Luminy, 27 April, 2022

_____/

Stochas	stic Ericksen-Leslie Equations	· · · · · · · · ·
· ·	by Z Brzezniak (York)	
· ·	CIRM, Luminy, 27 Apr 2022	
. .	joint works with	
· ·	P. Razafin an dimby (Distin) al G. Degoue (Cameroon)	

Ð	$D \subset \mathbb{R}^2$ bounded, smooth domain
	$\left(\circ_{\Gamma} \mathcal{D} = \mathcal{T}^{2}\right)$
	$\frac{\partial u}{\partial t} - \gamma \Delta u + u \cdot \nabla u + \nabla p = 0, t \ge 0$
	div $u(t, \cdot) = 0$ in D $u \cdot \vec{n} = 0$ on ∂D $u(0, \cdot) = u_0$
3	γ = l

· · · · · · ·	Notation (standard):	••••
· · · · · · ·	Notation (standard): $p = C_0^{\infty}(D, \mathbb{R}^2)$	· ·
· · · · · · ·	$H = \{ \mathbf{k} \in _{2}^{2} = _{2}^{2} (\mathbf{D}, _{2}^{2}) : d_{1} \sigma u = 0 \\ u \cdot \overline{\mathbf{n}} = 0 \text{ou} \partial \mathbf{D} \}$	•••
	$w \cdot w = 0 \text{or } 9 D \zeta$	
· · · · · · ·	$V = \{ u \in H' = H'(D, R^2) : dv u = 0, u _{\partial D} = 0 \}$	}
· · · · · · ·	$< H_{0}^{1}(D, \mathbb{R}^{2}) \cap H$	• •
· · · · · · ·		• •
· · · · · · ·	P: 12 -> H orthogonal projection (Leray - Helmhotz)	• •
· · · · · · ·	$D(A) = H^2 \cap V$, $A(u) = -P(\Delta u)$, $u \in D(A)$	j)
BL	$\begin{array}{l} \mathcal{B}(u,u) = \mathcal{P}(u \cdot \nabla u) \\ \mathcal{V} \subset \mathcal{H} \cong \mathcal{H}' \subset \mathcal{V}' \end{array}$	• •
	$V \subset \mu \subseteq \mu' \subset V'$	• •
((())		• •

(II) (=) (II	2)		· · · · · · · · · · · · · · · · · · ·
	Au + B(w) =		r (o)=useH
Obsersation 1. If - grad flow of the e	B = D then u.r.t to Hillant	(1.2) is spc.ce U'=	formally D(A ⁻¹ ₂)
of the a	energy	· · · · · · · · · · ·	
	$\frac{1}{2} u _{H}^{2}$		· ·
Vie- au at	$-\nabla_{V} \overline{\Phi}(u)$	· ·	· ·
5	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · ·

· ·	•	•	0	6)e r	-3	ما	h	0,		2		•	• •	•		B	(in N)	•	1		· · ·	-	A	, u		•	•	· ·	Ŵ	ſ,	4	•	•	C			•	· ·	· ·	•	•
· ·	•		<u>(</u>].	3		•	•	•		B	54	,	•	4	u)))			•		•				4	1		Ē	<u>5(</u>	ú)	7	(k	A A			>		•	• •	· ·	•	•
· ·	•	•	•	· ·	•	•	•	• •		•	•	•	•	• •	•	•	•	•	•	• •	3		2		B	(L	J,	Ċ	L		> H			•	0	•	• •			•	•	· ·	•	•
· ·	•	•	•	· ·	•	•	•	• •		•	•	•	•	• •	•	•	•	•	•	· ·	•	•	•	· ·	•	•	•	• •	•			•	•		•	•	• •		•	•	• •	· ·	•	•
• •	•	•	•	• •	•	•	•	• •		•	•	•	•	• •	•	•	•	•	•	•••	•	•	•	• •	•	•	•	• •	•	•	•••	•	•		•	•	• •		•	•	• •	• •	•	•
• •	•	•	•	• •	•	•	0	• •	•	0	0	•	•	• •	0	0	•	•	•	• •	•	•	•	• •	•	•	•	• •	•	0	• •	•	0 1		0	•	• •		•	•	•	• •	•	0
••••	•	•	•	• •	•	•	•	• •		•	•	•	•	• •	•	•	•	•	•	• •	•	•	•	• •	•	•	•	••••	•	•	••••	•	•		•	•	• •		•	•	• •	• •	•	•
· ·	•	•	•	• •	•	•	•	• •	•	•	•	•	•	· ·	•	•	•	•	•	· ·	•	•	•	· ·	•	•	•	• •	•	•	• •	•	•		•	•	• •		•	•	•	• •	•	•
1			•		•	•	•	• •	•	•	•	•	•	• •	•	•		•	•				•				•	• •		•	• •	•				•	• •		•			• •		•

