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The equation

Consider the incompressible Navier-Stokes equation in a periodic tunnel
⌦ = [0, 1]⇥ T2:

8
>>><

>>>:

@tu
⌫ + u

⌫ ·ru
⌫ +rP

⌫ = ⌫�u
⌫ in (0,T )⇥ ⌦

div u⌫ = 0 in (0,T )⇥ ⌦

u
⌫ = 0 on (0,T )⇥ @⌦

u⌫(0, ·) = u
0
⌫ "-perturbation of Ae1 in ⌦.

(NSE⌫)

We are interesting in the inviscid limit ⌫ ! 0 under the condition that u0
⌫

converges to Ae1 in L
2(⌦).
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Figure: 3D Periodic Channel




















Asymptotic limit

I It is a major open problem to know whether the limit of u⌫ converges to
Ae1 for all time.

I If u0
⌫ = Ae1, then u

⌫ corresponds to the Prandtl Layer.
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Figure: Prandtl Layer

I With perturbations on the initial values, only conditional results exist.
The Kato criterion (1984) states that if, when ⌫ ! 0:

ˆ
T

0

ˆ
{|z|<R⌫}[{|1�z|<R⌫}

⌫|ru
⌫ |2 dx1 dx2 dz �! 0, ku0

⌫�Ae1kL2(⌦) �! 0,

then
u
⌫ �! Ae1, in L

1(0,T ; L2(⌦)).
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Turbulence and layer separation

What if the limit does not hold ?

Figure: Turbulence and layer separation
the case of an airfoil



Prediction of layer separation

I Formally, the asymptotic system for ⌫ = 0 is the Euler system:

8
>>><

>>>:

@tu + u ·ru +rP = 0 in (0,T )⇥ ⌦

div u = 0 in (0,T )⇥ ⌦

u · n = 0 on (0,T )⇥ @⌦

u(0, ·) = Ae1 in ⌦.

(E)

I The method of convex integration shows that the solution u(t, x) = Ae1

of (E) is not unique (see Székelyhidi, CRAS, 2011).

I For every constant C < 2, there exists a solution with layer separation for
T < 1/A:

ku(T )� Ae1k2L2(⌦) = CA
3
T .

I Is it the biggest separation possible ?
Can we get some control of the layer separation as the level of the
Navier-Stokes equation ?



The result

Theorem (V.-Yang, 2021)

For d = 2, 3, there exists a universal constant C > 0 such that for any ū

inviscid weak limit of sequences of Leray-Hopf solutions u
⌫
to (NSE⌫) with u

⌫
0

converging to Ae1 in L
2(⌦), we have for almost every T > 0:

kū(T )� Ae1k2L2(⌦)  CA
3
T .

I This corresponds to the layer separation predicted by the convex
integration.



Non-uniqueness and pattern predictability

I In general, non uniqueness result by convex integration raised the
question of predictability: Why can we observe patterns ?

I The shear flow u = Ae1 has an energy of
ˆ
⌦

|u|2 dx = A
2,

while we prove that any inviscid asymptotic obtained by double limit has
an energy at time T of at most CA3

T .

I Therefore, the perturbation always stays negligible on a time span
T ⌧ 1/A. This is a large time for A small (small pattern).

I It predicts the lapse of time where the pattern stays predictable.



Previous work

I Prandtl layer: existence, stability, instability: Prandtl (1904),... W.E
Engquist (97) Grenier (00), Gerard-Varet, dormy (10), Kukavica, Vicol
(13), Grenier-Nguyen (18),...., Guo, Masmoudi Iyer (21)

I Extensions of the Kato criterion: Kato (84), Kelliher (08,09,17),
Bardos Titi (07, 13), Temam Wang (98), Maekawa (14), Lopes Filho
Mazzucato, Nussenzveig (08), Mazzucato taylor (08), Constantin Elgindi
Ignatova Vicol (17) Constantin Vicol (18)...

I Our result is the first non conditional result in the turbulent regime.

I An important question is whether non-unique solution can be reached as
limit of Navier-Stokes solutions.
Note that the solutions constructed by Buckmaster-Vicol (Annals of
Math 19) do not apply to this situation because:

I we consider a bounded domain with boundary,
I The Navier-Stokes solutions are suitable.



General idea

I Maekawa and Mazzucato (The inviscid limit and boundary layers for
Navier-Stokes flows ,2018):
“Mathematically, the main di�culty in the case of the no-slip boundary
condition is the lack of a priori estimates on strong enough norms to pass
to the limit, which in turn is due to the lack of a useful boundary
condition for vorticity or pressure.”

I We show a boundary vorticity control for the unscaled Navier-Stokes
equation (⌫ = 1) that is SCALABLE through the inviscid limit (⌫ ! 0).



Why vorticity on the boundary ?

We have

d

dt
ku⌫ � Ae1k2L2 =

d

dt
ku⌫k2

L2 � 2A
d

dt

ˆ
⌦

u
⌫
1 dx dz

 �⌫kru
⌫k2

L2 + 2A

ˆ
⌦

(div(u⌫
u
⌫
1 ) + @1P � ⌫�u

⌫
1 ) dx

 �⌫kru
⌫k2

L2 + 2A

ˆ
@⌦

(u⌫
3 u

⌫
1 )� ⌫@3u

⌫
1 ) dx

 �⌫kru
⌫k2

L2 � 2A

ˆ
@⌦

⌫(@3u
⌫
1 � @1u

⌫
3 ) dx

 �⌫kru
⌫k2

L2 � 2A

ˆ
@⌦

⌫!⌫
2 dx ,

where !⌫ = curl u⌫ is the vorticity of u⌫ .

