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. "Wgang et gl., 2022 .
Visual question answering

Solving combinatorial optimization problems



Setup

* Training data: (G, V1), ..., (G, Vin) f
* Each graph G; consists of:

* Adjacency structure A;

* Node features x; € R4

* Label y; € {—1,1}

* Goal: find a model that maps graphs to output labels



Setup

* Training data: (G, V1), ..., (G, Vin) f
* Each graph G; consists of:
* Adjacency structure A; l
* Node features x; € R4

e Label y; € {_1,1} Which model?

* Goal: find a model that maps graphs to output labels

Y



Message passing Neural Networks

* Parametric neighborhood aggregation layers

BB R
msg'¥) = AGGREGATE({h®) : u neighbor of v}),
(k+1) _ ( (k) (k)) R
h COMBINE | h,"/, msg,,"’ ) . [ h) @
N _ 7 hay

[Gilmer et al., ICML 2017]



Message passing Neural Networks

* Parametric neighborhood aggregation layers

h,ELk) h,&k)
msg'®) = AGGREGATE({h®) : u neighbor of v}),
(k+1) _ ( (k) (k))
h, COMBINE | h,”/, msg,"™ | . (k)
v h(k)

* final graph representation aggregates all node features

hyraph = Aggregate({hg{): k=1,..,n})

[Gilmer et al., ICML 2017]



Q: What is the expressive power of MPNNs?

J

* Given two non-isomorphic graphs G4, G,
* Can we find an MPNN f such that:

f(G1) # f(Gy)
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Color refinement

* MPNNSs are closely related to the color refinement algorithm
* An efficient heuristic for graph isomorphism testing
e Also known as the Weisfeiler-Lehman (WL) graph isomorphism test
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Color refinement

New color:= [old color; {colors of neighbors} ]

I B B,{B,B}
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Color refinement

New color:= [old color; {colors of neighbors} ]

,{B} B,{B,B} B,{G} PR{G,P}




Color refinement (CR)

* Final graph descriptor: Color histogram

/

Graph descriptor: [2,1,1]
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Color refinement (CR)

* [Morris et al 2019, Xu et al. 2019]: MPNNs are equivalent to CR (1-WL)

MPNNSs

msg'® = AGGREGATE({h*) : u neighbor of v}),

h{F+1) = COMBINE ( h,(f“),msgg’“)) .

— fd (é,., )

* k-WL: Higher-order, more powerful generalizations forming a hierarchy:

1-WL< 3-WL< 4-WL<...



MPNNs have limited expressivity
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MPNNs have limited expressivity
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Why expressivity matters?

e Cannot assign different labels to different graphs

Decalin Bicyclopentyl

(0

Taken from Bouritsas et al., 2021

* Also - we might not be able to learn the “correct” features
* For example: MPNNs Cannot detect rings



State-of-the-art in expressive GNNs

* k-GNNs/k-IGNs
High computational complexity
[Morris et al., 2019, 2020;M. et al., 2019]

B

[ W11

e Random node features
Experimental results are not great
[Abboud et al., 2020, Sato et al., 2021]

* Using domain knowledge

Requires knowledge of meaningful structures QO

[Bouritsas et al., 2022, Bodnar et al., 2021]



4 )
Goal for today:

Domain-agnostic, Efficient, and Expressive GNN,

N




Sets of subgraphs: intuition

* Main observation: we can gain more expressive power by
representing a graph as a set of subgraphs.

sfowedocodiosfod]:



Sets of subgraphs: example

* Edge deleted subgraphs

b

Subgraph types =~ WL coloring ~ WL subgraph histogram
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Sets of subgraphs: example

* Edge deleted subgraphs
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Equivariant Subgraph Aggregation Networks (ESAN)

Recipe:
 Map a graph into a set (bag) of subgraphs
* Process the bag with a neural network

foo o] = 22




Equivariant Subgraph Aggregation Networks (ESAN)