The 52- valued heat flow on D
$(2.1) \frac{\partial n}{\partial t} = -n \times (n \times \Delta n) = \Delta n + \nabla n ^2 n$
$\frac{\partial n}{\partial n^2} \Big _{2D} = 0 \qquad n(0, \cdot) = n_0$
(21) is formally a - grad flaw w.r.t. "rienannian "structure on
$M = \{ u \in H'(D, \mathbb{R}^3) : u \in S^2 a.e. \}$
induced by $L^2(D, \mathbb{R}^3)$ inner product
of energy

$\Psi(n) = \frac{1}{2} \left(\nabla n \right)_{12}^{2}$, ^: D -	> S ²
$(2.2) \frac{\partial n}{\partial t} = -\nabla_{12} \Psi(n)$		
There is a more general syster	Kean (2.1):	· · · · · · · · · ·
$(23) \frac{\partial n}{\partial t} = -n \times (n \times \Delta n) +$	λ n× Sn	
(2.3) = Landan - lifshitz-Gilbert Equations (LLGE)	gyroscopic	force
· · · · · · · · · · · · · · · · · · ·		

Obsersation 3.	n×Sn L	$-n(n \times \Delta n) = -\nabla_{12}\psi(n)$
		nave a similar one of NSEs:
		a'priori estimates
$(1.4) \frac{1}{2} [u(t)]^2$	$+ \int_{S}^{t} Pu(s)$	$ _{L^{2}}^{2} ds \leq \frac{1}{2} u_{5} _{L^{2}}^{2}$
$(2.4) \frac{1}{2} \nabla n(t) ^2$	$\frac{1}{2} + \int_{0}^{t} n \times \Delta$	$n(s) _{2}^{2} ds \leq \frac{1}{2} \nabla n_{0} _{2}^{2}$
	· · · · · · · · · · · · · · · · · · ·	

Remarke Such types of finite dimensional publems were studied by Freidlin - Wentzel (Springer book) van den Eijden, Kohn, Reznikov (2005)

	Ericksen - le slie Equations
(3.1)	$\left(\frac{\partial u}{\partial t} + A u + B u + d i v (\nabla n O \nabla n) = 0\right)$
	$\frac{\partial n}{\partial t}$ + n× (n× Δn) + λ n× Δn
	$+ u \cdot \nabla n = 0$
He	$(\nabla n \odot \nabla n)_{ij} \coloneqq \langle \partial_i n, \partial_j n \rangle_{\mathbb{R}^3}$
	$fr n: D \longrightarrow S^2 \subset \mathbb{R}^3$
M	

64	2 Course	•
(3.2) <	$div(\nabla n \otimes \nabla n), u \neq \langle u \cdot \nabla n, \Delta n \rangle_{L^2} = 0$	•
	ELES (3.1) have a similar structure of	•
· · · · · · · · ·	-grad t perp. term on the "space" H x M with energy	•
· · · · · · · · · ·	on the "space" H x M	•
	with energy	0
(3.3)		•
· · · · · · · · ·	This will be used later!	•
12		•

Т	he Ginzburg-Landau approximation
	he Ginzburg-Landau approximation to $E(ES)$ $(\lambda = 0)$
(4 . r	$\left(\frac{\partial u}{\partial t} + A u + B u + div(\nabla n O \nabla n) = 0\right)$
	$\begin{cases} \frac{\partial n}{\partial t} + \Delta n + \frac{1}{\epsilon^2} F'(n) + (u \cdot Qn) = 0 \end{cases}$
	$F'(y) = \frac{1}{4} (y ^2 - 1)^2$
ha	s a similar structure with energy
(4. 2 [`] 13	$\mathcal{E}(u,n) = \frac{1}{2} u ^{2} + \nabla n ^{2} + \int F(n(x)) dx$

