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Introduction:
Vlasov-Poisson




The Vlasov-Poisson equations

Continuum description of classical N-body problem as N — oco:

particle distribution f(z,v,t) > 0, as a function of time ¢ € R,
position z € R? and velocity v € R3

Of+v-Vof —AVe0-V,f =0, Awqb(x,t):/f(ac,v,t)dv,

® )\ > (0: attractive interactions / gravitational case,
» stationary states: many,

® )\ < 0: repulsive interactions / plasma case,

» stationary states: no smooth, localized.

» Global solutions? Yes.

[Batt, Horst, Bardos-Degond, Pfaffelmoser, Schaeffer, Lions-Perthame,. . .|

» Asymptotic behavior? Largely open.



Asymptotic dynamics on R?

e linear / orbital stability of stationary solutions,
[Jeans, Bernstein-Greene-Kruskal, Guo, Lin, Rein, Lemou-Méhats-Raphaél,
Hadzié¢-Rein-Straub, Bedrossian-Masmoudi-Mouhot,

Han-Kwan-Nguyen-Rousset. . . ]

Asymptotic behavior / stability only known near:

@ vacuum for small, dilute gases — modified scattering
[Choi-Kwon, Hwang-Rendall-Velazquez, Smulevici,. . .,
Tonescu-Pausader-Wang-W., Pankavich, Flynn-Ouyang-Pausader-W.]
® homogeneous “Poisson” equilibrium — linear scattering
(“Landau damping”) [Ionescu-Pausader-Wang-W.]
[Td: Mouhot-Villani, Bedrossian-Masmoudi-Mouhot, Grenier-Nguyen-Rodnianski]

® repulsive point charge — modified scattering

[Pausader-W., Pausader-W.-Yang]



Mechanism of stability on R?: dispersion

In linear approximation, a small distribution streams freely

(Or+v-V,)f=0 =  f(z,v,t) = fo(z —tv,v).

A smooth distribution of particles gets increasingly diluted:

:/f(x,v,t)dv:t_?’/fo(p,x;p

— 3 /fo Tydp+ O(t*).

Expect: F = £VA~!p — 0. (False for a point particle f = Sx ), v)-)

However: Nonlinear effects remain relevant throughout evolution



Point Mass/Charge

in Vlasov-Poisson




A point mass/charge in Vlasov-Poisson

» Question: Stability of feq = q.0(x,,v0) (7, v)?
Track solution as

f(@,v,t) = @by, vy + aoi’ (w0, t)dzdv.
— yields:

g - X(@) _
(&t +v-Vg+ 2z = AP Vv) w4+ AV - Vo =0,
dx dy

ast Wy _ _ 2
a o = aVa¥(X), Ay /Rg pdv,

v

(VP)

with A, q,q < 0 — attractive:

e local well-posedness?



A point mass/charge in Vlasov-Poisson

» Question: Stability of feq = q.0(x,,v0) (7, v)?
Track solution as

f(@,v,t) = @by, vy + aoi’ (w0, t)dzdv.

— yields:
— X(t
vV, + 120 G AV V=0,
2|z — &)
dx v ,. VP)
Loy, Do), Aws /R e

with A, ¢,q > 0 — repulsive

® [Marchioro-Miot-Pulvirenti "11]: global strong solutions under support

restriction
® [Desvillettes-Miot-Saffirio "15]: global weak solutions under less support

restriction
® [Crippa-Ligabue-Saffirio "18]: global “Lagrangian” solutions under less support

restriction



Main Result

Theorem [Pausader-W.-Yang ’22]
Given (X, Vo) € R? x R3 and g € CH(R3 \ {Xp} x R3), there exists
e* > 0 such that for any 0 < € < €*, there exists a unique global

strong solution of (VP) with repulsive interactions and initial data
(X(t=0),Vt=0)) = (X, o), wu(t=0)=cpuo.

Moreover, we have precise asymptotics as t — oo:

1
vacd’(t) ~ t_25007 ,LL(Y, I/V,t) ~ Moo (x,v), X(t) ~ Xoo+tVoo +ln(t)coo-

@ More precise and less restrictive in “action-angle” variables.
® In radial setting:

q rq q
Y(ro,8) ~ 02+ 2 — — "0 In() + Afas (/02 + 1) In(2),
(08~ tyfor 4 Lo 2T u) a8y ot + Dty
W 2y e 1
(r,v, 1) S 2(g+rv2) t



Proof strategy: method of asymptotic actions

Based on Hamiltonian structure:
(VP) <~ at/J + {HO + Hpert; ,LL} = 0,
with Hg linearized Hamiltonian, H,.,+ from electrostatic potential.

