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Nematic Liquid Crystals

We shall primarily be concerned with a new class of lyotropic liquid
crystals, with a number of promising applications both in living
sciences and industry, which pose mathematical problems at the
crossroad between Elasticity, Analysis, and Geometry of Soft Matter.

lexicon

I Liquid crystals are anisotropic fluids.
I The nematic phase is typically produced by the ordered

assembly of elongated, rod-like molecules, which are on average
aligned along the director n.

molecular height ∼ 1 nm
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I The director n is a unit vector; it resides in the unit sphere S2.

I Nematic liquid crystals are birefringent ; their optic axis
coincides with n and can easily vary in space.

I For rod-like nematics, a natural state is any uniform director
field, for which ∇n ≡ 0.

I Nematic liquid crystals are not polar ; the theories that describe
them must be indifferent to changing n into −n.

I A defect is a singularity of n.

I Defects are optically detectable.
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early statistical theories

The phase transition from isotropic to nematic—driven by
concentration (lyotropic) or temperature (thermotropic)—was
described by two pioneering theories:

I Onsager (1949): purely entropic ordering forces based on
short-range mutual repulsion of molecules.

I Maier & Saupe (1958): mean field model based on long-range
mutual attractive dispersion London forces.

early phenomenological theories

I Oseen (1933), Frank (1958): variational theory formulated in
terms of the nematic director .

I de Gennes (1969, 1971): Laundau theory based on a
tensorial order parameter.

early dynamical theories

I Ericksen (1961): first general system of balance laws.

I Leslie (1968): complete theory based on a proper dissipation
inequality.
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Curvature Elasticity

The curvature elasticity of liquid crystals in three dimensions is
based on a free-energy functional introduced by Frank (1958),
which falls within the larger class envisaged by Ericksen (1962).

elastic free energy

The elastic free-energy functional measures the cost associated with
producing a distortion in a natural state.

F [n] =

∫
B

W (n,∇n) dV

B domain in space
V volume measure

W elastic free-energy density
W is frame-indifferent

W (Qn,Q∇nQT) = W (n,∇n) ∀ Q ∈ O(3)
W is even

W (−n,−∇n) = W (n,∇n)
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Frank’s formula

The most general frame-indifferent and even function W that is at
most quadratic in ∇n was obtained by Frank (1958),

WF(n,∇n) =
1

2
K11(divn)2 +

1

2
K22(n · curln)2 +

1

2
K33|n× curln|2

+K24

(
tr(∇n)2 − (divn)2

)
Kij Frank’s elastic constants

K11 splay constant
K22 twist constant
K33 bend constant

K24 saddle-splay constant

Ericksen’s inequalities

WF(n,∇n) = 0 a.e. ∀ n ∈ H1(B;S2) iff

K33 = 0, K22 = K24, K11 = K24 = 0

Ericksen (1966)
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Elementary Distortion Modes

Recently, a fresh look into this established theory has revealed
unexpected scenarios.

Machon & Alexander (2016), Selinger (2018)

distortion decomposition

∇n = −b⊗ n+
1

2
TW(n) +

1

2
SP(n) + D

S := divn splay scalar
T := n · curln twist pseudoscalar
b := n× curln bend vector

W(n) skew tensor associated with n
P(n) := I− n⊗ n projector tensor

D octupolar splay tensor

octupolar splay

D = q(n1 ⊗ n1 − n2 ⊗ n2)

q positive eigenvalue of D
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identity

2q2 = tr(∇n)2 +
1

2
T 2 − 1

2
S2

The four components of ∇n are independent from one another.

I distortion frame : the eigenvectors (n1,n2,n) of D for q > 0.

I distortion measures: the list (S, T, b,D).

I distortion characteristics: the scalars (S, T, b1, b2, q).

b = b1n1 + b2n2

Frank’s free energy

WF =
1

2
(K11 −K24)S2 +

1

2
(K22 −K24)T 2 +

1

2
K33B

2 + 2K24q
2

B2 := b · b
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Mode illustration

The four independent modes can be illustrated pictorially.
Selinger (2021)

splay mode

S 6= 0 T = 0 B = 0 q = 0

(double) twist mode

S = 0 T 6= 0 B = 0 q = 0
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Uniform Distortions

On a smooth (not necessarily flat) surface embedded in 3D
Euclidean space,

T ≡ 0 and D ≡ 0

geometric compatibility

K = −S2 −B2 −∇S · n+∇B · n⊥
K Gaussian curvature
∇ covariant derivative

n⊥ := Nn unit vector orthogonal to n
N skew tensor associated with ν

ν normal to the surface

Niv & Efrati (2018)

consequences

I The field n can be uniquely reconstructed from the sole
knowledge of S and B, provided that

|∇S + N∇B| > |S2 +B2 +K| Pollar & Alexander (2021)

I Only hyperbolic geometries can host uniform distortions in 2D.
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questions

I How to define uniformity in 3D?

