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Outline

• The Ericksen-Leslie equations:

I a quick overview of the model,

I the Leslie coefficients and the values of α1,

I Ginzburg-Landau penalisation.

• Established results and contribution:

I definition of weak solutions,

I uniqueness,

I non-triviality of the problem.

• Some details on the result:

I the double-logarithmic inequality,

I frequencies decomposition,

I conclusion.
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The Ericksen-Leslie model



The fluid behaviour

2D Active Nematic 1

The center of mass of each constituent molecule has a freely degree of translation, as a common particle in
a liquid.

Widespread formalisms:

• Ericksen-Leslie: Oseen-Frank directors

• Beris-Edwards: De Gennes order tensors

1 . J. DeCamp, G. S. Redner, A. Baskaran, M. F. Hagan, and Z. Dogic, Nat Mater 2



Molecular alignment

• Privileged direction modeled through a director field

n : (0, T)× Ω→ S2 ⊆ R3 (i.e. |n(t, x)| = 1).

• Ericksen-Leslie: constitutive equations for the director n(t, x) and the velocity field u(t, x).
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The Oseen-Frank energy density

The mathematical theory of liquid crystals goes back to the seminal works by Frank (1958) and
Oseen (1933). Distortion free energy density:

wF(n,∇n) :=
K1

2
|div n|2 +

K2

2
|n · curl n|2 +

K3

2
|n ∧ curln|2 +

+
K2 + K4

2

(
tr(∇n)2 − |divn|2

)

splay twist bend

When the resulting equilibrium equations are complicated: one-constant approximation

wF(n, ∇n) = wF(∇n) =
K
2
|∇n|2.
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The Ericksen-Leslie model

The most frequently used form of the equations consist of the constrain |n| = 1 together with

Conservation of mass: div u = 0

Balance of linear momentum: ∂tu + u · ∇u = div T

Balance of angular momentum: n ∧ (g + h) = 0

• p pressure in R
• u velocity field in Rd

• n director field

• g kinematic transport

• h molecular field

• T total stress tensor
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General Ericksen-Leslie system

The most frequently used form of the equations consist of the constrain |n| = 1 together with

Conservation of mass: div u = 0

Balance of linear momentum: ∂tu + u · ∇u = div T

Balance of angular momentum: n ∧ (g + h) = 0

T = −p Id +σ E + σ L where

{
σ E Ericksen stress tensor,

σ L Leslie stress tensor,

• p pressure in R
• u velocity field in Rd

• n director field

• g kinematic transport

• h molecular field

• T total stress tensor
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General Ericksen-Leslie system

The most frequently used form of the equations consist of the constrain |n| = 1 together with

Conservation of mass: div u = 0

Balance of linear momentum: ∂tu + u · ∇u = div T

Balance of angular momentum: n ∧ (g + h) = 0

σE = − t∇n
∂wF

∂∇n
where wF(n, ∇n) is the Oseen-Frank energy density.

σE= −∇n�∇n where wF(∇n) =
|∇n|2

2

• p pressure in R
• u velocity field in Rd

• n director field

• g kinematic transport

• h molecular field

• T total stress tensor
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General Ericksen-Leslie system

The most frequently used form of the equations consist of the constrain |n| = 1 together with

Conservation of mass: div u = 0

Balance of linear momentum: ∂tu + u · ∇u = div T

Balance of angular momentum: n ∧ (g + h) = 0

corotational time flux N = ∂tn + u · ∇n−
1
2

curl u ∧ n

stretching due to Dn, where D =
1
2

(
∇u + t∇u

)

• p pressure in R
• u velocity field in Rd

• n director field

• g kinematic transport

• h molecular field

• T total stress tensor
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General Ericksen-Leslie system

The most frequently used form of the equations consist of the constrain |n| = 1 together with

Conservation of mass: div u = 0

Balance of linear momentum: ∂tu + u · ∇u = div T

Balance of angular momentum: n ∧ (g + h) = 0

σ L = α1(n · Dn)n⊗ n + α2 N ⊗ n + α3 n⊗N +

+ α4D + α5Dn⊗ n + α6n⊗ Dn.

high powers interacting with the flow,

• p pressure in R
• u velocity field in Rd

• n director field

• g kinematic transport

• h molecular field

• T total stress tensor
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General Ericksen-Leslie system

The most frequently used form of the equations consist of the constrain |n| = 1 together with

Conservation of mass: div u = 0

Balance of linear momentum: ∂tu + u · ∇u = div T

Balance of angular momentum: n ∧ (g + h) = 0

σ L = α1(n · Dn)n⊗ n + α2 N ⊗ n + α3 n⊗N +

+ α4D + α5Dn⊗ n + α6n⊗ Dn.