® Lagrangian analysis of linearized equation: can integrate flow of
Ho exactly via “action-angle” variables,
® Eulerian analysis of nonlinear equation:
bootstrap in PDE framework (L? based, dispersive)
» global solutions with almost sharp decay via energy
estimates / propagation of moments,
» sharp decay via propagation of derivative control,
» asymptotic behavior via “mixing” mechanism.



Some guiding principles

to abide by:

® Use symplectic structure (Poisson brackets...) as much as
possible. In particular, only use canonical transformations.

® Only integrate over all phase space [[ dzdv.
(No role for density p(t,x) or scattering mass m(t,v)...)

® Rely on conservation laws of the linearized ODE as much as
possible.



Linearized Equation
& Action-Angle
Coordinates




Linearized Equation

Linearization of (VP):

(at+v-vw+q%~vv)u:o & O+ {Hop} =0, (VPun)

with Hg = ‘v + |m‘ linear Hamiltonian.

» transport by flow of repulsive two-body problem [Newton 1687]

. . T
T =, @ = qW, (ODE)

» super-integrable (!): 5 scalar conserved quantities

+ —, L=xxw, R:vxLJrqi
| |z|

> trajectories easy to parameterize in the plane; more difficult in
general.

I
Ho = 5 |



Linearized Equation: radial case (1 + 1 dim)

» Trajectories

q q
rEg, 0SS = Ho = v 42
K R K
2r T
phase portrait:
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2
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=il
—4 -2 0 2 4
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Linearized Equation: radial case (1 + 1 dim) (2)

Lemma [Canonical Transformation]
Let
A(r,v) =/ Ho, O(r,v) = clock along trajectory.

The map (r,v) — (O(r,v), A(r,v)) is a canonical diffeomorphism
which linearizes the flow ®!(r,v) of the Kepler ODE, i.e.

O(®'(r,v)) — O(r,v) = tA(r,v), A(®(r,v)) = A(r,v).

Proof: We have

— integrate; with ryi, = zr = J5, define

O(r,v) = irminG(-—),

| ‘ T'min

where G : (1,00) — R satisfies G(1) =0, G'(s) = [1 — 1}7%. O

S
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Asymptotic action-angle

We are looking for a set of asymptotic action-angle coordinates
T : (x,v) — (9,a) such that

® 7 is canonical dx A dv = d9 A da,
® 7T integrates linearized equation: for ODE trajectory (¥(t),a(t))

d=a, a=0 <& (x,0)t)=(X0+ta,a),V(0+ta,a))
or
O(z(t),v(t)) = O(zo, vo)+tA(To,v0), A(x(t),v(t)) = A0, v0),
® 7 satisfies the asymptotic action property as t — 4oc:

| X (9 + ta,a) — ta] = o(t), [V (9 +ta,a) —al =o(1).
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Linearized equation: solved

With (X (¥, a), V(9,a)) inverse of (O(x,v), A(x,v)), define

v(¥,a,t) = (X (9,a), V(9,a),t),
v, a,t) =v(d+ta,a,t) = n( X +ta,a), V(I +ta,a),t)

» integrates the linearized equation:

xr
(&5+’U-qu|w|3 V>M atﬂ+{||+|xﬂ}

:atu+{|“7,u}=(at+a-w)y

= Oy
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Nonlinear Dynamics
& Asymptotics via
“Mixing”




Nonlinear equation

Then' since coordinate change is symplectic
atljf + {HO + Hperta /~L} =0 <~ at7 = )‘{\Ij ’7}7 (VP,)

with
U (v, a,t) X (¥ +ta,a),t)

t)dvd
//Xﬁﬂaa e 12 (y, v, t)dvdy

// o V2(0, o, t)dOdor

and X (9,a) = X (9 + ta, a).

» nonlinear analysis works with this purely nonlinear equation

lignoring point mass dynamics for now
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Asymptotic dynamics (heuristics)

Oy + M¥,~v} =0, // ) v2(8, i, t)dfder

By asymptotic action property Xv(ﬂ, a) = ta + o(t), hence with

D(a,t) //| Y20, o, t)dfda

obtain asymptotic shear equation

0= 87+ 2{@,7) +0(7'7) = 07— 2V.2(a1) - Vo + 077
!
4 (YO + AIn(t)Ex(a),a,t)) = O(t™7), Exla) = lim V,®(a,t).

dt t—o00
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