Two main challenges:

* Architecture: How to process sets of subgraphs ?
* We design layers that respect the resulting symmetry group

* Which subgraph selection policies are useful?
* We propose four simple policies that work well



Equivariant Subgraph Aggregation Networks (ESAN)

Two main challenges:
[ Architecture: How to process sets of subgraphs ? }

* We design layers that respect the symmetry of sets of graphs

* Which subgraph selection policies are useful?
* We propose four simple policies that work well



Equivariance as a design principle

* Let ¢ be a group of transformations on our inputs

* A symmetry group G models transformations that do not change the
underlying object, or that we do not care about

Example: tranlations of images

Image credit: imgur - https://imgur.com/mEIUqT8



Equivariance as a design principle

* A function f is called equivariant if :

f(tx) = tf (x), TEG

* Example: Convolutions / image segmentation are translation
equivariant
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Image credit: imgur - https://imgur.com/mEIUqT8



Equivariance as a design principle

 Common principle: if the target function is equivariant, restrict
hypothesis class to equivariant functions

Equivariant
MLPs Networks

e Usually implemented by a sequence of simple equivariant functions

Equivariant
Layers




Equivariance as a design principle

Lots of theoretical and paractical benefits:

- Less parameters
- Better generalization

- Lower computational complexity

Equivariant

Layers

q.’. #




Equivariance as a design principle

* Prototypical Example: Convolutional Neural Networks < @« LSS
* Input: images .-, .
* Symmetry group: 2D translations =9
* Basic layers: convolutions
e Resulting architecture: CNN




Equivariance as a design principle

* Prototypical Example: Convolutional Neural Networks = @« LSS
* Input: images e
 Symmetry group: 2D translations
e Basic layers: convolutions
e Resulting architecture: CNN

* [n our case:
* Input: sets of subgraphs §
e Symmetry group: ? { N /o (/!) VAN /‘\}
* Basic layers: ? O e e e
* Resulting architecture : ?




Symmetry for sets of subgraphs
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Symmetry for sets of subgraphs
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Symmetry for sets of subgraphs
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Symmetry for sets of subgraphs

* We have two types of symmetries:
* Internal
e External set symmetry

e We know how to handle each one. What about their combination?

Original graph Bag of Tensor
subgraphs representation



Detour: Deep Sets for Symmetric Elements

Input: a set whose elements have symmetry group H (e.g., set of graphs)
 Z =|z4,...,2Zy] is a set with symmetry group S,

* Each z; has symmetry group H

* Symmetry group of the whole thingis G = S,,XH

/ Theorem. G —Equivariant /inear layers are of the following form: \
n
L(Z); = L1(z) + Ly E -z
J=1
\ « L1,L, are H —equivariant /

[M. et al., ICML 2020]



Equivariant layer

DSS-GNN:

* L4, L, are called the base encoders
e Usually, we use MPNNs

* DSS preserves node alignment

* 2.4;,2.X; can be replaced
with any invariant aggregation
like max and mean

H-Equivariant Layer
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Equivariant layer
H-Equivariant Layer

DSS-GNN: / Input \
(Al'Xl)

* Ly, L, are called the base encoders D
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* DSS preserves node alignment
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Equivariant layer

DSS-GNN:
* L4, L, are called the base encoders
e Usually, we use MPNNs

* DSS preserves node alignment

* 2.4;,2.X; can be replaced
with any invariant aggregation
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Equivariant layer

H-Equivariant Layer

DSS-GNN: Input

(A1, X1)

* L4, L, are called the base encoders i
e Usually, we use MPNNs . D_’

* DSS preserves node alignment

* 2.4;,2.X; can be replaced
with any invariant aggregation

m Xm)
like max and mean .D_ L'
— (GNN)

(ZA; XXj) —

LZ
\—Eia'l:l—' (GNN) |




Equivariant layer

DSS-GNN:

