
Subgraph-based networks for 
expressive, efficient, and domain-

independent graph learning
Haggai Maron

Machine Learning and Signal Processing on Graphs, CIRM, Nov. 8th, 2022



Derek Lim
(MIT)

Beatrice Bevilacqua 
(Purdue)

Fabrizio Frasca
(Imperial College London)



Equivariant Subgraph Aggregation Networks
ICLR 2022 (Spotlight presentation)
B. Bevilacqua*, F. Frasca*, D. Lim*, B. Srinivasan, C. Cai, G. Balamurugan, M. M. Bronstein, H. Maron

Understanding and Extending Subgraph GNNs by Rethinking Their 
Symmetries
NeurIPS 2022 (oral presentation)
F. Frasca*, B. Bevilacqua*, M. M. Bronstein, H. Maron



Learning on graphs

Molecule classification

Social network analysis

Protein structure prediction

Molecule classification

Social network analysis

Protein structure prediction



Learning on graphs

Molecule classification

Protein structure prediction

Social network analysis

Protein structure prediction

Solving combinatorial optimization problems

Visual question answering

Molecule classificationMolecule classification

Wang et al., 2022



Setup

• Training data: (𝐺!, 𝑦!), … , (𝐺" , 𝑦")
• Each graph 𝐺# consists of:
• Adjacency structure 𝐴!
• Node features 𝑥" ∈ ℝ#

• Label 𝑦! ∈ {−1,1}
• Goal: find a model that maps graphs to output labels
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Message passing Neural Networks

• Parametric neighborhood aggregation layers

• final graph representation: aggregate all node features

[Gilmer et al., ICML 2017]

ℎ$%&'( = Aggregate({ℎ)
* : 𝑘 = 1,… , 𝑛})
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Q: What is the expressive power of MPNNs?

𝑓 𝐺! ≠ 𝑓(𝐺")

• Given two non-isomorphic graphs 𝐺!, 𝐺+
• Can we find an MPNN 𝑓 such that:
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Color refinement

• MPNNs are closely related to the color refinement algorithm
• An efficient heuristic for graph isomorphism testing
• Also known as the Weisfeiler-Lehman (WL) graph isomorphism test 



Color refinement



Color refinement

New color:= [old color; {colors of neighbors} ]
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New color:= [old color; {colors of neighbors} ]



Color refinement (CR)

• Final graph descriptor: Color histogram

Graph descriptor: [2,1,1]



Color refinement (CR)

• [Morris et al 2019, Xu et al. 2019]: MPNNs are equivalent to CR (1-WL)

• k-WL: Higher-order, more powerful generalizations forming a hierarchy:

1-WL < 3-WL < 4-WL < ...

MPNNs CR



MPNNs have limited expressivity
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Why expressivity matters?

• Cannot assign different labels to different graphs

• Also - we might not be able to learn the “correct” features
• For example: MPNNs Cannot detect rings

Decalin Bicyclopentyl

Taken from Bouritsas et al., 2021



State-of-the-art in expressive GNNs

• k-GNNs/k-IGNs 
High computational complexity
[Morris et al., 2019, 2020;M. et al., 2019]

• Random node features 
Experimental results are not great
[Abboud et al., 2020, Sato et al., 2021]

• Using domain knowledge 
Requires knowledge of meaningful structures
[Bouritsas et al., 2022, Bodnar et al., 2021]



Goal for today:
Domain-agnostic, Efficient, and Expressive GNN



Sets of subgraphs: intuition

• Main observation: we can gain more expressive power by 
representing a graph as a set of subgraphs.



Sets of subgraphs: example

• Edge deleted subgraphs
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Equivariant Subgraph Aggregation Networks (ESAN)

Recipe:
• Map a graph into a set (bag) of subgraphs 
• Process the bag with a neural network

Neural Network



Equivariant Subgraph Aggregation Networks (ESAN)

Two main challenges:
• Architecture: How to process sets of subgraphs ?
• We design layers that respect the resulting symmetry group 

• Which subgraph selection policies are useful?
• We propose four simple policies that work well
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Equivariance as a design principle

• Let 𝐺 be a group of transformations on our inputs 
• A symmetry group 𝐺 models transformations that do not change the 

underlying object, or that we do not care about
Example: tranlations of images

Image credit: imgur - https://imgur.com/mEIUqT8



Equivariance as a design principle

• A function 𝑓 is called equivariant if :
𝒇 𝝉𝒙 = 𝝉𝒇 𝒙 , 𝝉 ∈ 𝑮

• Example: Convolutions / image segmentation are translation 
equivariant

Image credit: imgur - https://imgur.com/mEIUqT8



Equivariance as a design principle

• Common principle: if the target function is equivariant, restrict 
hypothesis class to equivariant functions

• Usually implemented by a sequence of simple equivariant functions

Equivariant
Layers 

Equivariant
NetworksMLPs



Equivariance as a design principle

Lots of theoretical and paractical benefits: 
- Less parameters
- Better generalization
- Lower computational complexity

Equivariant
Layers 



Equivariance as a design principle

• Prototypical Example: Convolutional Neural Networks
• Input: images
• Symmetry group: 2D translations
• Basic layers: convolutions
• Resulting architecture: CNN

• In our case: 
• Input: sets of subgraphs
• Symmetry group: ?
• Basic layers: ?
• Models: ?
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{              }



Symmetry for sets of subgraphs
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Symmetry for sets of subgraphs

Graph symmetries



Symmetry for sets of subgraphs

Set
symmetries



Symmetry for sets of subgraphs

• We have two types of symmetries:
• Internal graph symmetry 
• External set symmetry

• We know how to handle each one. What about their combination?



