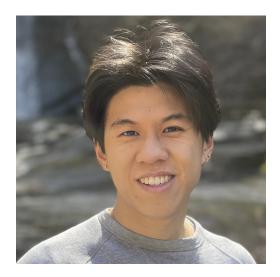
## Subgraph-based networks for expressive, efficient, and domainindependent graph learning

Haggai Maron









Beatrice Bevilacqua (Purdue) Fabrizio Frasca (Imperial College London) Derek Lim (MIT)

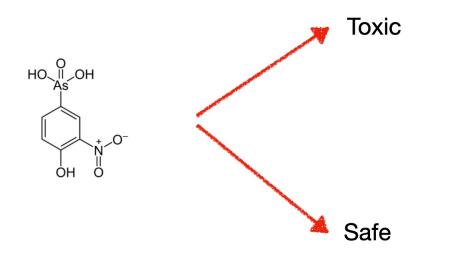
#### **Equivariant Subgraph Aggregation Networks**

ICLR 2022 (Spotlight presentation) B. Bevilacqua<sup>\*</sup>, F. Frasca<sup>\*</sup>, D. Lim<sup>\*</sup>, B. Srinivasan, C. Cai, G. Balamurugan, M. M. Bronstein, **H. Maron** 

# Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries

NeurIPS 2022 (oral presentation) F. Frasca<sup>\*</sup>, B. Bevilacqua<sup>\*</sup>, M. M. Bronstein, **H. Maron** 

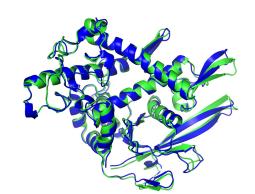
#### Learning on graphs



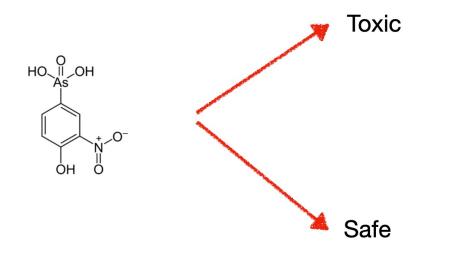
Molecule classification

#### Learning on graphs

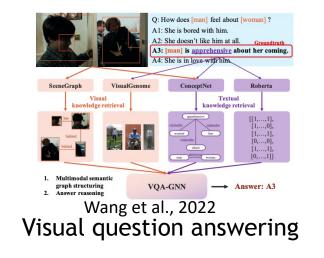


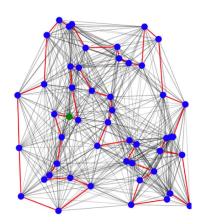


#### Protein structure prediction



Molecule classification

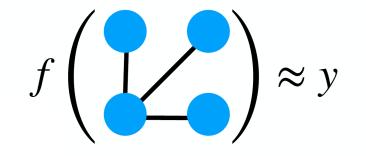




Solving combinatorial optimization problems

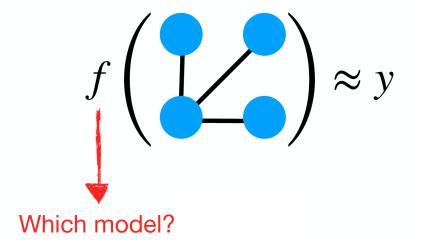
### Setup

- Training data:  $(G_1, y_1), ..., (G_m, y_m)$
- Each graph  $G_i$  consists of:
  - Adjacency structure A<sub>i</sub>
  - Node features  $x_i \in \mathbb{R}^d$
  - Label  $y_i \in \{-1, 1\}$
- Goal: find a model that maps graphs to output labels



### Setup

- Training data:  $(G_1, y_1), ..., (G_m, y_m)$
- Each graph  $G_i$  consists of:
  - Adjacency structure A<sub>i</sub>
  - Node features  $x_i \in \mathbb{R}^d$
  - Label  $y_i \in \{-1, 1\}$

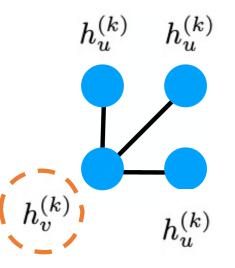


• Goal: find a model that maps graphs to output labels

#### Message passing Neural Networks

• Parametric neighborhood aggregation layers

$$\begin{split} \mathrm{msg}_v^{(k)} &= \mathrm{Aggregate}(\{h_u^{(k)} : u \text{ neighbor of } v\}),\\ h_v^{(k+1)} &= \mathrm{Combine}\left(h_v^{(k)}, \mathrm{msg}_v^{(k)}\right). \end{split}$$



[Gilmer et al., ICML 2017]

#### Message passing Neural Networks

Parametric neighborhood aggregation layers

$$\begin{split} \mathrm{msg}_{v}^{(k)} &= \mathrm{Aggregate}(\{h_{u}^{(k)}: u \text{ neighbor of } v\}),\\ h_{v}^{(k+1)} &= \mathrm{Combine}\left(h_{v}^{(k)}, \mathrm{msg}_{v}^{(k)}\right). \end{split}$$

• final graph representation aggregates all node features

$$h_{graph} = \text{Aggregate}(\{h_u^{(K)}: k = 1, ..., n\})$$

 $h_u^{(k)}$ 

 $h_u^{(k)}$ 

(k)

#### Q: What is the expressive power of MPNNs?

- Given two non-isomorphic graphs  $G_1$ ,  $G_2$
- Can we find an MPNN *f* such that:

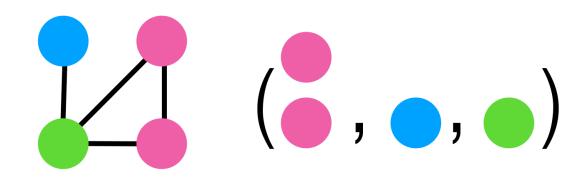
# $f(G_1) \neq f(G_2)$

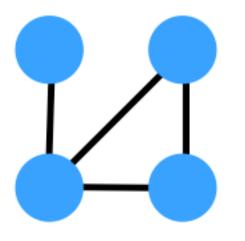
#### Q: What is the expressive power of MPNNs?

- Given two non-isomorphic graphs  $G_1$ ,  $G_2$
- Can we find an MPNN *f* such that:

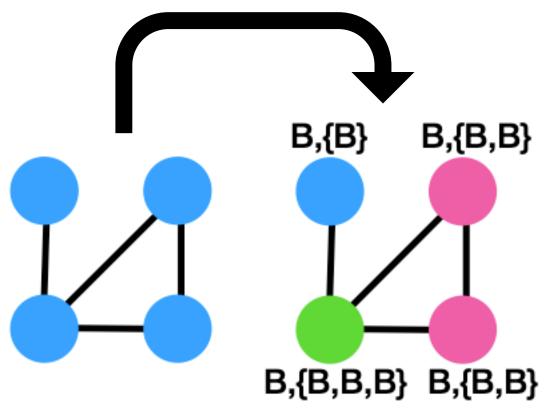
 $f(G_1) \neq f(G_2)$ 

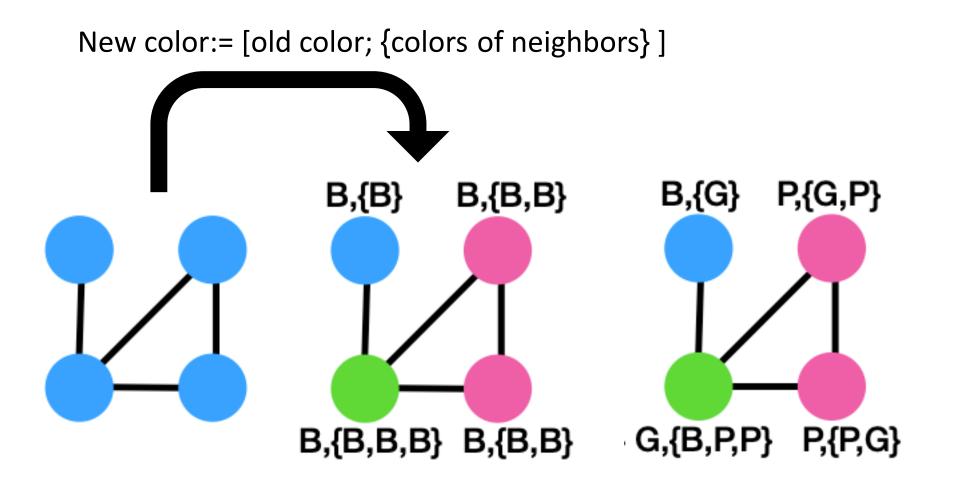
- MPNNs are closely related to the *color refinement* algorithm
- An efficient heuristic for graph isomorphism testing
- Also known as the Weisfeiler-Lehman (WL) graph isomorphism test