* L4, L, are called the base encoders
e Usually, we use MPNNs

* DSS preserves node alignment

* 2.4;,2.X; can be replaced
with any invariant aggregation
like max and mean
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Architecture

DSS-GNN Architecture

ﬁlput: (A, X) \
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Architecture

DSS-GNN Architecture
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Architecture

DSS-GNN Architecture
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Architecture

DSS-GNN Architecture
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Equivariant Subgraph Aggregation Networks (ESAN)

Two main challenges:

* Architecture: How to process sets of subgraphs ?
* We design layers that respect the symmetry of sets of graphs

* We propose four simple policies that work well

[ Which subgraph selection policies are useful? }




Subpraph selection policies

* Edge-deleted subgraphs <—1> —L\ /\ Qﬂ 4\ /I
* Node-deleted subgraphs fé\%> = & © T\ Q ﬁ

* Ego-networks (with and without root identification)



Stochastic subgraph sampling

* Full policies might generate too many subgraphs
* Solution: sample subsets of the policies
* We tried 5%,20%,50%

* Two benefits:
e Can process larger graphs
* I[mproves training time

Experiments demostrate that subgraph sampling maintains high
expressive power and performs well on real data




Comparison to WL

* Proposition 1 (new WL variant): Our architecture can implement a
stronger variant of WL (DSS-WL)

/ Subgraph types =~ WL coloring =~ WL subgraph histogram \
A ™
X2

BORReainy BT
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Design choices and expressivity

* Proposition 2 (policy matters): On the family of strongly regular
graphs:
Edge-deletion > Node-deletion = Depth-n ego-nets = 3-WL.

* Proposition 3 (base graph encoder matters): Our architecture with 3-
WL base encoder is strictly stronger than our architecture with a 1-WL
base encoder (MPNN)

* Many more results in the paper



Experiments

* ESAN is SOTA among domain agnostic methods on multiple important
datasets

* For example, on the ZINC molecule property prediction
* Target property: logP (water-octanol partition coefficient)

Method | ZINC (MAE |)
PNA (Corso et al., 2020) 0.188+-0.004
DGN (Beaini et al., 2021) 0.16840.003
SMP (Vignac et al., 2020) 0.138+?
GIN (Xu et al., 2019) 0.25240.017
HIMP (Fey et al., 2020) 0.15140.006
itsas et al._2022) 0.1084-0.018
I CIN-SMALL (Bodnar et al., 2021a) 0.09440.004
DS-GNN (GIN) (ED) 0.17240.008
DS-GNN (GIN) (ND) 0.171£0.010
DS-GNN (GIN) (EGO) 0.1261-0.006
DS-GNN (GIN) (EGO+) 0.11640.009
DSS-GNN (GIN) (ED) 0.17240.005
DSS-GNN (GIN) (ND) 0.16610.004
DSS-GNN (GIN) (EGO) 0.1074-0.005
DSS-GNN (GIN) (EGO+) | 0.10240.003




s this the only way to design subgraph GNNs?

e A surge of recent subgraph GNNs in top ML conferences:
Drop GNN [Papp et al., 2021]

Reconstruction GNN [Cotta et al., 2021]

Nested-GNN [Zhang and Li, 2021]

ID-GNN [You et al, 2021]

GNN-AK [Zhao et al., 2022]

* A zoo of aggregation/sharing rules between subgraphs

~
Q: How can we compare/understand them? Is there a general

framework?




Detour: Invariant Graph Networks (IGNs)

* Start with an adjacency representation in R™**"

koL o
* Map to k order tensors R™ " using linear equivariant maps
* k-IGNs are equivalent to k-WL

k
n
X v R fX)

Equivariant FC

[M. et al., 2019, Girts 2020, Azizian and Lelarge 2020 |



Node-based policies

* We focus on node-based policies
* Each subgraph is tied to a specific node
* Examples: node-deletion, ego-networks, node-marking...