The	ELES	(3,1)	have !	een stu	died
by	Lin, I	Lin & Wa	ng (2010)	· · · · · · · · · · ·
		long (M	In- Chun	1	
TIA	ormer w	sed app	xinati	m of in	itial
The f	orner u sta by	sed app smooth	voximati data	on of in the le	itial etter
The f do	ormer u sita by Lapp	sed app smooth oxination	data,	the la (3.1) .	itial etter
The f do used	ormer w sita by Lapp	sed app smooth oxination	data, on by	the la (3.1).	utra etter

$(4.4) u(t) _{L^{2}}^{2} + \int_{S}^{t} (4.5) n(t) _{L^{2}}^{2} + \int_{S}^{t}$	1 Ru (s) 6 [n x 1 & n (Sn l'de	s	(n-1 ²	
$(4.5') n^{2}(e) ^{2}_{L^{2}} + \int_{0}^{4}$	(Δn_{ϵ})	+ <u>1</u> ^ ² 3		· · · · · · · · · · ·	
15			· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	· ·	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

	Such estimed pass to	tes are fle li	not s	sufficie	st to	· ·	
· · · · · · ·	Difficult	terms:	di	v (Pn	07n)	· · · · · · · · · · · · ·	
	and			$ Pn ^2$			· · · ·
· · · · · · ·	Both papers	used a	met	hod a	of Strue	we (1983	Э ^с
· · · · · · ·	Drainally	applied	10	heat	FIDU	equation	•
· · · · · · ·	(with a	general	tar	jet m	anifold	• • • • • • • • • • • •	· · ·
· · · · · · ·	inste	ad of	5 ²)	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	· ·	· · ·
46	. .	· · · · · · · · · · · ·	 	 	· · · · · · · · ·		· · · ·

Lady	zhenskaya inequa	elity .	Зc	l > 0: ∀ R	>0
	1 f (6, ~)/4 dx				· · · · · ·
(6 , T),	$\leq C_1$ eassup $\leq C_1 \epsilon \in [0,T]$) B(×, k	f(+,×) ² 2)	(×
	$\iint \nabla f(t, x) ^2 dx d$ $[\overline{G}, T] \times D$	t + <u>1</u> R ³	 	$f(t,x)/^{2}dx dx$	u -)
ß					

	D		Г (he		r	L - M		24	٩		~	2	a. 1	Ĵ	2		e J	a. 9	So		3	· · ·	to	•	•	10	4		6	lin		2 ·	•	•	•	•	· · ·	•	•	• •	· · ·	•
· · · · · · · · · · · · · · · · · · ·	· · ·	•	•	•	•	•	•	0			la	24	•		•	L		۰ ۲	- și F	h) =1	it u	2	>	•	u V		 . () Ju		· / ·		ک د	L 4	•	•	•	•	• •	•		• •	ઝુ)
· · · · · · · · · · · · · · · · · · ·	· ·	•	•	•																																					· · ·	· · ·	•
· ·	· ·	•	•	•			· ·		P		Y		5-		•	•]•				•	· ·	Ļ	a	-5		~i		· ·	(1	g	8	2.				•	•		· ·	•
· ·	••••	•	•	•	•	•	• •	 •	•	•	•	· ·	•	•	•	•	•	· ·	•	•	•	•	· ·	•	•	•	· ·	•	•	· ·	•	•	· ·	•	•	•	•	· ·	•	•	• •	· ·	•
• •	• •	•	•	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	• •	•	•	•	•	• •	•	•	•	· ·	•	•	· ·	•	•	• •	•	•	•	•	• •	•	•		· ·	•
. . .	· ·	•	•	•	•	•	• •	 •	•	•	•	• •	•	•	•	•	•	• •	•	•	•	•	• •	•	•	•	• •	•	•	• •	•	•	• •	•	•	•	•	• •	•	•	• •	· ·	•

is	n example of primary importance in physics is provided by hydrodynam is well known, the behaviour of an impompressible viscous flue usually described in terms of the Navier stokes Equations
ų	oweser, this equation is known to be approximate in more that
	re aspect. It takes into account only approximately
	e microscopic nature of a classical field. In addition,
	rantem effects and other sources of functuations are
	mpletely ignored. It is there fore of interest to know
لہ	hich properties described by the NSEs survive parturbation
ì	n porticulars small sto chastic perturbations which
	initate some of the neglected effects.