I Is it possible to fill space with a combination of uniform modes?

comment

Both questions border on the notion of eligible ground states meant
as the ones suffering no geometric frustration .

uniform distortion

A field n such that its distortion characteristics (S, T, b1, b2, q) are the
same everywhere, although the distortion frame (n1,n2,n) may not
be.

lost in space

For such a field, we could not tell where we are in space only by
sampling the local nematic distortion.
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3D Euclidean space

There are only two families of possible uniform distortions that fill
3D Euclidean space:

S = 0, T = 2q, b1 = b2 = b

S = 0, T = −2q, b1 = −b2 = b

They correspond to foliations of 3D Euclidean space in parallel
helices. Virga (2019)

heliconical fields

The director n makes a constant conical angle θ with the axis of a
helix with pitch p:

cos θ =
|b|√

b2 + 2q2

p =
2π

|λ3|
λ3 = ±

(
2q +

b2

q

)
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Chromonic Liquid Crystals

Chromonic liquid crystals are lyotropic. They are composed of
plank-like molecules with a poly-aromatic core and polar peripheral
groups, aggregated in columnar stacks.

Chami & Wilson (2010)

molecular diameter:
1− 2 nm

columnar height:
10− 100 nm

Chromonics are formed by certain dyes, drugs, and short
nucleic-acid oligomers in aqueous solutions.



Chromonic Liquid Crystals

Chromonic liquid crystals are lyotropic. They are composed of
plank-like molecules with a poly-aromatic core and polar peripheral
groups, aggregated in columnar stacks.

Chami & Wilson (2010)

molecular diameter:
1− 2 nm

columnar height:
10− 100 nm

Chromonics are formed by certain dyes, drugs, and short
nucleic-acid oligomers in aqueous solutions.



Chromonic Liquid Crystals

Chromonic liquid crystals are lyotropic. They are composed of
plank-like molecules with a poly-aromatic core and polar peripheral
groups, aggregated in columnar stacks.

Chami & Wilson (2010)

molecular diameter:
1− 2 nm

columnar height:
10− 100 nm

Chromonics are formed by certain dyes, drugs, and short
nucleic-acid oligomers in aqueous solutions.



Chromonic Liquid Crystals

Chromonic liquid crystals are lyotropic. They are composed of
plank-like molecules with a poly-aromatic core and polar peripheral
groups, aggregated in columnar stacks.

Chami & Wilson (2010)

molecular diameter:
1− 2 nm

columnar height:
10− 100 nm

Chromonics are formed by certain dyes, drugs, and short
nucleic-acid oligomers in aqueous solutions.



Anomalous Ground State

When subject to degenerate planar anchoring conditions on the
lateral boundary ∂B of a cylinder ,

n · ν ≡ 0

ν outer unit normal to ∂B

the director does not spontaneously acquire the uniform
alignment , but tend to take on either of the two double twists
compatible with symmetry.
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reduced free-energy functional

In cylindrical coordinates (r, ϑ, z), we set

n = sinβ(r)eϑ + cosβ(r)ez and α =
π

2

Then

F [β] :=
FF[n]

2πK22L
=

∫ 1

0

(
ρβ′2

2
+

1

2ρ
cos2 β sin2 β +

k3
2ρ

sin4 β

)
dρ

+
1

2
(1− 2k24) sin2 β(1)

k3 :=
K33

K22
k24 :=

K24

K22
with K22 > 0

ρ := r
R

R radius of the cylinder
L height of the cylinder
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equilibrium distortions

For k24 > 1,

βET(ρ) = arctan

(
2
√
k24(k24 − 1)ρ√

k3 [k24 − (k24 − 1)ρ2]

)

and its symmetric companion −βET. Burylov (1997)

k3 = 10 k24 = 1→ 22 k24 = 10 k3 = 1→ 30
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role of boundary conditions

Degenerate planar anchoring conditions save the day (and ground
state), as the K24-integral in FF can be given the form

−K24

∫
∂B

(
κ1n

2
1 + κ2n

2
2

)
dA

κi principal curvatures of ∂B
ni components of n along the principal direction of curvature

Koning, van Zuiden, Kamien, & Vitelli (2014)

A similar salvaging was also seen for a more infamous case.
Day & Zarnescu (2019)

distortion characteristics

For β = βET,

T =
1

r
sinβ cosβ(

√
1 + tan2 β + 1)

q =
1

2r
| sinβ| cosβ(

√
1 + tan2 β − 1)

b1 = − 1√
2r

sin2 β = −b2
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along the axis

S = q = b1 = b2 = 0 T = ±4
√
k24 − 1

R
√
k3k24

frustrated ground state

I The ground state, which cannot be uniform, is frustrated : it
differs from place to place.

I Where the boundary conditions have the least influence (on
the axis), it exhibits a pure double twist depending on the
domain size.