#### New color:= [old color; {colors of neighbors}]

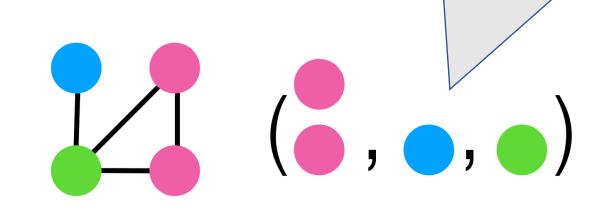




#### Color refinement (CR)

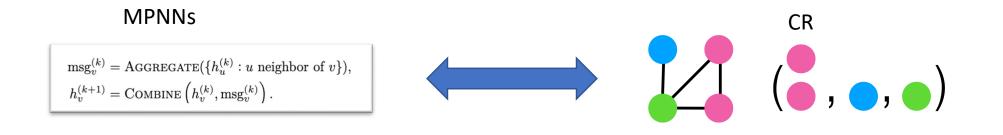
• Final graph descriptor: Color histogram





### Color refinement (CR)

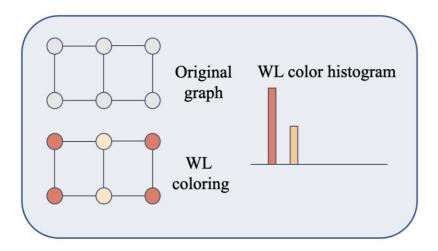
• [Morris et al 2019, Xu et al. 2019]: MPNNs are equivalent to CR (1-WL)



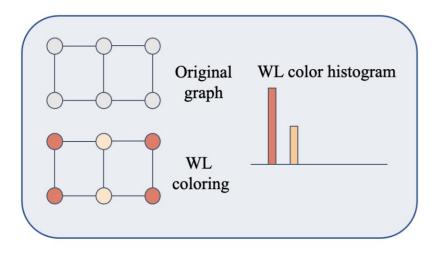
• k-WL: Higher-order, more powerful generalizations forming a hierarchy:

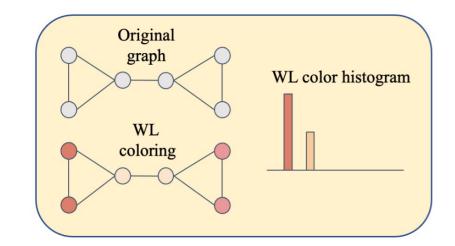
1-WL < 3-WL < 4-WL < ...

#### MPNNs have limited expressivity



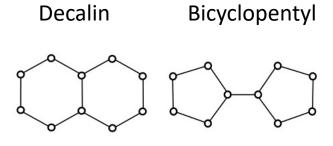
#### MPNNs have limited expressivity





#### Why expressivity matters?

• Cannot assign different labels to different graphs



Taken from Bouritsas et al., 2021

- Also we might not be able to learn the "correct" features
  - For example: MPNNs Cannot detect rings

#### State-of-the-art in expressive GNNs

#### • k-GNNs/k-IGNs

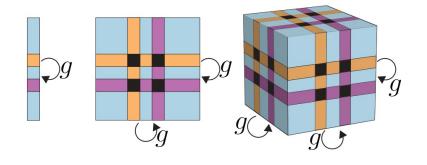
High computational complexity [Morris et al., 2019, 2020;M. et al., 2019]

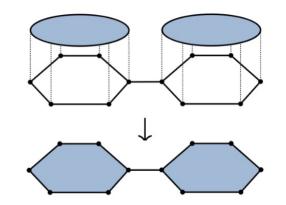
#### Random node features

Experimental results are not great [Abboud et al., 2020, Sato et al., 2021]

#### • Using **domain knowledge**

Requires knowledge of meaningful structures [Bouritsas et al., 2022, Bodnar et al., 2021]

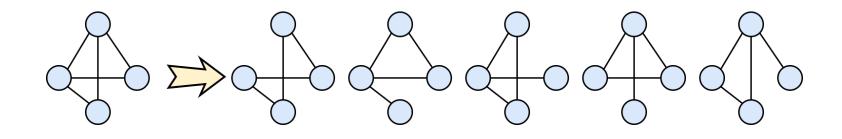




#### Goal for today: Domain-agnostic, Efficient, and Expressive GNN

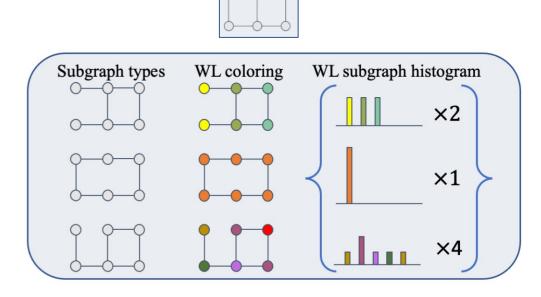
#### Sets of subgraphs: intuition

• Main observation: we can gain more expressive power by representing a graph as a set of subgraphs.



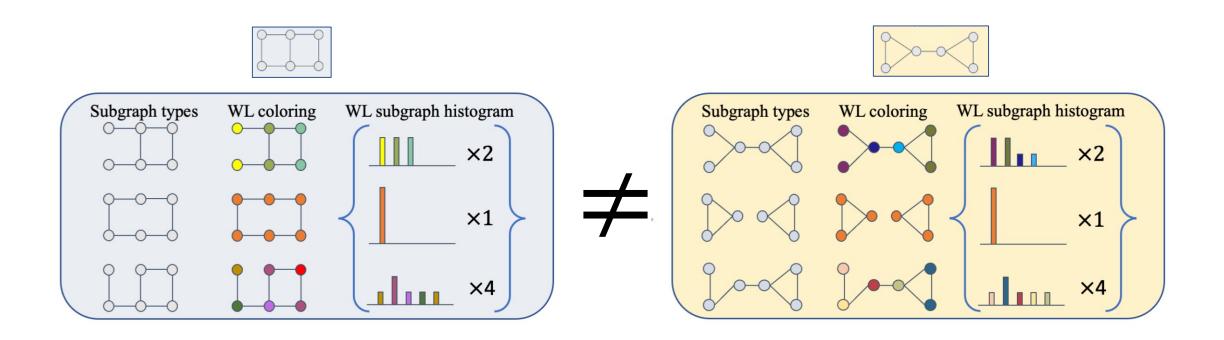
#### Sets of subgraphs: example

• Edge deleted subgraphs



#### Sets of subgraphs: example

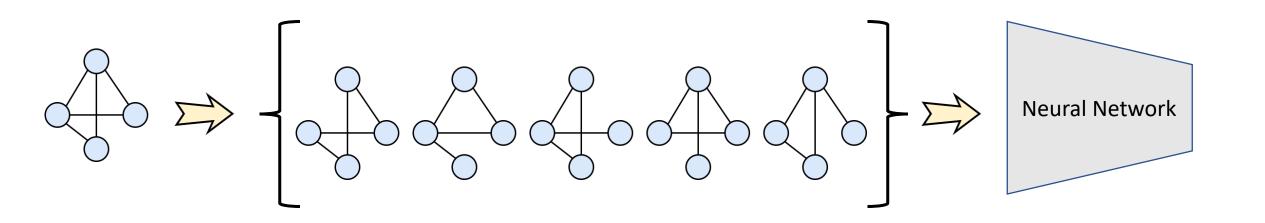
• Edge deleted subgraphs



### Equivariant Subgraph Aggregation Networks (ESAN)

Recipe:

