Statistical comparisons of spatio-temporal networks

Lucrezia Carboni, Michel Dojat and Sophie Achard

INSERM, GIN, Grenoble Institut des Neurosciences (U1216) CNRS, LJK, Laboratoire Jean Kuntzmann (UMR5224)

sophie.achard@univ-grenoble-alpes.fr

7 November 2022

The brain is both a structural and functional network

[Badreddine PhD] Sophie Achard (CNRS, LJK)

The brain is both a structural and functional network

The brain is both a structural and functional network

Exploring the brain using networks analysis: pipeline

Sophie Achard (CNRS, LJK)

spatio-temporal networks

7 November 2022 3 / 36

Usual graph statistics

[Latora et al. 2001] [Bullmore et al. 2009] [Csárdi et al. 2006]

Usual graph statistics

Sophie Achard (CNRS, LJK)

Comparisons of healthy volunteers and patients

Sophie Achard (CNRS, LJK)

Graph comparisons: other methods

Sophie Achard (CNRS, LJK)

Graph comparisons: new methods needed

[Richiardi et al. 13]

Objectives:

- use graph nodal statistics
- be invariant to permutation of nodes
- allow easy interpretation for medical researchers

Sophie Achard (CNRS, LJK)

Nodal statistics-based structural pattern on single graph

Nodal statistics-based structural pattern

Definition

We consider undirected unweighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and refer to a nodal statistics $s : \mathcal{V} \to s(\mathcal{V})$ any function of the adjacency matrix. The **equivalence relation** \sim_s **associated with a nodal statistics** s, on the nodes set \mathcal{V} of a graph is:

$$v \sim_s u \iff s(u) = s(v).$$

The equivalent relation associated with any collection of statistics $S = \{s_i\}_{i=1,..,n}$, is defined as:

$$a\sim_{\mathcal{S}}b\iff a\sim_{s_1}b,\ a\sim_{s_2}b,\ \ldots,\ a\sim_{s_n}b.$$

When the statistics is continuous, for some small arepsilon

$$v \sim_s u \iff |s(u) - s(v)| \leqslant \varepsilon$$

Sophie Achard (CNRS, LJK)

Structural Pattern

Definition

Le us define P the induced partition on \mathcal{V} given \mathcal{S} ,

$$P_{\mathcal{S}} = rac{\mathcal{V}}{\sim_{\mathcal{S}}} = \{ [a], \quad \forall a \in \mathcal{V} \}$$

defines the **structural pattern** of \mathcal{G} associated with the statistics collection \mathcal{S} .

Node role

Definition

The class of equivalence
$$[a] = \{b \in \mathcal{V} | a \sim_s b \iff s(a) = s(b)\}$$
 corresponds to **node role**.

Illustrations with degree

Let $\mathcal{G}, \mathcal{G}'$ be two graphs having same vertices \mathcal{V} and let \mathcal{S} be the statistics degree whose associated partitions are $P_{\mathcal{S}}, P'_{\mathcal{S}}$ on $\mathcal{G}, \mathcal{G}'$ respectively.

 $P_{\mathcal{S}} = [ABEFGH], [L], [CDI], [M] \quad P'_{\mathcal{S}} = [ABCEFGH], [L], [DIM]$

Nodal structural roles

Heterogeneity of nodal structural nodes

Definition

Let \mathcal{G} be a graph having \mathcal{V} vertices and let \mathcal{S} be the statistics whose associated partitions are $P_{\mathcal{S}}$ on \mathcal{G} . We define the power coefficient as \widehat{PC} ,

$$\widehat{\mathsf{PC}}_{\mathcal{G}}(\mathcal{S}) = 1 - \frac{\log \#\{\text{permutations preserving } P_{\mathcal{S}}\}}{\log \#\{\text{permutations of } \mathcal{V}\}}$$

Nodal structural roles

Properties of \widehat{PC}

Proposition

- The higher the PC, the more the collection of statistics S capture the heterogeneity of nodal structural roles in G.
 For a vertex-transitive graphs (i.e. all nodes are automorphically equivalent) PC_G(S) = 0 for all nodal statistics S.
 If it exists a collection \$\bar{S}\$ s.t. PC_G(\$\bar{S}\$) = 1 then the graph \$\mathcal{G}\$ does admit non-trivial automorphisms.
- In the special case in which the permutations preserving P_S can be identified with the automorphisms of G, PC can be interpreted as entropy of the network ensemble having G topology (Bianconni et al. 2007). In all other cases, PC encodes the amount of information given by S on the structure of G and it is a parsimony measure for S.