• Maximal derivatives.

• p pressure in R
• u velocity field in Rd

• n director field

• g kinematic transport

• h molecular field

• T total stress tensor
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General Ericksen-Leslie system

The most frequently used form of the equations consist of the constrain |n| = 1 together with

Conservation of mass: divu = 0

Balance of linear momentum: ∂tu + u · ∇u = div T

Balance of angular momentum: n ∧ (g + h) = 0

g = λ1N + λ2 Dn

• p pressure in R
• u velocity field in Rd

• n director field

• g kinematic transport

• h molecular field

• T total stress tensor
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General Ericksen-Leslie system

The most frequently used form of the equations consist of the constrain |n| = 1 together with

Conservation of mass: div u = 0

Balance of linear momentum: ∂tu + u · ∇u = div T

Balance of angular momentum: n ∧ (g + h) = 0

h =
δwF

δn
=
∂wF

∂n
− div

∂wF

∂∇n

• p pressure in R
• u velocity field in Rd

• n director field

• g kinematic transport

• h molecular field

• T total stress tensor
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General Ericksen-Leslie system

The most frequently used form of the equations consist of the constrain |n| = 1 together with

Conservation of mass: div u = 0

Balance of linear momentum: ∂tu + u · ∇u = div T

Balance of angular momentum: n ∧ (g + h) = 0


div u = 0,
∂tu + div(u⊗ u)− ν∆u +∇p = −div(∇n�∇n) + α1div(n⊗ n(n⊗ n : ∇u)),

∂tn + u · ∇n− n · ∇u = ∆n + |∇n|2n.

• p pressure in R
• u velocity field in Rd

• n director field

• g kinematic transport

• h molecular field

• T total stress tensor
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Measuring the Leslie coefficients

• Laminar flow under a strong orienting Field [Miesowicz, 1946], the molecules are firmly
aligned in one direction by a constant magnetic field.

• When the shear stress (σL)αβ is known, one can derive the effective viscosity η

η =
(σL)αβ

2Dαβ
.

• Kneppe & Schneider; Stephen & Straley; Stewart;

Quantities MBBA near 25◦ PAA near 122◦ 5CB near 26◦

α1 -0.0181 0.0043 -0.0060
α2 -0.1104 -0.0069 -0.0812
α3 -0.001104 -0.0002 -0.0036
α4 0.0826 0.0068 0.0652
α5 0.0779 0.0047 0.0640
α6 -0.0336 -0.0023 -0.0208
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Viscous dissipation and Parodi relation

• The total energy is dissipative along time evolution. Basic energy law

d
dt

ˆ
Ω

(1
2
|u|2 + wF(n,∇n)

)
dx =

−
ˆ

Ω

(
α1|n · Dn|2 + (α2 + α3 + λ2)N · Dn + α4|D|2 + (α5 + α6)|Dn|2 − λ1|N |2

)
dx

• We require

α3 − α2 ≥ 0, α4 ≥ 0, 2α4 + α5 + α6 ≥ 0,

α1 + 3α4 + 2α5 + 2α6 ≥ 0, −4λ1(2α4 + α5 + α6) ≥ (α2 + α3 − λ2)2.

• Onsager relations between flows and forces in irreversible thermodynamic systems. Parodi
suggested that the Leslie coefficients shall be further restricted:

λ1 = α2 − α3, λ2 = α5 − α6, α6 − α5 = α2 + α3.

Quantities MBBA near 25◦ PAA near 122◦ 5CB near 26◦

α2 + α3 -0.111504 -0.0071 -0.0848
α6 − α5 -0.1115 -0.007 -0.0848
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Unitary constraint vs Ginzburg–Landau relaxation

• Balance of angular momentum:

∂tn + u · ∇n− n · ∇u−∆n = |∇n|2n.

• Relaxing the unitary constraint |n(t, x)| = 1 through
ˆ
Ω

|∇n(t, x)|2

2
dx →

ˆ
Ω

|∇n(t, x)|2

2
dx +

ˆ
Ω

(|n(t, x)|2 − 1)2

4ε
dx

Natural physical interpretations, attributed to the extensibility of liquid crystal molecules.

