systems in order to analyze
and design iterative methods for their solution.
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Toeplitz matrices
▶ Toeplitz matrices {Tn}∞n=0 ∈ Cn×n given by

Tn =



t0 t−1 t−2 · · · t−n+1

t1 t0 t−1
. . .

...

t2 t1 t0
. . .

...
...

. . .
. . .

. . .
...

tn−1 tn−2 tn−3 · · · t0


▶ Diagonal entries given by Fourier coefficients of generating symbol f :

tj =
1

2π

π∫
−π

f(x)e−2πijxdx

▶ Classical result from Szegö:

Theorem

If f ∈ L∞ is real-valued, then the eigenvalues of the Hermitian
Toeplitz matrices An are distributed as f(x).
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Circulant matrices

▶ Circulant matrices are “periodic cousins” of Toeplitz matrices

▶ Given a vector c = (c0, c1, c2, . . . , cn−1)
T it is defined as

Cn(c) :=


c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · · cn−2

cn−2 cn−1 c0 · · · cn−3

...
...

...
. . .

...
c1 c2 c3 · · · c0

 ∈ Rn×n.

▶ Can be defined using the generating symbol f by

Cn(f) = Fn diag
i=0,...,n−1

(f(θ
(n)
i )FH

n ,

where Fn = 1√
n

[
e−ijθ

(n)
i

]n−1

i,j=0
and θ

(n)
i = 2πi

n .
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All-at-once matrix and it’s Toeplitz and circulant symbols

▶ JNt has unilevel scalar Toeplitz structure with fJ(θ) = 1− eiθ:

JNt =
1

ht


1
−1 1

. . .
. . .

−1 1

 =
1

ht
TNt(fJ)

▶ QNx is a circulant matrix with fQ(ξ) = 2− 2 cos ξ:

QNx =
1

h2x


2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

 =
1

h2x
CNx(fQ)
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Local Fourier Analysis (LFA)
e.g., Wienands, Joppich (2005)

Error Propagation Operator

ej+1 = Eej

∥E∥ = max
∥e∥=1

∥Ee∥

ρ(E) = lim
n→∞

∥En∥1/n
EJ = I − ωD−1A

ETG = S(I − PA−1
2 RA1)S

E Simplify Transform

LFA


∥E∥
ρ(E)

amount of osc.

smoother y/n?
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Local Fourier Analysis – Simplifications

Stencil Notation

[Lu](x) =
∑
κ∈Gh

sx(κ) · u(x+ κ)

4

−1

−1−1

−1

C

N

EW

S

[Lu](C) = −1u(N)− 1u(W )+

4u(C)− 1u(E)− 1u(S)

Infinite Grid

Ωh = h1Z× · · · × hdZ
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Local Fourier Analysis – DTFT of constant stencils

Âû = FhAF−1
h û

Âû = â · û

u

f

û

f̂

A Â

Fh

Fh

Theorem

Let â ∈ L∞(Θh) be the Fourier symbol of A. Then,

∥A∥ℓ2 = ess-supϑ |â(ϑ)| and ρ(A) = ess-supϑ |â(ϑ)|
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Local Fourier Analysis – DTFT of periodic stencils
B. , Rittich (2018)

Rn : L2(Θh) → L2(Θn·h)
n

[Rnû]j(θ) = û
(
θ + 2π

hn j
)

▶ Âû = Fh′AF−1
h û

▶ RmÂR−1
n û = â · û

▶ â ∈ L∞(Θn·h)
m×n

u

f

û

f̂

⃗̂u

⃗̂
f

A ⃗̂
f = â · ⃗̂u

Fh Rn

Fh′ Rm

Â

Theorem

∥A∥ = ess-supϑ ∥â(ϑ)∥2
ρ(A) = ess-supϑ ρ(â(ϑ))
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LFA Lab

LFA
Lab

https://hrittich.github.io/lfa-lab/

▶ Versatile; based on combination of Fourier matrix symbols.
▶ Uses two-pass evaluation strategy.

1st Determine proper settings for evaluation.
2nd Evaluate formula.
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Spectra of backward Euler via direct computation and LFA
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Semi-algebraic mode analysis (SAMA) (1/2)
Friedhoff, MacLachlan (2015)

▶ To account for non-normality of the matrix in the time-direction
SAMA permutes system matrix, s.t. time-direction is the innermost

▶ For our example application of this permutation P yields

Ãn := P−1AnP = P−1 (JNt ⊗ INx + INt ⊗QNx)P

= INx ⊗ JNt +QNx ⊗ INt

▶ Block-Fourier transformation yields

(FNx ⊗ INt)
HÃn(FNx ⊗ INt) =


B

(A)
1 0 · · · 0

0 B
(A)
2 0
. . .

. . .
...

0 · · · 0 B
(A)
Nx


with lower triangular blocks BA

k , k = 1, . . . , Nx.
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Semi-algebraic mode analysis (SAMA) (2/2)
Friedhoff, MacLachlan (2015)

▶ Blocks BA
k have the structure

BA
k =


1 + λk 0 · · · 0
−1 1 + λk 0

. . .
. . .