Illustrations with degree

Let $\mathcal{G}, \mathcal{G}'$ be two graphs having same vertices \mathcal{V} and let \mathcal{S} be the statistics degree whose associated partitions are $P_{\mathcal{S}}, P'_{\mathcal{S}}$ on $\mathcal{G}, \mathcal{G}'$ respectively.

However degree may be not sufficient

Depending on the graph structure, one statistic may be not sufficient to capture important features of graph.

Comparisons of statistics induced by graph structures

Orthogonal statistics for heterogeneity evaluation of a collection elements

Two nodal statistics are said to be perfectly orthogonal if their union-associated equivalent relation induces the trivial partition: all nodes belong to a single element set.

Definition

Let \mathcal{G} be a graph having \mathcal{V} vertices and let \mathcal{S} be the statistics whose associated partitions are $P_{\mathcal{S}}$ on \mathcal{G} .

$$\mathcal{O}_{\mathcal{G}}(\mathcal{S}) = rac{|\{v \in \mathcal{V} ext{ s.t. } \#[v]_{\sim_{\mathcal{S}}}
eq 1\}|}{|\mathcal{V}|}$$

 $O_{\mathcal{G}}(\mathcal{S})$ is the ratio between the number of nodes in non-trivial classes and the total number of vertices and corresponds to an orthogonality score. By definition, \mathcal{S} is perfectly orthogonal if and only if $O_{\mathcal{G}}(\mathcal{S}) = 0$.

Structural patterns for graph collections characterization

Correspondence structural pattern score

Definition

Let $\mathcal{G}, \mathcal{G}'$ be two graphs having same vertices \mathcal{V} and let \mathcal{S} be a statistics collection whose associated partitions are $P_{\mathcal{S}}, P'_{\mathcal{S}}$ on $\mathcal{G}, \mathcal{G}'$ respectively. Given bijective mapping from $P_{\mathcal{S}}, P'_{\mathcal{S}}$ to an initial segment of the natural numbers as enumerations, let $c(v_i), c'(v_i)$ be the enumeration of the classes of v_i , the correspondence structural pattern score between $\mathcal{G}, \mathcal{G}'$ is defined as:

$$\mathcal{C}(\mathcal{G},\mathcal{G}') = \max_{\pi\in\Pi}rac{1}{|\mathcal{V}|}\sum_{i=1}^{|\mathcal{V}|}\mathcal{X}(\pi(c(v_i))=c'(v_i))$$

where Π is the set of all coupling between the elements in P_S and the elements in P'_S and \mathcal{X} is the indicator function.

Illustrations

Let $\mathcal{G}, \mathcal{G}'$ be two graphs having same vertices \mathcal{V} .

$$C(G,G') = \frac{1+2+6}{11} = 0.81$$

Sophie Achard (CNRS, LJK)

One statistics is enough informative

Two nodal statistics are more informative

Illustrations

Two perfectly orthogonal nodal statistics

Property of orthogonality

Proposition

- a nodal statistics whose induced partition is composed of classes having each one a unique element, is perfectly orthogonal with every nodal statistics
- *if collection of statistics is perfectly orthogonal, all other collection having as subset that collection is perfectly orthogonal as well*
- if a perfectly orthogonal statistics set exists on a graph, then the graph does not admit non-trivial automorphisms

Property of correspondance structural pattern

Proposition

- If for every class in P_S there exists one class of P'_S having all and only its elements, then $P_S = P'_S$ and $C(\mathcal{G}, \mathcal{G}') = 1$. The opposite is also true.
- all graphs defined on the same node set, having same degree sequence, have a correspondence of structural patterns associated with the degree statistics equals to 1
- the minimum values of structural pattern score is given by $\frac{1}{|V|}$. (At least one class of P_S shares one element with one of the classes in P'_S).
- *if on the same graph, the structural patterns score of different nodal statistics reaches the minimal value, then the nodal statistics are perfectly orthogonal*