So:

1
2
ku⌫(T )� Ae1k2L2(⌦)  1

2
ku⌫

0 � Ae1k2L2(⌦) �
ˆ
(0,T )⇥@⌦

|ru
⌫ |2 dx dt

�A

ˆ
(0,T )⇥@⌦

⌫!⌫
2 dx dt.
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Boundary vorticity estimate for Navier-Stokes

Theorem (Boundary Regularity)

Let ⌦ be a periodic channel of period W and height H. There exists a

universal constant constant C depending only on the ratio W /H, such that the

following holds. For any Leray-Hopf solution u to (NSE1) in (0,T )⇥ ⌦, there
exists a parabolic dyadic decomposition

(0,T )⇥ @⌦ =
[

i

Q̄
i ,

such that the following is true. Define the piecewise constant function

!̃ : (0,T )⇥ @⌦ ! R by

!̃(t, x) =

 
B̄i

����
 

ti

si

! dt

���� dx
0, for (t, x) 2 Q̄

i = (si , ti )⇥ B̄
i .

Then we have:

����!̃1n|!̃|>max
n

1
t
, 1
W 2 ,

1
H2

oo
����
3/2

L3/2,1((0,T )⇥@⌦)

 Ckruk2
L2((0,T )⇥⌦).



Smoothing local oscillations of the vorticity

Parabolic partition of @⌦⇥ [0,T ] :

p
t

x

0
p
L0 2

p
L0

. . .

2W0/2H0

W0/H0

· · ·

· · ·

· · ·

!̃ is the average of ! on each parabolic cylinder.



Smoothing local oscillations of the vorticity

Parabolic partition of @⌦⇥ [0,T ] :

p
t

x

0
p
L0 2

p
L0

. . .

2W0/2H0

W0/H0

· · ·

· · ·

· · ·

!̃ is the average of ! on each parabolic cylinder.



Smoothing local oscillations of the vorticity

Parabolic partition of @⌦⇥ [0,T ] :

p
t

x

0
p
L0 2

p
L0

. . .

2W0/2H0

W0/H0

· · ·

· · ·

· · ·

!̃ is the average of ! on each parabolic cylinder.

jw Stw

F



Boundary vorticity estimate for Navier-Stokes (2)

I Up to the limit case, the theorem (almost) says that for u solution to
Navier-Stokes with ⌫ = 1 in (0,T/⌫)⇥ ⌦/⌫ = (0,T⌫)⇥ ⌦⌫ :

ˆ
T⌫

0

ˆ
@⌦⌫

|!̃|3/2 dx dt  C

ˆ
T⌫

0

ˆ
⌦⌫

|ru|2 dx dz dt.

I Considering u
⌫(t, x) = u(t/⌫, x/⌫), this gives the estimates on solutions

to(NSE⌫):

ˆ
T

0

ˆ
@⌦

|⌫!̃⌫ |3/2 dx dt  C

ˆ
T

0

ˆ
⌦

⌫|ru
⌫ |2 dx dz dt.

I Therefore the boundary estimate is SCALABLE.

I This can be seen as an extention of the a-contraction theory first
introduced for the stability of 1-D fluid mechanics (See for instance
[Kang-V., Inventiones: 2021]).
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How to conclude using the boundary estimate

I The main theorem can then be obtained as follows (up to a small time
layer at t = 0):

1
2
ku⌫(T )� Ae1k2L2(⌦) �

1
2
ku⌫

0 � Ae1k2L2(⌦) +

ˆ
(0,T )⇥@⌦

|ru
⌫ |2 dx dt

 �A

ˆ
(0,T )⇥@⌦

⌫!⌫
2 dx dt

 �
ˆ
(0,T )⇥@⌦

(⌫!̃⌫
2 )Adx dt

 " k!̃k3/2
L3/2,1((0,T )⇥@⌦)

+ C"A
3
T

 1
2

ˆ
(0,T )⇥@⌦

|ru
⌫ |2 dx dt + CA

3
T .
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Blow-up method

We use a blow up method introduced in V. (Annales IHP 10) [see also
Choi-V. (14)] to control higher derivatives, following the flow at the scale
of the blow-up.

Relies on:

I a local regularity result at the boundary, under smallness
condition on the local dissipation

´
|ru|2dx dz dt < ⌘,

I and rescaling of the local regularity result through the universal
scaling for Navier-Stokes u"(t, x) = "u("2t, "x).

Problem of boundary: without control on the pressure, the local Stokes
regularity does no hold at the boundary.

but it holds AFTER taking local mean value !̃.



The parabolic partition of the boundary
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We continue to decompose this grid of cubes based on the following property:
a parabolic cube Q with dimension 4�k

L0 ⇥ 2�k
W0 ⇥ 2�k

H0 is said to be
suitable if it satisfies  

Q

M(|ru|2) dx dt  c0(2
�k

R0)
�2p (S)

for some c0 to be determined. For each parabolic cube in the initial partition
Q� that is not suitable, we dyadically dissect it into 4⇥ 2d smaller parabolic
cubes. For each smaller cube, we continue to dissect it unless it is suitable.
This process will finish in finitely many steps, so all su�ciently small cubes are
suitable.
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Thank you

Thank You !!