- Map a graph into a set (bag) of subgraphs
- Process the bag with a neural network



### Equivariant Subgraph Aggregation Networks (ESAN)

Two main challenges:

- Architecture: How to process sets of subgraphs ?
  - We design layers that respect the resulting symmetry group

- Which subgraph selection policies are useful?
  - We propose four simple policies that work well

### Equivariant Subgraph Aggregation Networks (ESAN)

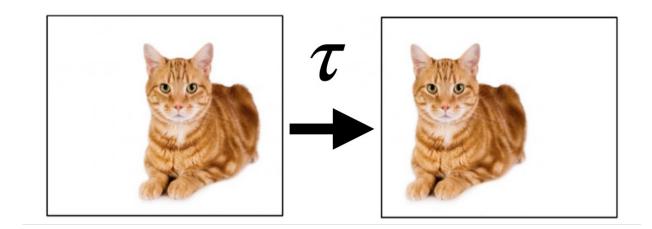
Two main challenges:

- Architecture: How to process sets of subgraphs ?
  - We design layers that respect the symmetry of sets of graphs

- Which subgraph selection policies are useful?
  - We propose four simple policies that work well

- Let G be a group of transformations on our inputs
- A symmetry group G models transformations that do not change the underlying object, or that we do not care about

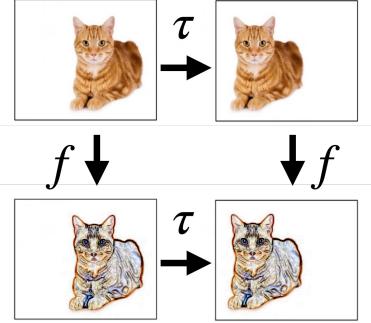
Example: tranlations of images



• A function *f* is called equivariant if :

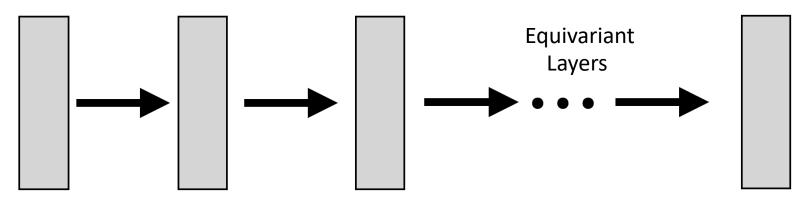
$$f(\tau x) = \tau f(x), \quad \tau \in G$$

• Example: Convolutions / image segmentation are translation equivariant



 Common principle: if the target function is equivariant, restrict hypothesis class to equivariant functions





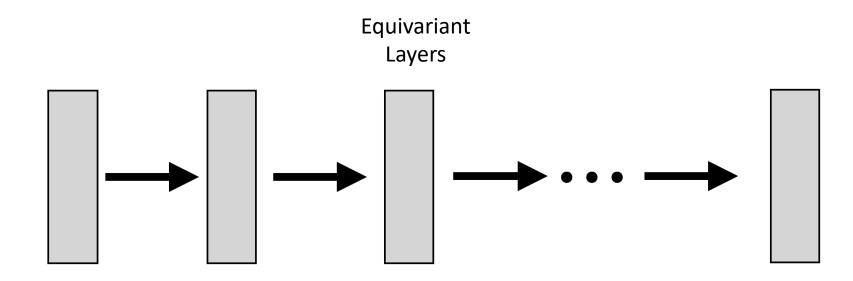
**MLPs** 

Equivariant

Networks

#### Lots of theoretical and paractical benefits:

- Less parameters
- Better generalization
- Lower computational complexity



- Prototypical Example: Convolutional Neural Networks at
  - Input: images
  - Symmetry group: 2D translations
  - Basic layers: convolutions
  - Resulting architecture: CNN

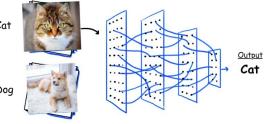


Image credit - Ethan Yanjia Li

- Prototypical Example: Convolutional Neural Networks art
  - Input: images
  - Symmetry group: 2D translations
  - Basic layers: convolutions
  - Resulting architecture: CNN
- In our case:
  - Input: sets of subgraphs
  - Symmetry group: ?
  - Basic layers: ?
  - Resulting architecture : ?

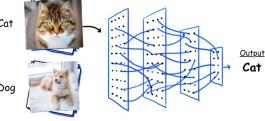
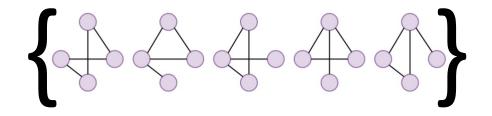
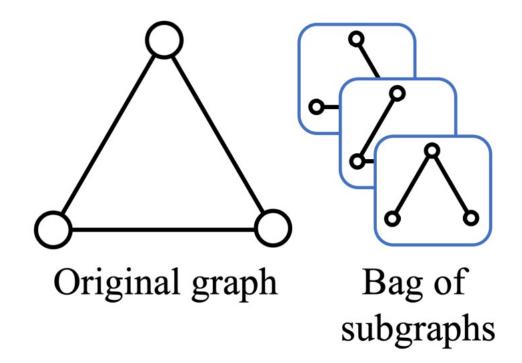