• Balance of angular momentum:

∂tn + u · ∇n− n · ∇u−∆n = −
|n|2 − 1
ε

n.

• In general, loss of an uniform bound for |n(t, x)|. Related difficulties on the momentum equation:

. . . div
(

n⊗ n(n⊗ n : ∇u)
)
. . .

8



Questions on the analysis of EL

• Is the Ericksen-Leslie model solvable in two and three dimensions?

• Which type of solutions can we build?

• Under which restrictions on the Leslie viscous coefficients?

• What can we say about uniqueness?
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Overview of related literature and contribution



Overview of the literature

• C. Liu & F.-H. Lin (2000): First analysis result on a three dimensional smooth bounded do-
main subject to Dirichlet boundary conditions. Any initial data with finite total energy gener-
ates a global-in-time weak solution. Restriction on the Leslie coefficients, corotational frame-
work (λ2 = 0) and weak maximum principle.

• D. Coutand & S. Shkoller (’01): First attempt for the general case λ2 6= 0. Local existence and
uniqueness of a local-in-time classical solution. Total energy of the system is not dissipative,
small-data global existence result even in two dimensions.

• H. Sun & C. Liu (’09): Setting of Leslie coefficients, energy dissipation property is guaranteed
(in particular α1 = 0). Existence of global strong solutions provided that the dimension is two
or the viscosity α4 > 0 is sufficiently large.

• H. Wu & X. Xu & C. Liu (’13): three dimensional periodic setting, global strong solutions and
long-time behavior, under large viscosity α4; With Parodi’s relation, global well-posedness
and Lyapunov stability for the system near local energy minimizers.
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Overview of the literature

• C. Cavaterra & E. Rocca & H. Wu (’13): Three dimensional bounded domain, natural bound-
ary conditions and suitable requirements on the Leslie coefficients that ensure the energy
dissipation. Existence of global-in-time weak solutions, new formulation of weak solutions
that took into account the low regularity of those highly nonlinear stress. Double-level Faedo-
Galerkin approximation scheme. Uniqueness was still an open problem.

λ1 = α2 − α3 < 0, α1 ≥ 0, α4 > 0, α5 + α6 ≥ 0, λ2 = α5 − α6.

{
with Parodi: λ2

2
−λ1
≤ α5 + α6,

without Parodi: |λ2 − α2 − α3| < 2
√
−λ1
√
α5 + α6

Life can always be more complicated...

• Unitary constraint: M.-C. Hong (’10), M.-C. Hong & J.-K. Li & Z.-P. Xin (’14), T. Huang & F.-H.
Lin & C. Liu & C.-Y. Wang (’16), F.-H. Lin & C.-Y. Wang (’16)...

• Thermal effects: E. Feireisl & M. Frémond & E. Rocca & G. Schimperna (’12), M. Hieber & M.
Nesensohn & J. Prüss, K. Schade (’14), M. Hieber & J. Prüss (’16),....

• Inertia: F.D.A & A. Zarnescu (’16), C. Yuan & W. Wei (’20),...

• ...
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Weak solutions

A pair (u, n) is called a weak solution to the Ericksen-Leslie system if it is a distributional solution
and for any ζ, ζ′ ∈ (0, 1):

u ∈ L∞(0, T; L2(T2)) ∩ L2(0, T; Ḣ1(T2)) with ∂tu ∈ L2(0, T; W−1, 2
1+ζ (T2)),

n ∈ L∞(0, T; H1(T2)) ∩ L2(0, T; Ḣ2(T2)) with ∂tn ∈ L2(0, T; L
2

1+ζ′ (T2)),

n · Dn ∈ L2((0, T)× T2), and Dn ∈ L2((0, T)× T2).

• With Parodi

E(t) +

ˆ t

0

ˆ
T2
α1|n · Dn|2 +

α4

2
|∇u|2 −

1
λ1

∣∣∣∆n−
n2 − 1
ε

n
∣∣∣2 +

(
α5 + α6 +

λ2
2

λ1

)
|Dn|2 ≤ E(0),

• Without Parodi

E(t) +

ˆ t

0

ˆ
T2
α1|n · Dn|2 +

α4

2
|∇u|2 −

1
λ1

∣∣∣∆n−
n2 − 1
ε

n
∣∣∣2 + η

(
|Dn|2 + |N |2

)
≤ E(0).