connect	ion with	modern H	nones of	pecial impo turbulence,	where one
would	Ribe to	determine anat u	physical uder the	flow ge	rested
by	the N	sEs au	nd staff	e under	small
jer	turbetion	S. "			
· · · · · · · · · · · · · ·	 	· · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · ·	. .
		· · · · · · · · · ·			
\$ 0					

 	According to L has to be as	and an	- Lifshitz	the noise	
· · · · · ·	has to be ad	Ided	to the s	terms	· · · · ·
· · · · · · ·	$\Delta u + d$		· · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
 	<u></u>	l w	· · · · · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · ·
· · · · · ·	where with	two	in depend	ent	· · · · · ·
· · · · · ·	Wiener processe				· · · · ·
· · · · · ·	There are other	theor	ies about	t noise	· · · · · · · · · · · · · · · · · · ·
· · · · · ·	e.g. fransp	ort r	roise	· · · · · · · · · · · · · ·	· · · · · ·

	$(i) \int \frac{\partial u}{\partial t} + A u + B u + div (\nabla n O \nabla n) = d$,ω
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	$ \begin{cases} \frac{\partial n}{\partial t} + n \times (n \times \Delta n) + \lambda n \times \Delta n \\ + u \cdot \nabla n \end{cases} = $	
. 	-n×(n×du) - 2n×du	
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	Very effer the terms $-n \times (n \times d\tilde{a})$ and $\lambda n \times \Delta n$	
22	and $\lambda n \times \Delta n$ one omitted	

Heu	ce we get	•
	$\frac{\partial u}{\partial t} + Au + Bu + div(\nabla n O \nabla n) = du$	•
	$\frac{\partial n}{\partial t}$ + n× (n× Δn) + + $u \cdot \nabla n$	•
C	= - 1 ~ × díð	•
One	con also study the GL	•
	con also study the GL yproximation of 15.2):	•
23	· · · · · · · · · · · · · · · · · · ·	•

$(5,3) \int \frac{\partial u}{\partial t} + Au + Bu + div(\nabla n)$	\ () \	Z n) =	= dw	· · · ·
$\int \frac{\partial n}{\partial t} + \frac{1}{e^2} F'(n) - \Delta n + t u$	L. 🗸	n		
$z - \lambda x d\tilde{u}$		· · · · ·		· · · ·
Note: The term	· · · · ·	 	· · · · · · ·	· · ·
- $\lambda n \times \lambda \tilde{\omega}$	· · · · ·			
has to be understood in the stratonovitch sense,			order	· · ·
24				

to be Cons	able to traint ce	prove the andition	- · · · · · · · · · · · · · · · · · · ·	
	×) ∈ S2		· ·	
Existence	of strong	max	inal	
solutions globalo	(d=3 plutions) aul (d=2)	wa-s	
proved 25		· ·	· ·	

	· · · · · · ·	and	Ē ,	Mandin	Lag	(2013,202
Ho	weler	uniqu	eners	an ex	<i>itere</i>	(d=2)
		only	proved	afte	(a	
(2018	trough) on 5	tochas od	ric he Strugge	lat fl	ow, proach

- de Bouard et all (2021) - 28 + P. Rorafinandinby - general domain	(torus T ² only noise in director equation
- general noise A The solution to this prob is based on approximation	leur by
is based ou gipter moe regular data and a fanily of "Lyapundu" fu 27	using

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	$\mathcal{E}_{R}(u,n)$	= Sup XED	$\begin{bmatrix} \frac{1}{2} \\ B \\ B \\ C \\ R \end{bmatrix}$	$ v ^2$	+ 1Pn	12]
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	A solution we add and	(u,n) is	H	× H ¹ -	valued
	between of sto	finite	numb	er	C12	τ_{λ}
	HXH' NORM	- jun	s down		· ·	
2.8	· · · · · · · · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · ·	· · · · · ·	· · · · · · · · · ·	· · · · · · · · · ·

· · · ·	Moreover in a joint paper with
· · · ·	G. De mappe and P. Razafinandinky
	we prove that Hong's approximation
 	we prose that thoug's approximation also leads to a unique solution.
· · · · ·	Remark: Our uniqueners proof uses
	$H^{-1} \times I^2$ norm of (u, n) .
· · · · ·	We cornt this method from
25	· · · · · · · · · · · · · · · · · · ·

an old ('95) PhD thesis about guasi-ge-strophic equations (and used also for Stochastic Navier-Stokes Eqn.)