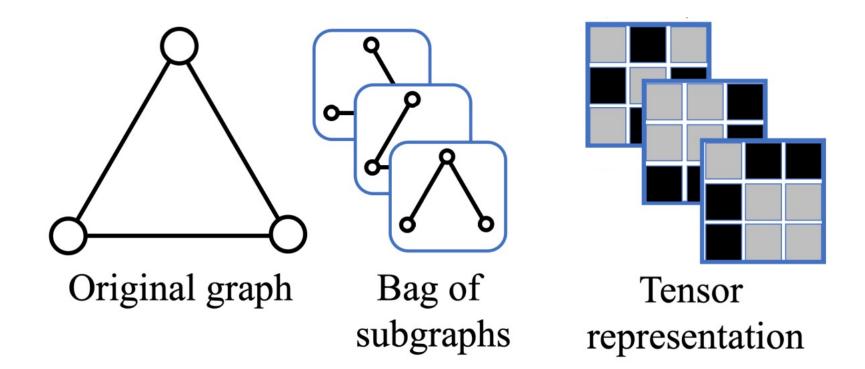
Image credit - Ethan Yanjia Li



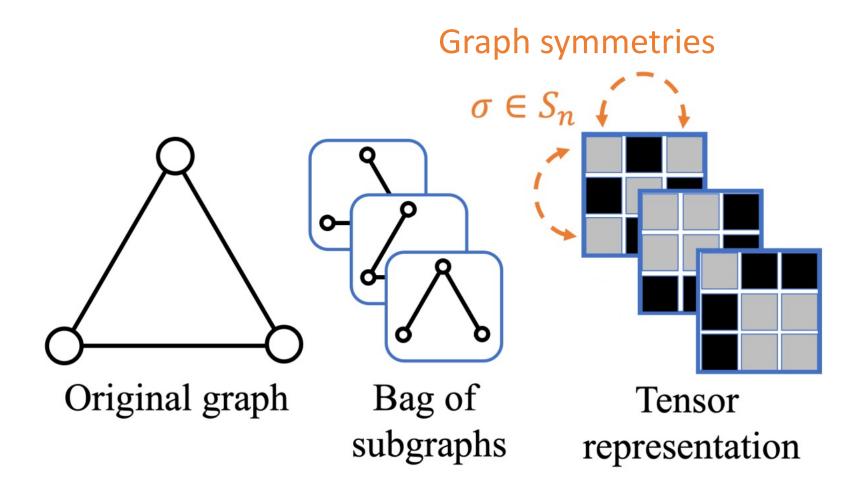
Symmetry for sets of subgraphs



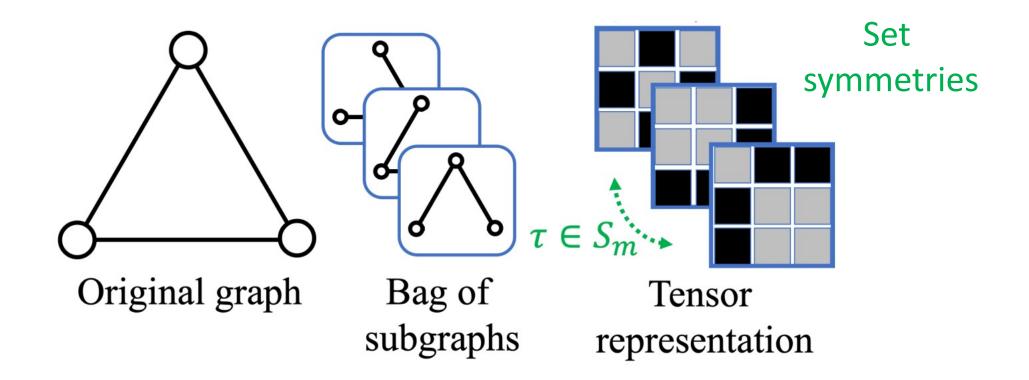
Symmetry for sets of subgraphs



Symmetry for sets of subgraphs

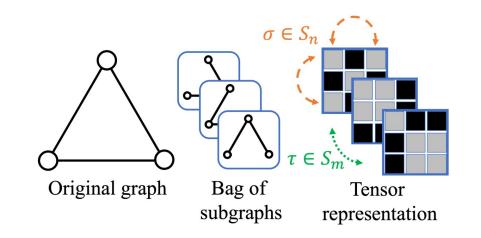


Symmetry for sets of subgraphs



# Symmetry for sets of subgraphs

- We have two types of symmetries:
  - Internal graph symmetry
  - External set symmetry
- We know how to handle each one. What about their combination?



## Detour: Deep Sets for Symmetric Elements

Input: a set whose elements have symmetry group *H* (e.g., set of graphs)

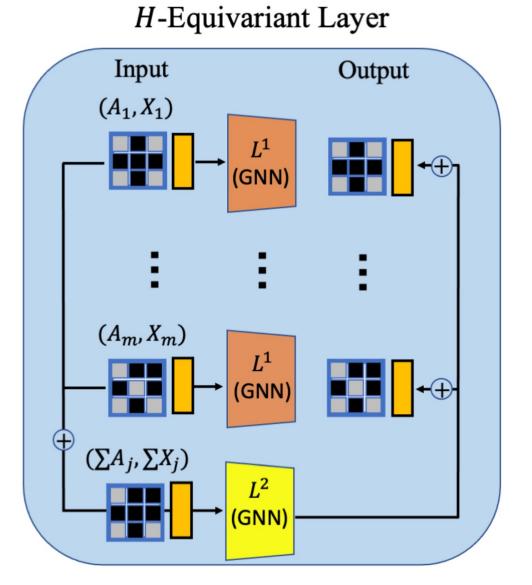
- $Z = [z_1, ..., z_n]$  is a set with symmetry group  $S_n$
- Each  $z_i$  has symmetry group H
- Symmetry group of the whole thing is  $G = S_n \times H$

**Theorem.** *G* – Equivariant *linear* layers are of the following form:

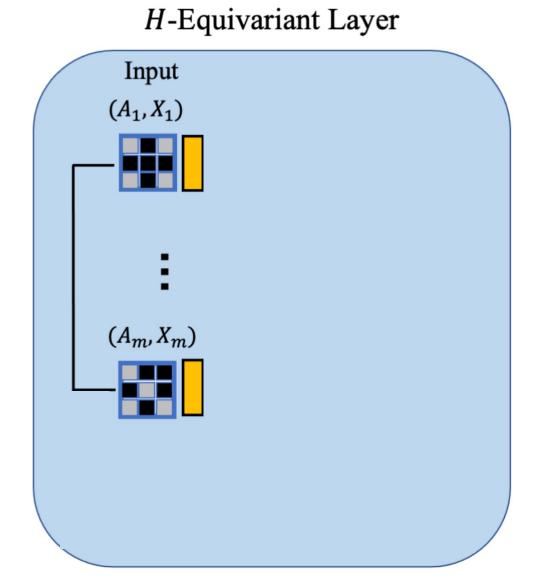
$$L(Z)_{i} = L_{1}(z_{i}) + L_{2}\left(\sum_{j=1}^{n} z_{j}\right)$$

•  $L_1, L_2$  are H –<u>equivariant</u>

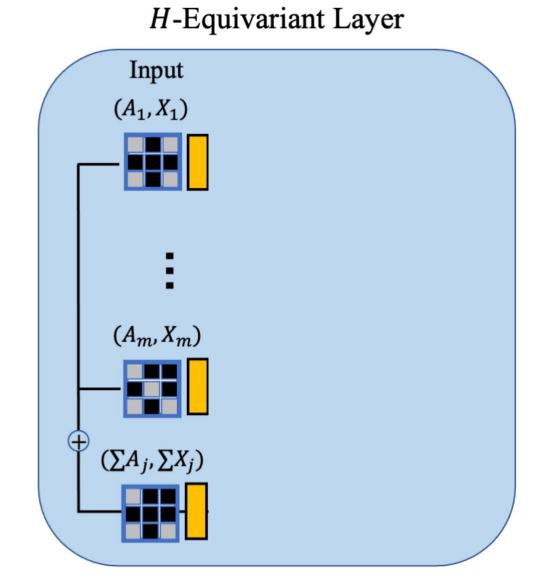
- $L_1$ ,  $L_2$  are called the **base encoders** 
  - Usually, we use MPNNs
- DSS preserves node alignment
- $\sum A_j$ ,  $\sum X_j$  can be replaced with any invariant aggregation like max and mean



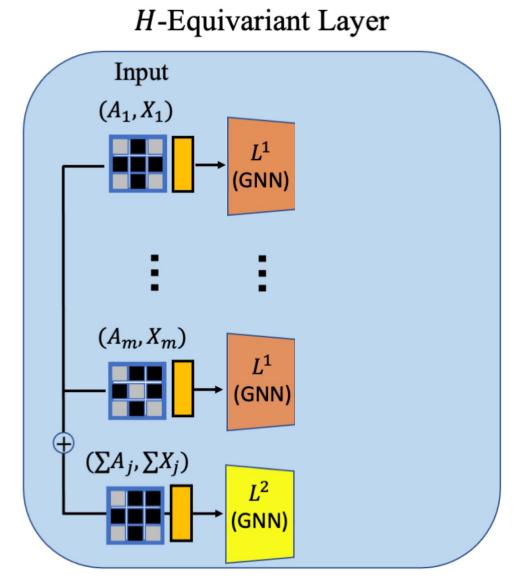
- $L_1$ ,  $L_2$  are called the **base encoders** 
  - Usually, we use MPNNs
- DSS preserves node alignment
- $\sum A_j$ ,  $\sum X_j$  can be replaced with any invariant aggregation like max and mean



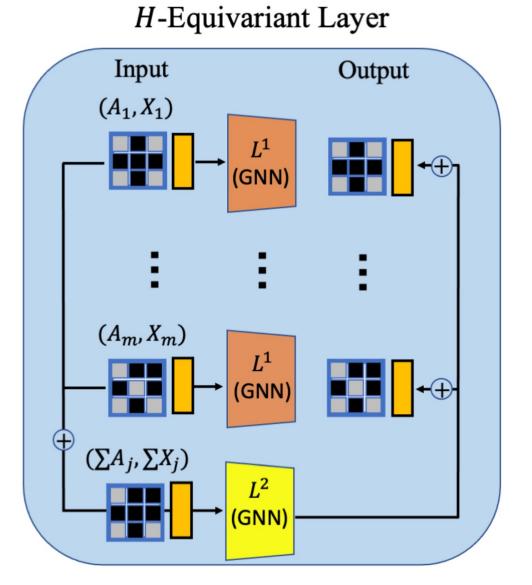
- $L_1$ ,  $L_2$  are called the **base encoders** 
  - Usually, we use MPNNs
- DSS preserves node alignment
- $\sum A_j$ ,  $\sum X_j$  can be replaced with any invariant aggregation like max and mean