I Can we really get away with a violation to Ericksen’s inequality?
Long & Selinger (2022)



along the axis

S = q = b1 = b2 = 0 T = ±4
√
k24 − 1

R
√
k3k24

frustrated ground state

I The ground state, which cannot be uniform, is frustrated : it
differs from place to place.

I Where the boundary conditions have the least influence (on
the axis), it exhibits a pure double twist depending on the
domain size.

I Can we really get away with a violation to Ericksen’s inequality?
Long & Selinger (2022)



along the axis

S = q = b1 = b2 = 0 T = ±4
√
k24 − 1

R
√
k3k24

frustrated ground state

I The ground state, which cannot be uniform, is frustrated : it
differs from place to place.

I Where the boundary conditions have the least influence (on
the axis), it exhibits a pure double twist depending on the
domain size.

I Can we really get away with a violation to Ericksen’s inequality?
Long & Selinger (2022)



along the axis

S = q = b1 = b2 = 0 T = ±4
√
k24 − 1

R
√
k3k24

frustrated ground state

I The ground state, which cannot be uniform, is frustrated : it
differs from place to place.

I Where the boundary conditions have the least influence (on
the axis), it exhibits a pure double twist depending on the
domain size.

I Can we really get away with a violation to Ericksen’s inequality?
Long & Selinger (2022)



Local Stability

Both escaped-twist field are locally stable , as can be shown
elaborating on the following general formula.

second variation

δ2FF(n)[v] =

∫
B

{
(K11 − 2K24)

[
(div v)

2 − v2 (divn)
2 − (divn)n · ∇v2

]
+K22

[
(v · curln+ n · curlv)2

+ 2(n · curln)(v · curlv − v2n · curln)
]

+K33

[
|v × curln+ n× curlv|2

+ (n× curln) · (v × curlv − 2v2n× curln−∇v2)
]

+ 2K24

[
tr (∇v)

2 − v2 tr (∇n)
2

+ n× curln · ∇v2
]}

dV

v · n = 0

Paparini & Virga (2022)
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Drop Paradoxes

In rigidly confined systems subject to degenerate planar
anchoring conditions, the free-energy functional FF is well-behaved,
despite the violation of Ericksen’s inequality.

free-boundary problems

However, the violation of Ericksen’s inequality would have noxious
consequences in chromonic droplets surrounded by their isotropic
phase .

free-energy functional

F [n,B] :=

∫
B

WF(n,∇n) dV + γA(∂B)

γ surface tension
A area measure

isoperimetric constraint

V (B) = V0
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director and tactoid representations

n = cosα(z) sinβ(ρ)er + sinα(ρ) sinβ(ρ)eϑ + cosβ(ρ)ez

ν =
er −R′ez√

1 +R′2
.

cosα(z) =
R′

tanβ(1)
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minimizing sequence

Letting β = βET, in a wide class of shapes, we estimate

F :=
F [n,B]

2πK22Re
5 µFET[βET] +

√
8

3
υ
√
µ+O

(
1
√
µ

)
Paparini & Virga (2022)

FET dimensionless free energy stored in a cylinder
µ := R0

Re
dimensionless tactoid height

Re equivalent radius (of the sphere of volume V0)
υ := γRe

K22
dimensionless volume

but

For K24 > K22,
FET[βET] < 0
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. . . and so

k11 = k33 = 30 k24 = 1→ 22



. . . which means that

µ = L
Re

Paparini & Virga (2022)



disintegration paradox

Confining the drop would not save it from disintegration, as for µ
sufficiently large,

Fn ≈ FET[βET]µ2n → −∞ as n→∞

remark

None of these drop instabilities has been observed experimentally so
far (and they are unlikely to be observed in the future).
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Quartic Twist Theory

A possible way out (admittedly, not the only one) would be to correct
Frank’s curvature energy density with a quartic term,

Wchr =
(K11 −K24)

2
S2+

(K22 −K24)

2
T 2+2K24q

2+
K33

2
B2+

K22a
2

4︸ ︷︷ ︸
K44

T 4

K24 > K22

a intrinsic length of a possible supramolecular origin

This theory would induce an intrinsic, degenerate double twist ±T0
in the ground state , still incompatible with a uniform extension
in space, and thus condemned to frustration ,

S = B = q = 0, T = ±T0 := ±1

a

√
(K24 −K22)

K22
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Conclusions

I The quartic theory can be seen to cure the above paradoxes,
while reproducing faithfully the experiments with chromonics
under cylindrical confinement.

However ,

I Free boundary problems have not even been addressed within
the quartic theory.

I Similarly, a regularity theory is not available: we do not know
which defects may exist with finite energy and which cannot.

I Would the critical dimension of the singular set be affected by
the quartic twist term?

I It is nearly needless to say that no dynamical theory is
available specifically for chromonics; neither can we predict
what role would play in it the proposed quartic twist energy.
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