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Introduction:

Vlasov-Poisson



The Vlasov-Poisson equations

Continuum description of classical N -body problem as N →∞:

particle distribution f(x, v, t) ≥ 0, as a function of time t ∈ R,

position x ∈ R3 and velocity v ∈ R3

∂tf + v · ∇xf − λ∇xφ · ∇vf = 0, ∆xφ(x, t) =

∫
f(x, v, t)dv,

• λ > 0: attractive interactions / gravitational case,

I stationary states: many,

• λ < 0: repulsive interactions / plasma case,

I stationary states: no smooth, localized.

I Global solutions? Yes.

[Batt, Horst, Bardos-Degond, Pfaffelmoser, Schaeffer, Lions-Perthame,. . . ]

I Asymptotic behavior? Largely open.
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Asymptotic dynamics on R3

• linear / orbital stability of stationary solutions,

[Jeans, Bernstein-Greene-Kruskal, Guo, Lin, Rein, Lemou-Méhats-Raphaël,

Hadžić-Rein-Straub, Bedrossian-Masmoudi-Mouhot,

Han-Kwan-Nguyen-Rousset. . . ]

Asymptotic behavior / stability only known near:

1 vacuum for small, dilute gases – modified scattering

[Choi-Kwon, Hwang-Rendall-Velazquez, Smulevici,. . . ,

Ionescu-Pausader-Wang-W., Pankavich, Flynn-Ouyang-Pausader-W.]

2 homogeneous “Poisson” equilibrium – linear scattering

(“Landau damping”) [Ionescu-Pausader-Wang-W.]

[Td: Mouhot-Villani, Bedrossian-Masmoudi-Mouhot, Grenier-Nguyen-Rodnianski]

3 repulsive point charge – modified scattering

[Pausader-W., Pausader-W.-Yang]
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Mechanism of stability on R3: dispersion

In linear approximation, a small distribution streams freely

(∂t + v · ∇x) f = 0 ⇒ f(x, v, t) = f0(x− tv, v).

A smooth distribution of particles gets increasingly diluted:

ρ(x, t) : =

∫
f(x, v, t)dv = t−3

∫
f0(p,

x− p
t

)dp

= t−3

∫
f0(p,

x

t
)dp+O(t−4+).

Expect: F = ±∇∆−1ρ→ 0. (False for a point particle f = δ(X (t),V(t)).)

However: Nonlinear effects remain relevant throughout evolution
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Point Mass/Charge

in Vlasov-Poisson



A point mass/charge in Vlasov-Poisson

I Question: Stability of feq = qcδ(X0,V0)(x, v)?

Track solution as

f(x, v, t) = qcδ(X (t),V(t)) + qgµ
2(x, v, t)dxdv.

→ yields:(
∂t + v · ∇x +

q

2

x−X (t)

|x−X (t)|3 · ∇v

)
µ+ λ∇xψ · ∇vµ = 0,

dX
dt

= V, dV
dt

= q∇xψ(X ), ∆xψ =

∫
R3

v

µ2dv,

(VP)

with λ, q, q̄ < 0 – attractive:

• local well-posedness?
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A point mass/charge in Vlasov-Poisson

I Question: Stability of feq = qcδ(X0,V0)(x, v)?

Track solution as

f(x, v, t) = qcδ(X (t),V(t)) + qgµ
2(x, v, t)dxdv.

→ yields:(
∂t + v · ∇x +

q

2

x−X (t)

|x−X (t)|3 · ∇v

)
µ+ λ∇xψ · ∇vµ = 0,

dX
dt

= V, dV
dt

= q∇xψ(X ), ∆xψ =

∫
R3

v

µ2dv,

(VP)

with λ, q, q̄ > 0 – repulsive

• [Marchioro-Miot-Pulvirenti ’11]: global strong solutions under support

restriction

• [Desvillettes-Miot-Saffirio ’15]: global weak solutions under less support

restriction

• [Crippa-Ligabue-Saffirio ’18]: global “Lagrangian” solutions under less support

restriction
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Main Result

Theorem [Pausader-W.-Yang ’22]

Given (X0,V0) ∈ R3 × R3 and µ0 ∈ C1
c (R3 \ {X0} × R3), there exists

ε∗ > 0 such that for any 0 < ε < ε∗, there exists a unique global

strong solution of (VP) with repulsive interactions and initial data

(X (t = 0),V(t = 0)) = (X0,V0), µ(t = 0) = εµ0.

Moreover, we have precise asymptotics as t→∞:

∇xψ(t) ∼ 1

t2
E∞, µ(Y,W, t) ∼ µ∞(x, v), X (t) ∼ X∞+tV∞+ln(t)C∞.

1 More precise and less restrictive in “action-angle” variables.

2 In radial setting:

Y (r, v, t) ∼ t
√
v2 +

q

r
− rq

2(q + rv2)
ln(t) + λE∞(

√
v2 +

q

r
) ln(t),

W (r, v, t) ∼
√
v2 +

q

r
− rq

2(q + rv2)

1

t
.
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Proof strategy: method of asymptotic actions

Based on Hamiltonian structure:

(VP) ⇔ ∂tµ+ {H0 +Hpert, µ} = 0,

with H0 linearized Hamiltonian, Hpert from electrostatic potential.