Theorem (C. Cavaterra, E. Rocca, H. Wu (2013))
There exists a global-in-time weak solution, satisfying the energy inequality.
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Contribution

F. D.A. & H. Wu (2021)

Consider Ericksen Leslie in (0, T)×T2. Let (u1, n1) and (u2, n2) be two global weak solutions, sub-
ject to the same initial data (u0, n0) ∈ L2(T2)× H1(T2). Then we have (u1(t), n1(t)) = (u2(t), n2(t))
for all t ∈ (0, T) (Uniqueness).

• For the proof, ansatz on the Leslie coefficients:

α1 = 1, α2 = −1, α3 = 0, α4 = 2ν > 0, α5 = 3, α6 = 1,

in particular we do not require the Parodi’s relation. In general α1 ≥ 0.

• To clarify:
I what we mean with weak solutions,
I why the problem is not trivial even in two dimension,
I philosophy behind the proof.

13



Weak solutions á la Leray

The Ericksen-Leslie model inherits the major challenges of the Navier-Stokes equations:

∂tu + div (u⊗ u)− ν∆u +∇p = 0, div u = 0, (t, x) ∈ (0, T)× Td.

Leray (1934)

For any initial data u0 ∈ L2(Td)) with div u0 = 0, there exists a Leray solution on (0, T)× Td.

A Leray solution u is a distributional solution, such that

• u ∈ L∞(0, T; L2(Td)),

• u ∈ L2(0, T; Ḣ1(Td)),

• lim
t→0
‖u(t)− u0‖L2 = 0,

• Energy inequality: ‖u(t)‖2
L2 + 2

ˆ t

0
‖∇u(s)‖2

L2 ds ≤ ‖u0‖2
L2 .

In two dimensions d = 2 one has the energy equality and the uniqueness of these solutions.
Why does this result not work for us?
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Non triviality of the problem

Navier-Stokes:

• In dimension two the problem is critical. Scaling invariance.

• Energy equality and continuity u ∈ C([0, T], L2(T2)).

• ∂tu belongs to L2(0, T; Ḣ−1(T2)) since u ∈ L4((0, T)× T2) and

∂tu− ν∆u +∇p = −div
(

u⊗ u︸ ︷︷ ︸
∈L2((0,T)×T2)

)

Ericksen-Leslie:
• The velocity could lose energy at high modes: u /∈ C([0, T], L2(T2)):

∂tu− ν∆u +∇p = −div
(

n⊗ n(n⊗ n : ∇u)︸ ︷︷ ︸
/∈L2((0,T)×T2)

)
+ . . .

• The stretching prevents the director to be bounded n /∈ L∞((0, T)× T2).
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Uniqueness

Difference between two solutions (δu, δn) = (u1, n1)− (u2, n2).
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Uniqueness for EL - Conclusion

• Controlling the difference (δu, δn) = (u1, n1) − (u2, n2) at lower regularities than the energy
space:

δE(t) = ‖δu(t)‖2

Ḣ−
1
2

+ ‖δn(t)‖2

Ḣ
1
2
.

• Approach on frequencies decomposition (paradifferential calculus and Bony’s decomposi-
tion); double logarithmic inequality

δE(t) +

ˆ t

0
δD(s)ds ≤

ˆ t

0
f (s)δE(s)

(
− ln

(
δE(s)

))
ln
(
− ln

(
δE(s)

))
ds.

• Osgood lemma δE ≡ 0⇒ Uniqueness
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Some details on the double logarithmic inequality



A first identity

The contribution of the Leslie tensor σL : ∇u is not integrable on (0, T)× T2. We need to pass to
lower regularities for a first identity:

1
2
‖δu(t)‖2

H−
1
2

+
1
2
‖∇δn(t)‖2

H−
1
2

+

ˆ t

0

(α4

2
‖∇δu(s)‖2

H−
1
2

+
λ2

−λ1
‖∇δn(s)‖2

H
1
2

)
ds

= −α1

ˆ t

0
〈(d1 ⊗ d1)(d1 ⊗ d1 : ∇δu),∇δu〉

H−
1
2

ds + . . .

• Identity holds, since each inner product is well-defined and time integrable.