Detour: Deep Sets for Symmetric Elements

Input:	a	set	whose	elements	have	symmetry	group	𝐻 (e.g.,	set	of	graphs)
• 𝑍 = [𝑧$, … , 𝑧%] is	a	set	with	symmetry	group	𝑆%
• Each 𝑧! has	symmetry	group	𝐻
• Symmetry group of the whole thing is 𝑮 = 𝑺𝒏×𝑯

Theorem. 𝐺 −Equivariant	linear	 layers	are	of	the	following	form:

• 𝐿$, 𝐿' are	𝐻 −equivariant

[M. et al., ICML 2020]

𝐿(𝑍)! = 𝐿"(𝑧!) + 𝐿# (
$%"

&
𝑧$



Equivariant layer

DSS-GNN: 
• 𝐿!, 𝐿+ are called the base encoders 
• Usually, we use MPNNs

• DSS preserves node alignment
• ∑𝐴, , ∑𝑋, can be replaced 

with any invariant aggregation 
like max and mean
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Equivariant Subgraph Aggregation Networks (ESAN)

Two main challenges:
• Architecture: How to process sets of subgraphs ?
• We design layers that respect the symmetry of sets of graphs 

• Which subgraph selection policies are useful?
• We propose four simple policies that work well



Subpraph selection policies

• Edge-deleted subgraphs

• Node-deleted subgraphs

• Ego-networks (with and without root identification)



Stochastic subgraph sampling

• Full policies might generate too many subgraphs
• Solution: sample subsets of the policies
• We tried 5%,20%,50%

• Two benefits:
• Can process larger graphs
• Improves training time  

Experiments demostrate that subgraph sampling maintains high 
expressive power and performs well on real data



Comparison to WL

• Proposition 1 (new WL variant): Our architecture can implement a 
stronger variant of WL (DSS-WL)



Design choices and expressivity

• Proposition 2 (policy matters): On the family of strongly regular 
graphs: 

Edge-deletion > Node-deletion = Depth-n ego-nets = 3-WL.

• Proposition 3 (base graph encoder matters): Our architecture with 3-
WL base encoder is strictly stronger than our architecture with a 1-WL 
base encoder (MPNN)

• Many more results in the paper



Experiments

• ESAN is SOTA among domain agnostic methods on multiple important 
datasets
• For example, on the ZINC molecule property prediction
• Target property: logP (water-octanol partition coefficient)



Is this the only way to design subgraph GNNs?

• A surge of recent subgraph GNNs in top ML conferences:
• Drop GNN [Papp et al., 2021]
• Reconstruction GNN [Cotta et al., 2021]
• Nested-GNN [Zhang and Li, 2021]
• ID-GNN [You et al, 2021]
• GNN-AK [Zhao et al., 2022]
• …

• A zoo of aggregation/sharing rules between subgraphs

Q: How can we compare/understand them? Is there a general 
framework?



Detour: Invariant Graph Networks (IGNs)

• Start with an adjacency representation in ℝ-×-

• Map to 𝑘 order tensors ℝ-! using linear equivariant maps
• 𝑘-IGNs are equivalent to 𝑘-WL 

[M. et al., 2019, Girts 2020, Azizian and Lelarge 2020 ]



Node-based policies

• We focus on node-based policies
• Each subgraph is tied to a specific node
• Examples: node-deletion, ego-networks, node-marking…



Symmetries of node-based policies

We represent the set of subgraphs as a 3-tensor



Symmetries of node-based policies

• Observation: subgraphs can be ordered according to nodes
• We can use a significantly smaller symmetry group compared to ESAN

Same as 3-IGNs 
≅ 3 −𝑊𝐿



Symmetries of node-based policies

Outcome: the resulting equivariant function space is larger



Results (1)

• Theorem: Subgraph GNNs are bounded by 3-WL expressive power
• Proof: Simulate subgraph GNNs with 3-IGN

2-WL (CR) 3-WLSubgraph GNNS
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• Theorem: Subgraph GNNs are bounded by 3-WL expressive power
• Proof: Simulate subgraph GNNs with 3-IGN

2-WL (CR) 3-WLSubgraph GNNS

Gap?



Results (2)

• A shared layer space inspired by 2-IGNs
• Understand differences
• Unify and extend architectures

Nodes
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𝑗-th node in the 
𝑖-th subgraph

𝑗

𝑖
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Results (2)

• A shared layer space inspired by 2-IGNs
• Understand differences
• Unify and extend architectures

General layer space 
with Many possible 

layers to explore in the 
future



Experiments

• Better performance 
than previous 
methods on most 
benchmarks
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Experiments
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ESAN, NGNN, 
reconstruction GNN



Experiments
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Experiments

• Adding sharing / 
aggregation 
operations improves 
generalization

SUN



Take home messages:

• GNN expressivity is an interesting and important research direction
• Subgraph GNNs seem to strike a good balance between expressive 

power, generalization and complexity
• Symmetry analysis is an elegant and effective way to design neural 

architectures according to the data they process
1. Understand symmetries
2. Construct basic layers
3. Construct network
4. Characterize expressive power
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Take home messages:

• Symmetry analysis is an elegant and effective way to design neural 
architectures according to the data they process. 
• Meta-algorithm:

1. Understand data symmetries
2. Construct basic equivariant layers
3. Use them to build invariant/equivariant network
4. Understand expressive power



The end

Looking for PhD students and a postdoc for Oct. 2023! 