I>© @ root node ©<i
e g




Symmetries of node-based policies

N
MR >
L \S
WA
T
NN 777t
e
I

sydeisbgns

4
%

We represent the set of subgraphs as a 3-tensor



Symmetries of hode-based policies

* Observation: subgraphs can be ordered according to nodes
* We can use a significantly smaller symmetry group compared to ESAN

ESAN symmetries: S,XS,  Node-based symmetries: S,

Same as 3-IGNs
=3 —-WL

subgraphs
subgraphs

nodes nodes



Symmetries of hode-based policies

Outcome: the resulting equivariant function space is larger

Group inclusion Function space inclusion
(inverse)

3-IGNs

S —equiv.



Results (1)

* Theorem: Subgraph GNNs are bounded by 3-WL expressive power
* Proof: Simulate subgraph GNNs with 3-IGN

2-WL (CR) Subgraph GNNS 3-WL



Results (1)

* Theorem: Subgraph GNNs are bounded by 3-WL expressive power
* Proof: Simulate subgraph GNNs with 3-IGN

\ Gap? \

2-WL (CR) Subgraph GNNS 3-WL



Results (2)

* A shared layer space inspired by 2-IGNs
* Understand differences
* Unify and extend architectures

j-th node in the
i-th subgraph

Subgraphs

Nodes



Results (2)

* A shared layer space inspired by 2-IGNs
* Understand differences
* Unify and extend architectures

Symmetry is the
same as 2-IGNs

Subgraphs
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Results (2)

* A shared layer space inspired by 2-IGNs
* Understand differences
* Unify and extend architectures

DSS-GNN Black square
illustrates a
node we wish to
update

Subgraphs

Nodes



Results (2)

* A shared layer space inspired by 2-IGNs
* Understand differences
* Unify and extend architectures
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* A shared layer space inspired by 2-IGNs
* Understand differences
* Unify and extend architectures
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Results (2)

* A shared layer space inspired by 2-IGNs
* Understand differences
* Unify and extend architectures
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Results (2)

* A shared layer space inspired by 2-IGNs
* Understand differences
* Unify and extend architectures
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Results (2)

* A shared layer space inspired by 2-IGNs
* Understand differences
* Unify and extend architectures

Reconstruction GNN /

Nested-GNN / DS-GNN ~ |D-GNN

Off-diagonal
Node .)) N

update

Root
(Diagonal)
Node
update

Subgraphs

DSS-GNN

GNN-AK-
CTX

SUN

i

General layer space
with Many possible
layers to explore in the
future

Ext 2-IGN
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Experiments

* Better performance
than previous
methods on most
benchmarks

Method ZINC (MAE )
GCN [28)] 0.321 + 0.009
GIN [51 0.163 + 0.004
PNA [13] 0.133 + 0.011
GSN [A1] 0101 4+ 0010
L_CIN 9] 0.079 + 0.006 |

NGNN [58] 0.111 + 0.003
DS-GNN (EGO) [7] 0.115 + 0.004
DS-GNN (EGO+) [7]  0.105 + 0.003
DSS-GNN (EGO) [7] 0.099 + 0.003
DSS-GNN (EGO+) [7]  0.097 + 0.006
GNN-AK [57] 0.105 + 0.010
GNN-AK-cTX [67] 0.093 + 0.002
GNN-AK+ [57) 0.086 + 777
SUN (EGO) 0.083 + 0.003
SUN (EGO+) 0.084 + 0.002




Experiments :
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Take home messages:

* GNN expressivity is an interesting and important research direction



Take home messages:

* GNN expressivity is an interesting and important research direction

e Subgraph GNNs seem to strike a good balance between expressive
power, generalization and computational complexity



Take home messages:

 Symmetry analysis is an elegant and effective way to design neural
architectures according to the data they process.

* Meta-algorithm:
1. Understand data symmetries
2. Construct basic equivariant layers
3. Use them to build invariant/equivariant network
4. Understand expressive power



The end
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