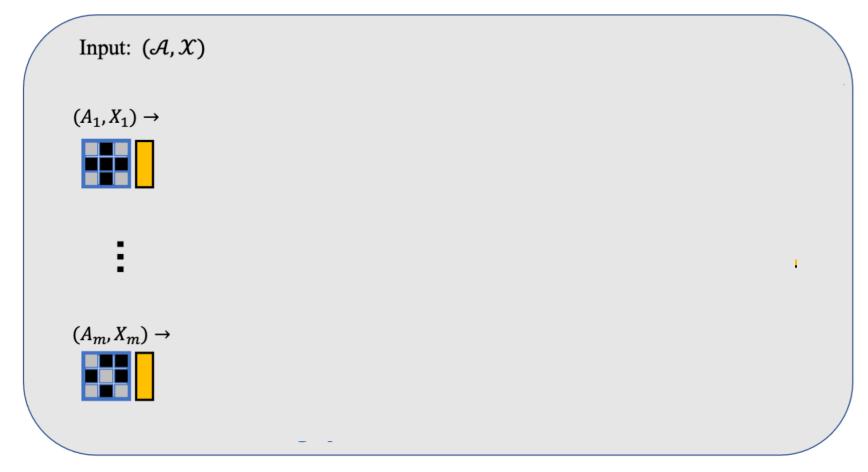
- $L_1$ ,  $L_2$  are called the **base encoders** 
  - Usually, we use MPNNs
- DSS preserves node alignment
- $\sum A_j$ ,  $\sum X_j$  can be replaced with any invariant aggregation like max and mean



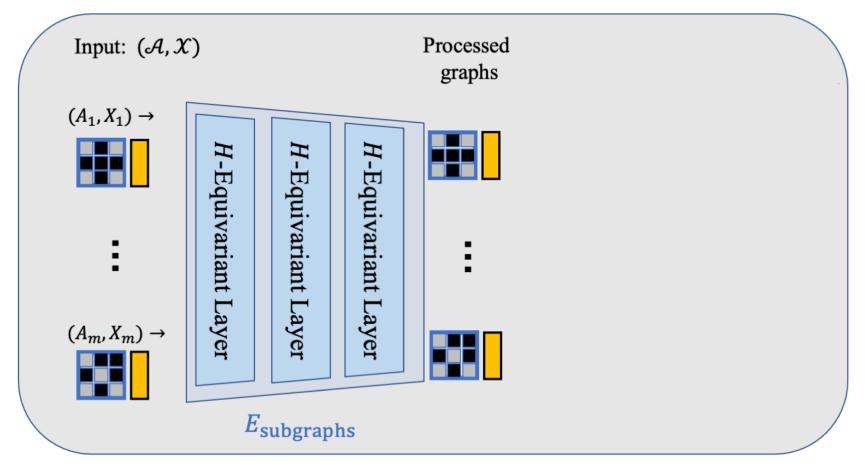
- $L_1$ ,  $L_2$  are called the **base encoders** 
  - Usually, we use MPNNs
- DSS preserves node alignment
- $\sum A_j$ ,  $\sum X_j$  can be replaced with any invariant aggregation like max and mean

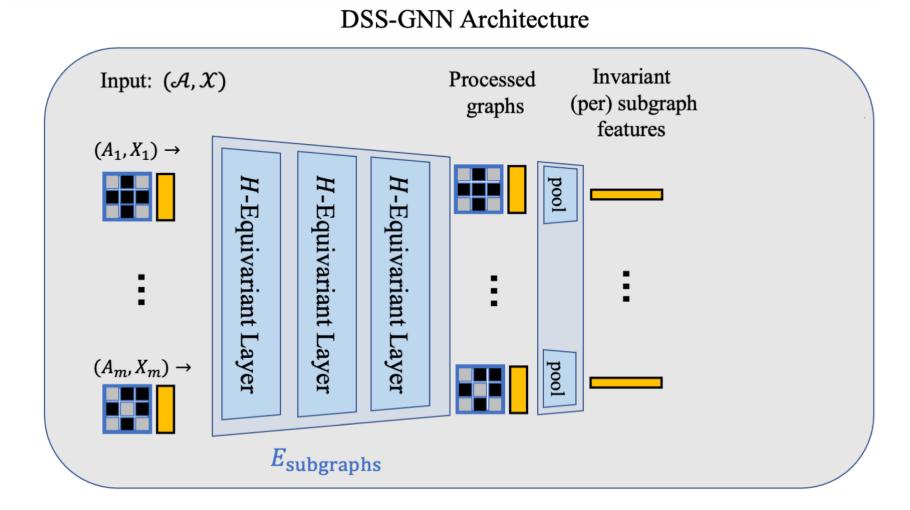


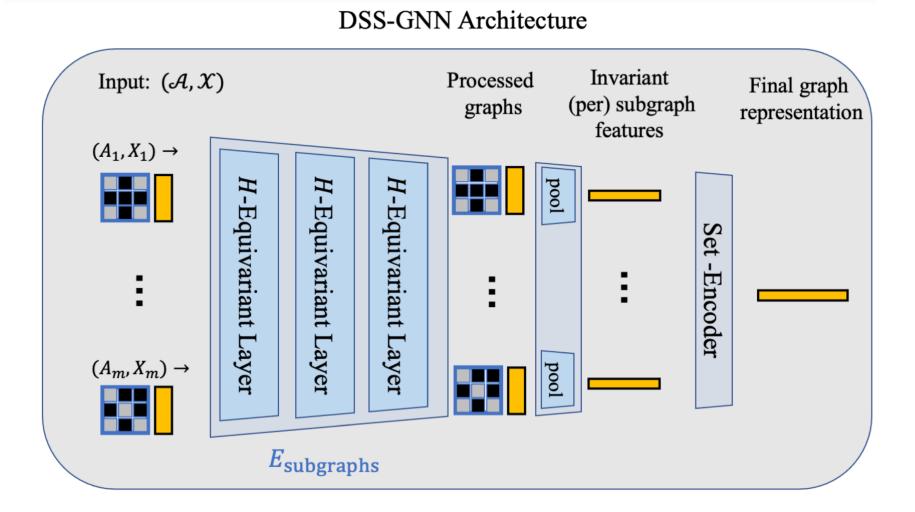
#### **DSS-GNN** Architecture



#### **DSS-GNN** Architecture







# Equivariant Subgraph Aggregation Networks (ESAN)

Two main challenges:

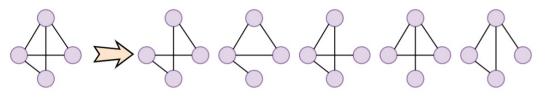
- Architecture: How to process sets of subgraphs ?
  - We design layers that respect the symmetry of sets of graphs

#### • Which subgraph selection policies are useful?

• We propose four simple policies that work well

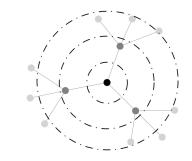
## Subpraph selection policies

Edge-deleted subgraphs



Node-deleted subgraphs

• Ego-networks (with and without root identification)



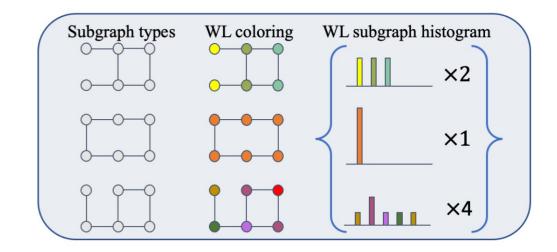
# Stochastic subgraph sampling

- Full policies might generate too many subgraphs
- Solution: sample subsets of the policies
  - We tried 5%,20%,50%
- Two benefits:
  - Can process larger graphs
  - Improves training time

Experiments demostrate that subgraph sampling maintains high expressive power and performs well on real data

#### Comparison to WL

• **Proposition 1 (new WL variant):** Our architecture can implement a stronger variant of WL (DSS-WL)



# Design choices and expressivity

 Proposition 2 (policy matters): On the family of strongly regular graphs:

Edge-deletion > Node-deletion = Depth-n ego-nets = 3-WL.