	Large	Deviation	s Princ	ipe:		· · · · ·
· · · · · · · · · · · ·	Beha	riour as pale	the '	noise	becomes	· · · · ·
Co	n sider	a moo	let prov	<i>ولار</i>		· · · · ·
(6.1) { d 1	r ^e = r ^e (0) =	F (&) dt 40	$+ \int \varepsilon$	Ç (u ^t)dw	· · · · · ·
T	>0, uo	fixed a space b	of trajed	fores		· · · · ·
· · · · · · · · · · · · · · · · · · ·	τ u ^ε (·	$,\omega) \in \langle$	< , ,	ω	SZ.	· · · · · ·
31	· · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · ·		· · · ·

(6.2)) 	٤ ـ ا	Law (l	۲٤) -	a Ba	svel	· · · · · ·
· · · · · · · ·		· · · · · · ·	prov.	Wee as		the top,	· · · · · ·
D1	Ţ	X _T	>		is	a god rate	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · ·	fre	nhe { = I	$if \forall \\ \leq R $	R>D	dosed	(loses sc)	
· · · · · · ·	at	{ I 4	ERS	is C	oupad	. .	· · · · · · ·
· · · · · · · ·	· · · · ·	 	· · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · ·	. .	· · · · · · ·
32	· · · · ·	· · · · · · · ·	· · · · · · · · · · ·		· · · · · · · · · · ·	. .	· · · · · ·

Exagle.		1、1R) らで 1×(s	>1 ² ds, if x Est otherwise	-1 ^{1, 2}
	$(\times) = \{$	<i>∞</i> /	otherwise	· · · · ·
D2. Fo	mily (μ^{ϵ}) ϵ X $-$	>> sahis	fies LDP	· · · · ·
· · · · · · · · · · · · · · · · · · ·	XT	with a g	good rate	· · · · ·
• • • • • • • • • • • • • • • • • • •	udion I	iff	(~)	· · · · ·
(6.3)	$M_{\varepsilon}(A)$	- exp[L inf I(x) E XEA -	
33				

Example 2 If wis ~ BM on [0,7] aul me = Law (JEw) then me satisfies LDP on KT with I as in Example 1.

Theorem 6.1 (ZB+ UManna + APanda, 2019) $(c.4) \begin{cases} \frac{\partial u^{\varepsilon}}{\partial t} + A u^{\varepsilon} + B u^{\varepsilon} + d^{i} \nabla (\nabla n^{\varepsilon} \otimes \nabla n) = du \\ \frac{\partial n^{\varepsilon}}{\partial t} + F'(n^{\varepsilon}) - \Delta n^{\varepsilon} + t u^{\varepsilon} \nabla n^{\varepsilon} \\ = \sqrt{\varepsilon} \left(-\lambda n^{\varepsilon} \times du \right) \end{cases}$ The family $\mu^{\varepsilon} = Law(\mu^{\varepsilon}, 1^{\varepsilon})$

satisfies LDP on $\chi_{T} = [C(E_{i}T_{j},M)]$	$n \lfloor 2(0, T; V) \}$
X _T = [C(E,T],M) with rate functional defined as follows.	$\frac{1}{2} = \frac{1}{1} \left(0, \overline{1}; H^2 \right)$
Let K, K be RKHS win W, W P.	s associated
(6.5) S = L ² $(0,T_{5}, K) \times L^{2}$	(0,T, R)
$If(4,g) \in S, J'$	P(f,g) = (u,n)
iff	· · · · · · · · · · · · · · · · · · ·

• • •	•	• •	•	• •	•	• •	0	•	• •	0	0	•	• •	• •	5	ke	L	1	-0		•	26	14			hì		• • • • •	0	• •	•	0	• •	 0	•	• •	•		• •
							$ \int \frac{\partial u}{\partial t} + A u + B u + d \delta v (\nabla n \otimes \nabla n = f) $ $ \frac{\partial n}{\partial t} + F'(n - \Delta n) + t u \cdot \nabla n $																																
						· · ·	-	<u>d</u>	n It	•	↓ ↓	•	F		'(Î		· · ·		2	2	Λ		4	· · · · · · · · · · · · · · · · · · ·	•	1		Ű		- 	71		•	•	· · ·	•	•	· · ·
· · · ·	•	· ·	•	· ·		• • • • • • • • • • • • • • • • • • •	•	•	· ·	•	•	•	• •	· · ·		•	•	· · ·	•			2			2		•	g	•			•	· · ·	•	•	· ·	•	•	· ·
· · · ·	•	· ·		c ((0)			Lo	· · ·		•	2	(0) =	- ₩	١٥		•	•	• •		•	•	· · ·	•	•	· · ·	•	· · ·	•	•	· · ·	•	•	· · ·	•	•	· · ·
· · ·	•	• •	•	• •	•	• •	0	•	• •	0	• • •	•	• •	· ·		0	•	· ·	•	•	• •		•	•	• •	•	•	• •	0 0 0	· ·	•	0	· ·	 0 0 0	•	• •	•	0 0	• •
3		· · ·	•	· ·	•	· · ·	•	•	· ·	•	•	•	· ·	· ·	•	•	•	· · ·	•	•	· · ·		•	•	· · ·	•	•	· · ·	•	· · ·	•	•	· · ·	•	•	· ·	•	•	· ·