...
−1 1 + λk


▶ Problem of approximating spectrum boils down to solving Nx

(small) eigenvalue problems

▶ More complicated structure for higher order schemes, SDC,. . .

▶ Allows for two-level (three-level,. . . ) analyis in the usual (LFA)
manner

▶ Can be carried out using LFA Lab
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Approximating classes of sequences (a.c.s.)

Let {An}n be a matrix sequence and {{Bn,m}n}m be sequence of matrix
sequences. {{Bn,m}n}m is an a.c.s. if for every m there exists nm s.t. for
n ≥ nm,

An = Bn,m +Rn,m +Nn,m, rank(Rn,m) ≤ c(m)n, ∥Nn,m∥ ≤ ω(m),

where limm→∞ c(m) = limm→∞ ω(m) = 0.

ACS1 {An}n ∼σ f iff there exist {Bn,m} ∼σ fm s.t.

{Bn,m}n
a.c.s.−−−→ {An}n and fm → f in measure.

ACS2 Let AH
n = An. {An}n ∼λ f iff there exist {Bn,m} ∼λ fm s.t.

{Bn,m}n
a.c.s.−−−→ {An}n and fm → f in measure.

ACS3 Let p ∈ [1,∞] and assume that for every m there exists an nm s.t.,
for n ≥ nm, ∥An −Bn,m∥p ≤ ϵ(m,n)n1/p, where

limm→∞ lim supn→∞ ϵ(n,m) = 0. Then {Bn,m}n
a.c.s.−−−→ {An}n.
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Generalized locally Toeplitz (GLT) sequences
e.g., Garoni, Serra-Capizzano (2017,2018)

Based on the a.c.s. we can define GLT sequences, fulfilling:

GLT1 Each GLT sequence has a unique GLT symbol f(θ) with
θ ∈ [−π, π]d, i.e., {An}n ∼GLT f(θ). The GLT symbol is singular
value symbol, if An = AH

n for all n it is also eigenvalue symbol.

GLT2 The set of GLT sequences forms ∗-algebra, i.e., it is closed under
linear combinations, products, inversion and conjugation.

GLT3 Every Toeplitz sequence {Tn(f)}n generated by a function
f ∈ L1([−pi, pi]d) is a GLT-sequence and its GLT symbol is f . Each
diagonal sampling sequence {Dn(a)}n with a Riemann-integrable
over [0, 1]d is a GLT sequence with GLT symbol a.

GLT4 Every sequence distributed as constant zero in singular value sense is
GLT sequence with symbol 0.
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Advantages and limitations of analysis of Toeplitz matrices
and GLT

+ Technique covers single- and multilevel (i.e., one- and
multi-dimensional), scalar and block cases

+ Analysis of multigrid methods using Toeplitz matrices or GLT allows
for multigrid convergence results by analyzing full multigrid hierarchy

+ GLT provides asymptotic results for non-constant coefficient PDEs

+ GLT has proven to be efficient tool for analysis of complicated
discretizations (e.g. IGA)

− Toeplitz matrices and GLT do not cover presence of different powers
of h properly

− No tool support similar to LFA Lab available
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Toeplitz momentary symbol
B., Ekström, Furci, Serra-Capizzano (2022)

Presence of different powers of h can be overcome using the following:

Definition (Toeplitz momentary symbol)

Let {Xn}n be a matrix sequence, assume that there exist matrix

sequences {A(j)
n }n, {Rn}n, zero-distributed, scalar sequences {c(j)n } and

Lebesgue integrable functions fj defined over [−π, π], j = 0, . . . , t, s.t.

c(0)n = 1, c(s)n = o(c(r)n ), t ≥ s > r,

{Xn}n = {A(0)
n }n +

t∑
j=1

{A(j)
n }n + {Rn}n.

Then fn = f0 +
∑t

j=1 c
(j)
n fj is the Toeplitz momentary symbol for Xn

and {fn}n the sequence of Toeplitz momentary symbols for {Xn}n.
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Analysis of PFASST
B., Moser, Speck (2017)

Iteration matrix:

TPFASST = I−
(
Ih2hP̃

−1

aGS
I2hh +P−1

aJac
−P−1

aJac
Mlcp I

h
2hP̃

−1

aJac
I2hh

)
Mlcp

=
(
I−P−1

aJac
Mlcp

)
︸ ︷︷ ︸
Post-Smoother

(
I− Ih2hP̃

−1

aGS
I2hh Mlcp

)
︸ ︷︷ ︸

≈CG-Correction

I︸︷︷︸
Pre-Smoother

Decomposable into 3 layers:
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Decomposable into 3 layers:

TPFASST≃ Tspace ⊗ Ttime ⊗ Tcolloc

dof e.g. 10000 10 5
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Blocked Local Fourier Analysis
B., Moser, Speck (2017)

F−1TPFASSTF ≃

ψ−1Tspaceψ ⊗Ttime ⊗Tcolloc

=

 . . .