• **Proposition 3 (base graph encoder matters):** Our architecture with 3-WL base encoder is strictly stronger than our architecture with a 1-WL base encoder (MPNN)

• Many more results in the paper

- ESAN is SOTA among *domain agnostic* methods on multiple important datasets
- For example, on the ZINC molecule property prediction
  - Target property: *logP* (*water-octanol partition coefficient*)

| Method                           | $ $ ZINC (MAE $\downarrow$ )                                        |
|----------------------------------|---------------------------------------------------------------------|
| PNA (Corso et al., 2020)         | $0.188 \pm 0.004$                                                   |
| DGN (Beaini et al., 2021)        | $0.168 \pm 0.003$                                                   |
| SMP (Vignac et al., 2020)        | 0.138±?                                                             |
| GIN (Xu et al., 2019)            | $0.252 \pm 0.017$                                                   |
| HIMP (Fey et al., 2020)          | 0.151±0.006                                                         |
| GSN (Bouritsas et al., 2022)     | $0.108 \pm 0.018$                                                   |
| CIN-SMALL (Bodnar et al., 2021a) | $0.094 \pm 0.004$                                                   |
| DS-GNN (GIN) (ED)                | $0.172 \pm 0.008$                                                   |
| DS-GNN (GIN) (ND)                | $0.171 {\pm} 0.010$                                                 |
| DS-GNN (GIN) (EGO)               | $0.126 \pm 0.006$                                                   |
| DS-GNN (GIN) (EGO+)              | $0.116 \pm 0.009$                                                   |
|                                  |                                                                     |
| DSS-GNN (GIN) (ED)               | $0.172 \pm 0.005$                                                   |
|                                  | $ \begin{array}{c} 0.172 \pm 0.005 \\ 0.166 \pm 0.004 \end{array} $ |
| DSS-GNN (GIN) (ED)               |                                                                     |

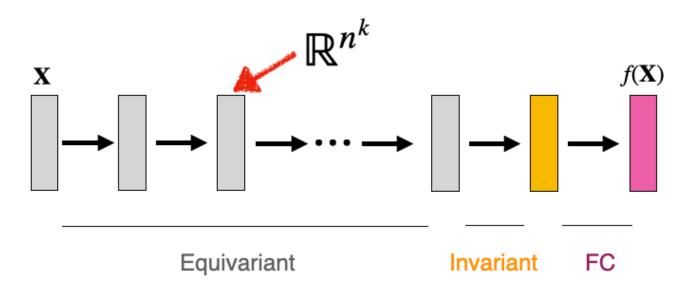
# Is this the only way to design subgraph GNNs?

- A surge of recent subgraph GNNs in top ML conferences:
  - Drop GNN [Papp et al., 2021]
  - Reconstruction GNN [Cotta et al., 2021]
  - Nested-GNN [Zhang and Li, 2021]
  - ID-GNN [You et al, 2021]
  - GNN-AK [Zhao et al., 2022]
  - ...
- A zoo of aggregation/sharing rules between subgraphs

Q: How can we compare/understand them? Is there a general framework?

# Detour: Invariant Graph Networks (IGNs)

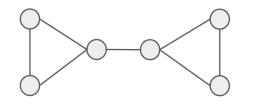
- Start with an adjacency representation in  $\mathbb{R}^{n imes n}$
- Map to k order tensors  $\mathbb{R}^{n^k}$  using linear equivariant maps
- k-IGNs are equivalent to k-WL

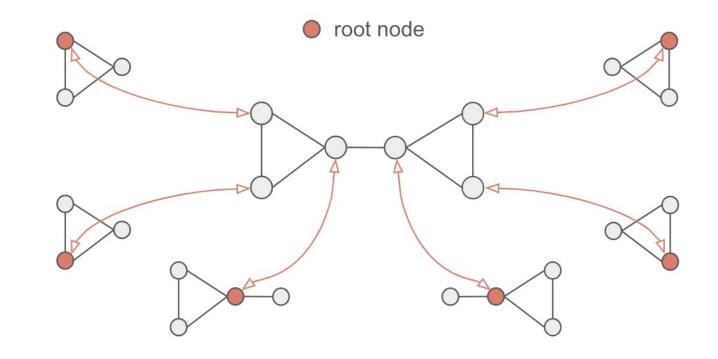


[M. et al., 2019, Girts 2020, Azizian and Lelarge 2020]

## Node-based policies

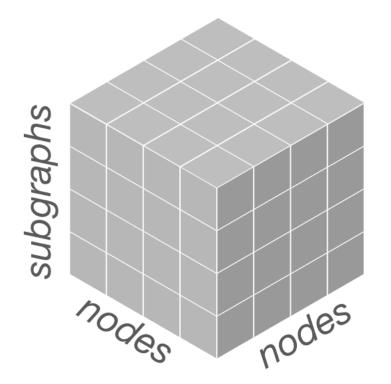
- We focus on node-based policies
  - Each subgraph is <u>tied</u> to a specific node
  - Examples: node-deletion, ego-networks, node-marking...





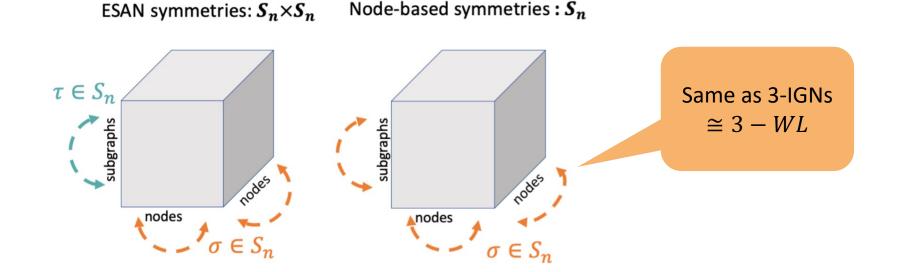
### Symmetries of node-based policies

We represent the set of subgraphs as a 3-tensor



## Symmetries of node-based policies

- **Observation:** subgraphs can be *ordered according to nodes*
- We can use a significantly smaller symmetry group compared to ESAN

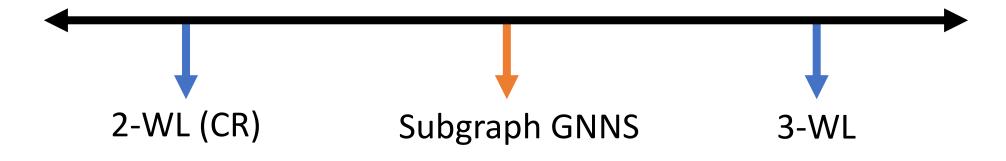


#### Symmetries of node-based policies

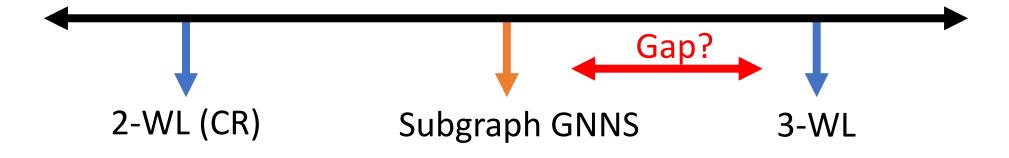
Outcome: the resulting equivariant function space is larger

Group inclusion Function space inclusion (inverse) S × S 3-IGNs **S**<sub>n</sub>– equiv. **ESAN** S  $S_n \times S_n - equiv.$ 

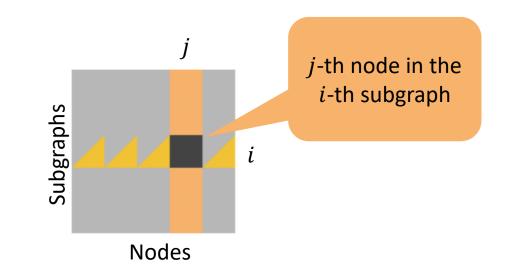
- Theorem: Subgraph GNNs are bounded by 3-WL expressive power
- Proof: Simulate subgraph GNNs with 3-IGN