• Aim: localise any dissipative term and estimate the remaining ones through a modulus of
continuity.

• A standard commutator would provide a dissipative contribution; Further analysis is however
inconclusive.

• Alternative approach: better for of the dissipation through Fourier analysis and Littlewood-
Paley decomposition.
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Dyadic decomposition

∗ =

× =

q = 0
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Dyadic decomposition

∗ =

× =

q = 1
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Dyadic decomposition

∗ =

× =

q = 2
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A toolbox of Fourier Analysis

• The H−1/2-inner product ≈
∑

q 2−q〈∆̇qf , ∆̇qg〉L2 .

• Low-frequencies cut-off: Sq−1f :=
∑

j<q−1 ∆̇qf .

• Bony’s paraproduct decomposition:

∆̇q(f g) =
∑
|j−q|≤5

[
∆̇q, Ṡj−1f ,

]
∆̇jg �X→ commutator inequality

+
∑
|j−q|≤5

(
Ṡq−1 − Ṡ−1

)
f ∆̇q∆̇jg �X→ Bernstein inequality

+ Sq−1f ∆̇qg �7

+
∑

j≥q+5

∆̇q

(
∆̇jf , Sq+2g

)
�X→ Young inequality

• The third element generates nonlinear challenging terms to control.
The structure of the Ericksen-Leslie system cancels them or make them dissipative terms.
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A Brezis-Gallouet inequality

• Similar approach as for proving the Brezis-Gallouet inequality:

‖f‖L∞ ≤ C‖u‖H1

{
1 +

√
ln

(
1 +
‖u‖H2

‖u‖H1

)}
.

• We separately control low and high frequencies of the Leslie viscous stress:

α1 〈(d2 · (∇u2d2))δd ⊗ SNd1,∇δu〉
H−

1
2︸ ︷︷ ︸

=:I

+α1 〈(d2 · (∇u2d2))δd ⊗ (Id−SN)d1,∇δu〉
H−

1
2︸ ︷︷ ︸

=:II

• The first term increases proportionally to the radius N, where the low frequencies are lo-
calised:

I ≤ C
(

term that is integrable in time
)
‖SNd1‖2

L∞‖δd‖2

H
1
2

+ terms that can be absorbed

≤ C
(

term that is integrable in time
)
‖d1‖2

H1‖δd‖2

H
1
2

N + terms that can be absorbed.

• The high frequencies fix the value of N ≈ − ln δE(t) and therefore the logarithmic inequality:

II ≤ C
(

term that is integrable in time
)

2−N .
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The double-logarithmic inequality
• We use the following Sobolev interpolation inequality for a general ε ∈ (0, 1/2],

‖f‖
L

2
ε
≤

C
√
ε
‖f‖εL2‖f‖1−ε

L2 .

• Key tool: explicit constant of embedding in terms of ε. We aim at choosing an appropriate
value of ε, in order to get a modulus of continuity.∣∣∣α1〈(d1·(∇δud2))d1 ⊗ d1,∇δu〉

H−
1
2

∣∣∣ ≤
(. . . )

(
N
ε

) 1
1−ε

δE(t) + (. . . ) 2−N + terms that can be absorbed

• By choosing a fix value ε, such as ε = 1/2, we lose the modulus of continuity:(
N
ε

) 1
1−ε

δE(t) ≤ CN2δE(t) ≤ CδE(t)ln
(
− δE(t)

)2 �7

• Solution: choose ε ≈ (1 + ln N)−1 and N ≈ − ln δE(t):(
N
ε

) 1
1−ε

δE(t) ≤ C
N
ε
δE(t) ≤ CδE(t)ln

(
− δE(t)

)
ln
(
ln
(
− δE(t)

))
�X

• The uniqueness follows by using Osgood theorem.
22



Conclusion

• Ericksen-Leslie equations.

• The leslie viscous coefficients, in particular the value of α1.

• The Ginzbourg-Landau penalisation.

• Model based on assumption α1 ≥ 0 (with further conditions to ensure viscous dissipation)
admits a unique weak solution.

• Uniqueness follows from suitable frequencies decompositions, leading to a logarithmic in-
equality of Osgood type.

• For details see: F. D.A. & H. Wu: Uniqueness of weak solutions for the general Ericksen-
Leslie system with Ginzburg-Landau penalization in T2, arXiv:2107.02101
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Thanks for your attention!