1 Lagrangian analysis of linearized equation: can integrate flow of

H0 exactly via “action-angle” variables,

2 Eulerian analysis of nonlinear equation:

bootstrap in PDE framework (L2 based, dispersive)

I global solutions with almost sharp decay via energy

estimates / propagation of moments,
I sharp decay via propagation of derivative control,
I asymptotic behavior via “mixing” mechanism.
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Some guiding principles

to abide by:

• Use symplectic structure (Poisson brackets. . . ) as much as

possible. In particular, only use canonical transformations.

• Only integrate over all phase space
∫∫

dxdv.

(No role for density ρ(t,x) or scattering mass m(t,v). . . )

• Rely on conservation laws of the linearized ODE as much as

possible.
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Linearized Equation

& Action-Angle

Coordinates



Linearized Equation

Linearization of (VP):

(∂t + v · ∇x + q
x

|x|3
· ∇v)µ = 0 ⇔ ∂tµ+ {H0, µ} = 0, (VPlin)

with H0 = |v|2
2 + q

|x| linear Hamiltonian.

I transport by flow of repulsive two-body problem [Newton 1687]

ẋ = v, v̇ = q
x

|x|3 , (ODE)

I super-integrable (!): 5 scalar conserved quantities

H0 =
|v|2
2

+
q

|x| , L = x× v, R = v ×L + q
x

|x|

I trajectories easy to parameterize in the plane; more difficult in

general.
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Linearized Equation: radial case (1 + 1 dim)

I Trajectories

ṙ = v, v̇ =
q

2r2
, H0 = v2 +

q

r

phase portrait:
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Linearized Equation: radial case (1 + 1 dim) (2)

Lemma [Canonical Transformation]

Let

A(r, v) =
√
H0, Θ(r, v) = clock along trajectory.

The map (r, v) 7→ (Θ(r, v),A(r, v)) is a canonical diffeomorphism

which linearizes the flow Φt(r, v) of the Kepler ODE, i.e.

Θ(Φt(r, v))−Θ(r, v) = tA(r, v), A(Φt(r, v)) = A(r, v).

Proof: We have

ṙ =

√
A2 − q

r

→ integrate; with rmin = q
v2+ q

r
= q
A2 , define

Θ(r, v) =
v

|v|rminG(
r

rmin
),

where G : (1,∞)→ R satisfies G(1) = 0, G′(s) =
[
1− 1

s

]− 1
2 .
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Asymptotic action-angle

We are looking for a set of asymptotic action-angle coordinates

T : (x,v) 7→ (ϑ,a) such that

1 T is canonical dx ∧ dv = dϑ ∧ da,

2 T integrates linearized equation: for ODE trajectory (ϑ(t),a(t))

ϑ̇ = a, ȧ = 0 ⇔ (x,v)(t) = (X(ϑ+ ta,a),V (ϑ+ ta,a))

or

Θ(x(t),v(t)) = Θ(x0,v0)+tA(x0,v0), A(x(t),v(t)) = A(x0,v0),

3 T satisfies the asymptotic action property as t→ +∞:

|X(ϑ+ ta,a)− ta| = o(t), |V (ϑ+ ta,a)− a| = o(1).
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Linearized equation: solved

With (X(ϑ,a),V (ϑ,a)) inverse of (Θ(x,v),A(x,v)), define

ν(ϑ,a, t) = µ(X(ϑ,a),V (ϑ,a), t),

γ(ϑ,a, t) = ν(ϑ+ ta,a, t) = µ(X(ϑ+ ta,a),V (ϑ+ ta,a), t)

I integrates the linearized equation:(
∂t + v · ∇x − q

x

|x|3 · ∇v

)
µ = ∂tµ+ { |v|

2

2
+

q

|x| , µ}

= ∂tν + { |a|
2

2
, ν} = (∂t + a · ∇ϑ) ν

= ∂tγ
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Nonlinear Dynamics

& Asymptotics via

“Mixing”



Nonlinear equation

Then1 since coordinate change is symplectic

∂tµ+ {H0 +Hpert, µ} = 0 ⇔ ∂tγ = λ{Ψ, γ}, (VP’)

with
Ψ(ϑ,a, t) = φ(X(ϑ+ ta,a), t)

=

∫∫
1

|X(ϑ+ ta,a)− y|µ
2(y,v, t)dvdy

=

∫∫
1

|X̃(ϑ,a)− X̃(θ, α)|
γ2(θ, α, t)dθdα

and X̃(ϑ,a) = X(ϑ+ ta,a).

I nonlinear analysis works with this purely nonlinear equation

1ignoring point mass dynamics for now
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Asymptotic dynamics (heuristics)

∂tγ + λ{Ψ, γ} = 0, Ψ =

∫∫
1

|X̃(ϑ,a)− X̃(θ, α)|
γ2(θ, α, t)dθdα

By asymptotic action property X̃(ϑ,a) = ta + o(t), hence with

Φ(a, t) =

∫∫
1

|a− α|γ
2(θ, α, t)dθdα

obtain asymptotic shear equation

0 = ∂tγ +
λ

t
{Φ, γ}+O(t−1−) = ∂tγ −

λ

t
∇aΦ(a, t) · ∇ϑγ +O(t−1−)

⇓
d

dt
(γ(ϑ+ λ ln(t)E∞(a),a, t)) = O(t−1−), E∞(a) = lim

t→∞
∇aΦ(a, t).
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