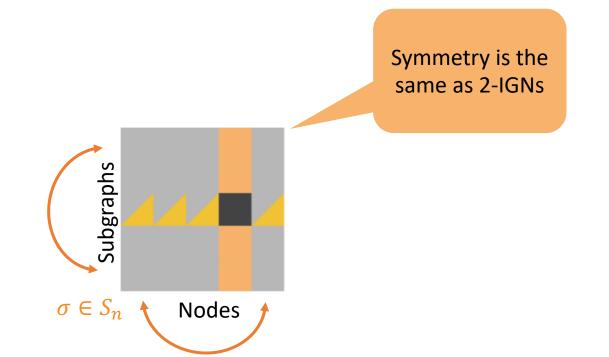
- Theorem: Subgraph GNNs are bounded by 3-WL expressive power
- Proof: Simulate subgraph GNNs with 3-IGN



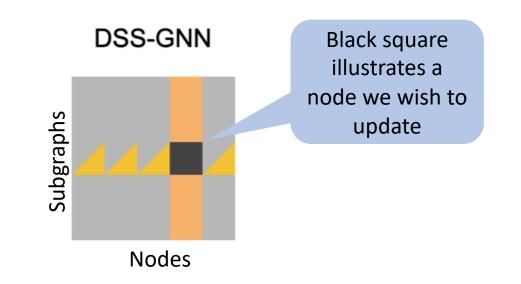
- A shared layer space inspired by 2-IGNs
  - Understand differences
  - Unify and extend architectures



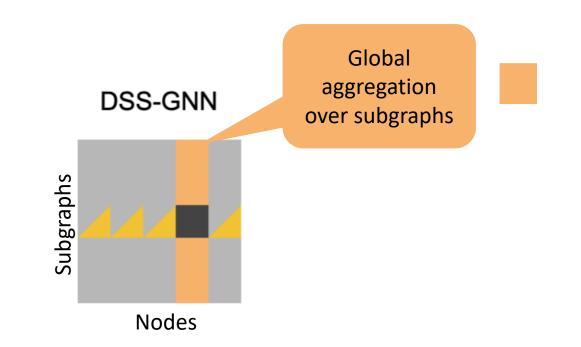
- A shared layer space inspired by 2-IGNs
  - Understand differences
  - Unify and extend architectures



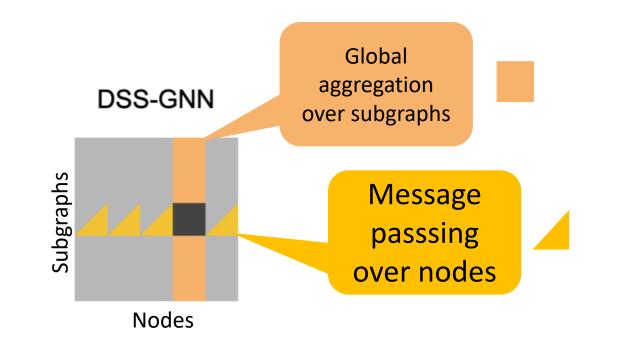
- A shared layer space inspired by 2-IGNs
  - Understand differences
  - Unify and extend architectures



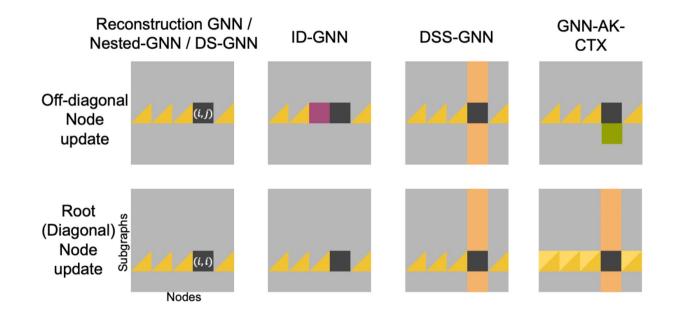
- A shared layer space inspired by 2-IGNs
  - Understand differences
  - Unify and extend architectures



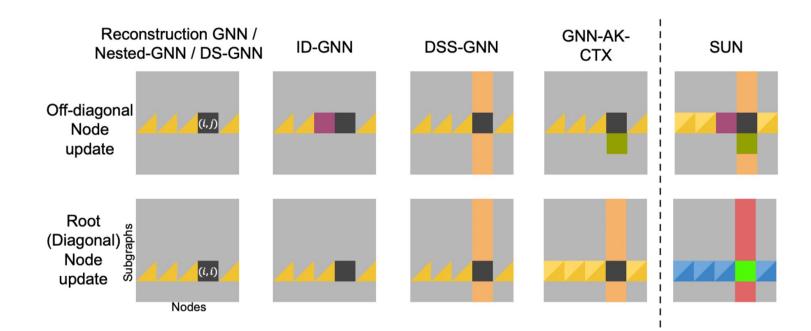
- A shared layer space inspired by 2-IGNs
  - Understand differences
  - Unify and extend architectures



- A shared layer space inspired by 2-IGNs
  - Understand differences
  - Unify and extend architectures

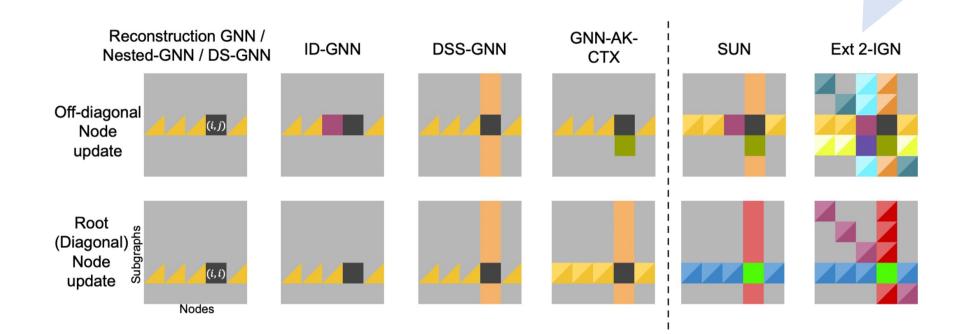


- A shared layer space inspired by 2-IGNs
  - Understand differences
  - Unify and extend architectures



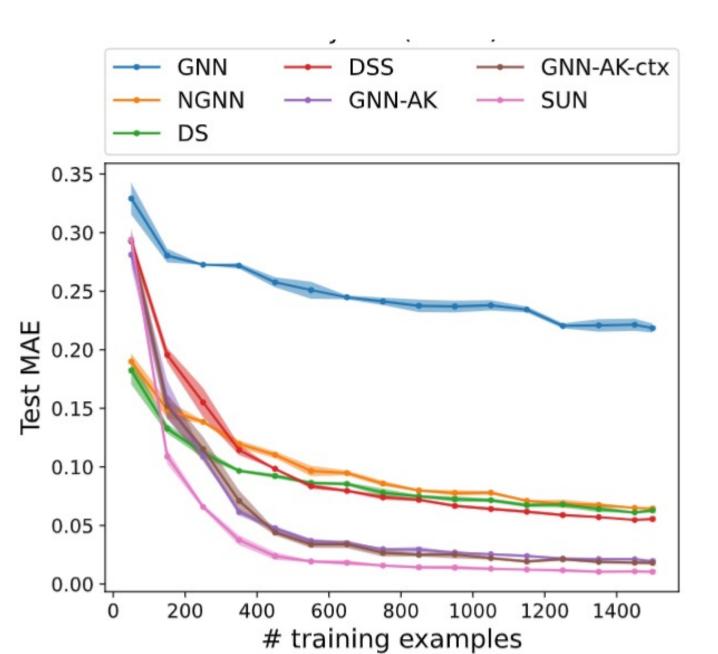
- A shared layer space inspired by 2-IGNs
  - Understand differences
  - Unify and extend architectures