Structural patterns for graph collections characterization

Nodal-percentage of participation

Definition

Given a graphs collection $G = \{G_k = (\mathcal{V}_k, \mathcal{E}_k) \text{ s.t. } \mathcal{V}_k = \mathcal{V}\}$, and a statistics collection S we count the percentage of participation of each node of \mathcal{V} in non-trivial classes:

$$\forall v \in \mathcal{V} \quad \mathsf{PP}_{G}^{\mathcal{S}}(v) = \mathsf{PP}_{G}(v) = \frac{|\{\mathcal{G}_{k} \in G \text{ s.t. } \#[v]_{\sim \mathcal{S}}^{\mathcal{G}_{k}} \neq 1\}|}{|G|} \qquad (1)$$

with $[v]_{\sim S}^{\mathcal{G}_k}$ the class of v in \mathcal{G}_k in the partition induced by \mathcal{S} .

Illustrations

Let $\mathcal{G}, \mathcal{G}'$ be two graphs having same vertices \mathcal{V} .

node L has a specific role in the two graphs

10

role of node M depends on graphs instance

Sophie Achard (CNRS, LJK)

Results: \widehat{PC} for different sparsity graphs models

Using different graph generative models and one real datasets:

- Erdős-Rényi model (ER)
- Watts-Strogatz model (WS)
- Barabási-Albert model (BA)
- Degree sequence preserving model (DSP)
- Economical preferential attachment model (EPA)
- Economical clustering model (EC)
- resting-state fMRI data human connectome project (HCP)

Results: \widehat{PC} for different sparsity graph models

 \widehat{PC} is able to determine a prefered sparsity for degree

Results: \widehat{PC} for different sparsity graph models

 \widehat{PC} behaviour is dependent on statistics

Sophie Achard (CNRS, LJK)

Results of orthogonality on simulated WS and BA models

cc= clustering coefficient, s=second order centrality, cs=closeness centrality, b=betweenness centrality, d=degree

Sophie Achard (CNRS, LJK)

Results of correspondance score on graph models

Real datasets have the highest correspondance score

Results of correspondance and orthogonality score on brain data

27 / 36

Sophie Achard (CNRS, LJK)

Results of percentage of participation to non-trivial classes on brain data

Results of percentage of participation to non-trivial classes on brain data

Results of fMRI resting state datasets on healthy volunteers and patients

Freely avalaible datasets. Do not hesitate to use them!

Provider	Subjects	Scanning Parameters				Age range
	Total	B0	TR	#Vol	Frequency Band	years
ChuStr Achard et al. 2012	HC(20)-CO(17)	1.5T	3000 ms	405	0.042-0.084 Hz	25-45, 21-82
HCP Termenon et al. 2016	HC(100×2)	3T	720 ms	1200	0.043-0.087 Hz	20-43
iShare Tsuchida et al. 2017	HC(1814)	3T	850 ms	1046	0.037-0.074 Hz	18-35
Gin-Chuga Ramirez et al. 2019	HC(11)-PD(13)	3T	1000 ms	500	0.031-0.063 Hz	46-70, 51-70

Focus on comatose patients

- **90 and 417 anatomical regions:** space average of the fMRI time series over all voxels in 90 (AAL) and 417 regions
- SPM preprocessing: correction for geometrical displacements
- Resting state: lying quietly with eyes closed during 20 minutes

• Group comparison:

20 young healthy volunteers, 17 patients in coma

[Achard et al. 2012]

Examples of connectivity graphs

Sophie Achard (CNRS, LJK)

Results: global connectivity and network topology

Sophie Achard (CNRS, LJK)

Results of orthogonality scores on real datasets

(a) Orthogonality centroids

(b) Mean graph average

Illustrations of classification on orthogonality curves

Sophie Achard (CNRS, LJK)

spatio-temporal networks

7 November 2022 34 / 36

Illustrations at the nodal level

Conclusion and future work

Conclusion

- New framework for comparison of spatio-temporal models
- Description at nodal level
- Comparisons of graph statistics

Future work

- Derive properties for graph statistics
- Build a statistical test
- Apply to different data

arxiv.org/abs/2210.01053

Thanks for your attention