Small blocks Bl allow for easy calculation of:

▶ Spectral radius: ρ(T) = maxl ρ(Bl)

▶ Norm: ∥T∥2 = maxl ∥Bl∥2
▶ Power: Tk = F diag

(
Bk
1 ,Bk

2 , . . . ,Bk
N

)
F−1
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Model problem

Figure: Numerical
solution for the initial
value u0 = sin(x).

Use second order difference method to discretize
the heat equation

ut(t) = Au(t)

A =
µ

(∆x)2



2 −1 0 · · · −1
−1 2 −1

0
. . .

. . .
. . . 0

... −1 2 −1
−1 0 · · · −1 2


ν = µ∆t/ (∆x)2

Space problem is decomposable into the modes
mk =

[
exp

(
i · kn

N

)]
n=1,...,N

.
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Figure: Numerical
solution for the initial
value u0 = sin(x).
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First convergence tests

8 time steps
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32 spatial nodes, 5 quadrature nodes and µ = 0.01.
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Estimating iterations

Use the spectral radius

▶ Works great with a few time steps.

▶ Is awfully wrong for many time steps

Not ideal, so what about ∥T∥2 = maxl ∥Bl∥2?

▶ Matrix matrix multiplication for each iteration.

⇒ Analysis of mode-wise behavior provides additional insight
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Block structure and space modes

1. Decompose spatial problem into modes mj

2. Spread j-th mode across all collocation points and time steps to get
initial error mode:

e0j = mj ⊗ 1L ⊗ 1M

3. Use block Fourier transformation to track j-th error mode over
iterations:

∥Fekj ∥ = ∥FTke0j∥ =
∥∥∥diag(Bk

l )Fe0j

∥∥∥ =
∥∥∥Bk

j 1LM

∥∥∥ .
4. Estimate number of iterations KPFASST to achieve a certain error

reduction for this mode
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Convergence of PFASST for another setup

128 spatial nodes, 5 quadrature nodes, 10 time steps and ν = 0.01
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Convergence of PFASST for another setup

128 spatial nodes, 5 quadrature nodes, 10 time steps and ν = 1.0
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How to estimate the speedup

L · TC
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How to estimate the speedup

L · TC

KPFASST · (TF + TC)
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How to estimate the speedup

S =
∑L

l=1 KSDC,l·TF

L·TC+KPFASST·(TF+TC)
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How SDC performs

128 spatial nodes, 5 quadrature nodes, 128 time steps and ν = 0.01.
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Estimated speedup

low ν

high ν

128 spatial nodes, 5 quadrature nodes, 128 time steps and ν = 0.01.
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MINRES for nonsymmetric Toeplitz matrices
Pestana, Wathen (2015)

Using the flip matrix

Yn =

 1

. .
.

1


the system Anx = b can be preconditioned as

YnAnx = Ynb.

The resulting system matrix is a Hankel matrix and the system can be
solved using MINRES. Further, an optimal circulant preconditioner Cn

can be used. To obtain a symmetric preconditioner like required by
MINRES the absolute value of CN is used, c.f. Andy’s talk on Monday:

|Cn| = (CT
nCn)

1
2 = (CnC

T
n )

1
2 = U∗

n|Λn|Un.
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Ideal GMRES analysis
Greenbaum, Trefethen (1994)

For nonsymmetric systems other solvers have to be used, GMRES is one
of the most widely used and best understood variant.

One alternative for analyzing is the ideal GMRES analysis, considering
the “ideal” polynomial pideal(A):

pideal(A) = arg min
p(A)∈πk
p(0)=1

∥p(A)∥2,

∥r(k+1)∥2 = min
p(A)∈πk
p(0)=1

∥p(A)r(0)∥
∥r(0)∥2

≤ ∥pideal(A)∥2.

Minimizes the 2-norm of p(A), not of p(A)r(0) and can be approx. using
randomized normalized vectors ξ by prand.
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Speedup of ideal GMRES analysis using SAMA

▶ Coefficients of GMRES polynomial can be computed as described in
Nachtigal, Reichel and Trefethen (1992)

▶ Ideal GMRES analysis requires computation of spectral radius of
matrix polynomial for each iteration

▶ Polynomial evaluation can be carried out approximately using SAMA
▶ Test case:

▶ 1d advection on [−π, π]× [0, T ] with periodic boundary conditions in
space discretized using BDF1

▶ Preconditioned using MGRIT
▶ Nx = 8, 16, Nt = 16, 32
▶ usage of variable-precision floating point arithmetic

▶ Speedup by using SAMA in comparison to näıve implementation: up
to 88.87 times faster
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Results of ideal GMRES analysis using SAMA (1/2)
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Results of ideal GMRES analysis using SAMA (2/2)
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Conclusion

▶ Analysis of all-at-once matrices difficult due to
▶ lack of symmetry
▶ non-normality

▶ Analysis based on Toeplitz structure possible nevertheless:
▶ SAMA as extension of LFA
▶ Generalization of Toeplitz theory possible, as well

▶ Techniques allow for analysis and development of advanced
stationary solvers (PFASST) as well as of Krylov subspace methods
(preconditioned MINRES, MGRIT-preconditioned GMRES)

Thank you for your attention!
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