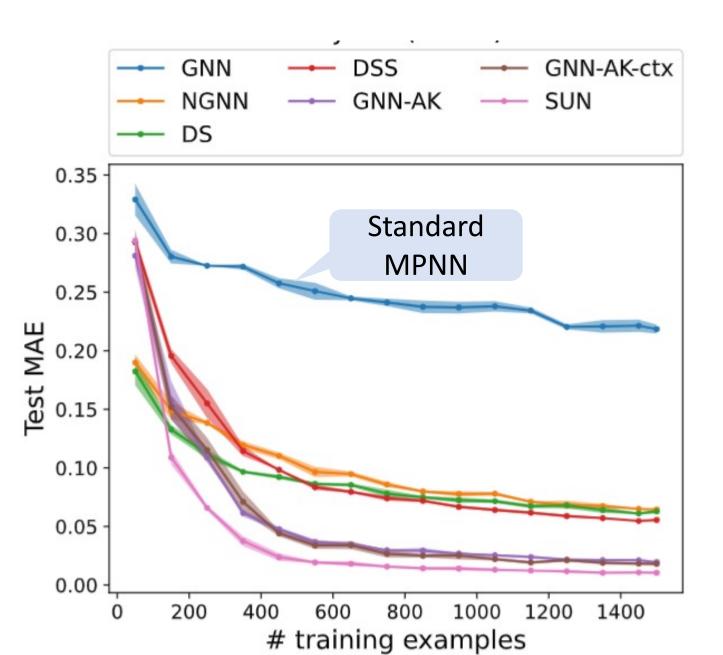
General layer space with Many possible layers to explore in the future

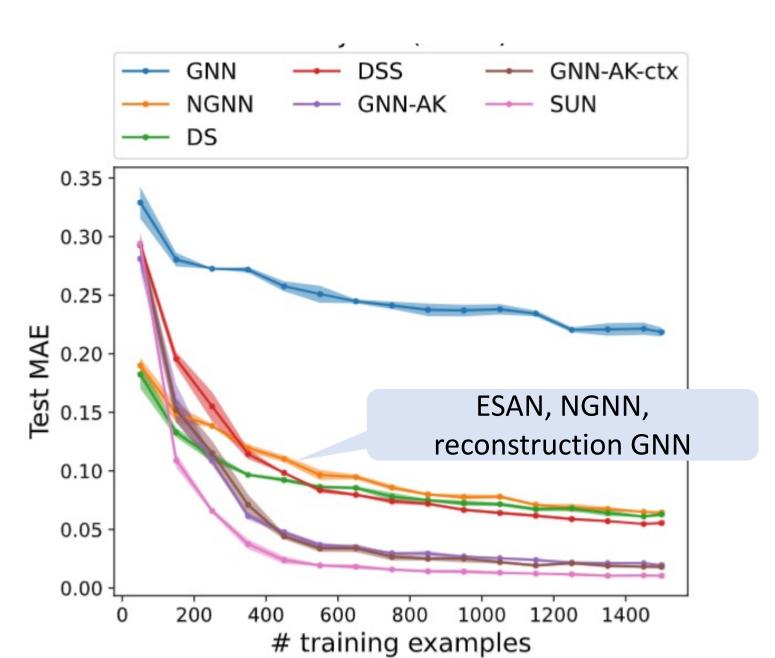


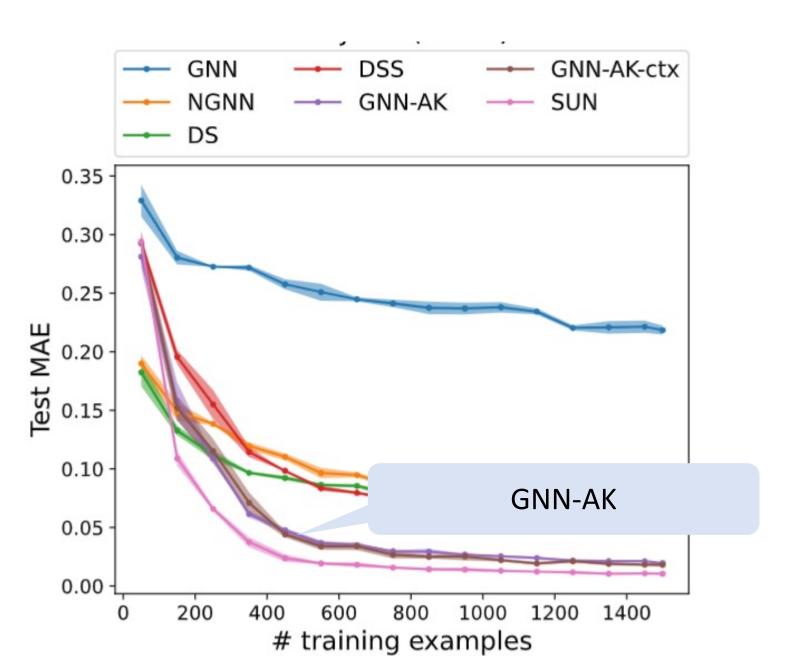
 Better performance than previous methods on most benchmarks

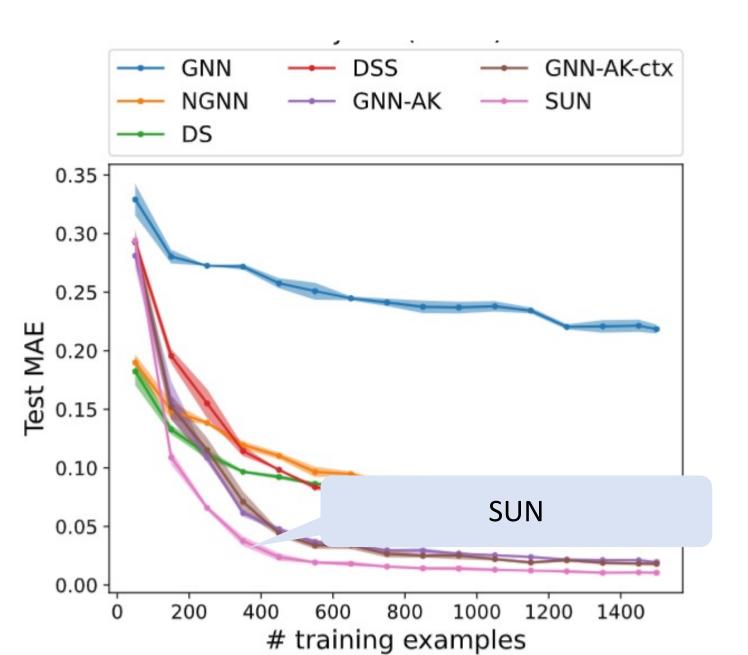
| Method          | ZINC (MAE $\downarrow)$    |
|-----------------|----------------------------|
| GCN [26]        | $0.321 \pm 0.009$          |
| GIN 5           | $0.163 \pm 0.004$          |
| PNA [13]        | $0.133 \pm 0.011$          |
| GSN 🛄           | $0.101 \pm 0.010$          |
| CIN [9]         | $\textbf{0.079} \pm 0.006$ |
| NGNN 55]        | $0.111 \pm 0.003$          |
| DS-GNN (EGO) 🔽  | $0.115 \pm 0.004$          |
| DS-GNN (EGO+)   | $0.105 \pm 0.003$          |
| DSS-GNN (EGO)   | $0.099 \pm 0.003$          |
| DSS-GNN (EGO+)  |                            |
| GNN-AK 57       | $0.105\pm0.010$            |
| GNN-AK-CTX [57] | $0.093 \pm 0.002$          |
| GNN-AK+ [57]    | $0.086 \pm ???$            |
| SUN (EGO)       | $0.083 \pm 0.003$          |
|                 |                            |











#### Take home messages:

• GNN expressivity is an interesting and important research direction

### Take home messages:

- GNN expressivity is an interesting and important research direction
- **Subgraph GNNs** seem to strike a good balance between expressive power, generalization and computational complexity

## Take home messages:

- Symmetry analysis is an *elegant* and *effective* way to design neural architectures according to the data they process.
- Meta-algorithm:
  - 1. Understand data symmetries
  - 2. Construct basic equivariant layers
  - 3. Use them to build invariant/equivariant network
  - 4. Understand expressive power

# The end

#### Looking for PhD students and a postdoc for Oct. 2023!