I (((6-7)	(u,n)) := 1	$uf \{ \{ z \mid l \ (f, g \in J^{n} \} \} \} = J^{n} (f)$	> ² (² (9,T; 12)×(² (9,T; R)) F. 9) }
Corollary	ΓĻ	A C X	T is a god set
	then the	(A)>0	¥ε>0
38		· · · · · · · · · · · · · · ·	

Pro	of is based on the Laplace principle version of LDP proved by Budhiragen + Dupui,
Two	, results are needed.
Lemm	a B A stochastic version
	of Lemma A
Lenn	A. If $(f_n, g_n) \longrightarrow (f_r, g_r)$
	reakly in L2CO, TK) × LCO, TK)
	her $J(f_n, g_n) \rightarrow J(f_i, f)$
39	stoongly in XT.

<u>vī</u> .	Theorem 6.1 has been generalised (28, PR + GD) to the ELES. The skeleton equation corresponding to (5.2):
(7.1)	$ \begin{cases} \frac{\partial u}{\partial t} + A u + B u + d \omega (\nabla n \otimes \nabla n) = f \\ \frac{\partial n}{\partial t} + n \times (n \times \Delta n) + f u \cdot \nabla n \end{cases} $
· · · · · · ·	$\begin{cases} \frac{\partial n}{\partial t} + n \times (n \times \Delta n) + t u \cdot \nabla n \end{cases}$
· · · · · · · ·	$= -1 \times g$
40	<pre></pre>

The	second ea generalise	pration in (7.1) car be at to contain aniso $\phi(u)$, i.e.	tropy
· · · · · · · · ·	energy	(u), (e)	
(7.2	$) \int \frac{\partial u}{\partial t} t$	Au+Bu+div(PnO	∇ n) = £
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	$\int \frac{\partial n}{\partial t} + i$	$n \times (n \times (S_n - \phi'(n)))$	+u·Dn
· · · · · · · · · ·		$= -\lambda \wedge x g$	· · · · · · · · · · · · · · ·
 	$6 \cdot S^2 -$	> [0, 00)	· · · · · · · · · · · · · · · ·
 	e 9	$\phi(n) = (n \cdot H)^{2}$ $H \in \mathbb{R}^{3}$	· · · · · · · · · · · · · · · ·
:41:000		$H \in IK^{-}$	

· · · · · · · · · · · · · · · · · · ·	Th. 7.1	rr fe	$L^{2}(0, 00)$ $L^{2}(0, 00)$	('v 12	
	then (Struce so	7.2) ha	s a u	nique st	°~7
· · · · · · · · · · · · · · · · · · ·	number	d sing	ular t	înes.	
J	Ef IIFII, II free the	r solution	is requ	lar, i.e.	
	without	singular	fies .		
(h)					· · · · · · · · · · · · ·

Moreover, if yo ES2 is a strict local minimum of \$ and To = Jo if 11 no - no 11 H1 < E then 3 2 > 0 then $\exists 1, g \in \mathcal{C}(-\infty, 0, ...)$ 11. u. 11, 2 2 E and solutions (u,n) of (7.2) on (-00,0) s. K. $(u, n)(-\infty) = (0, \overline{n}_{0})$ $(u,n)(0) = (u_0, \eta_0)$ (**Ú3)** (1

Moreover, $\frac{1}{2} \inf \left[\int_{-\infty}^{\infty} |f(s)|^2 ds + \int_{-\infty}^{0} |g(s)|^2 ds \right]$ E (uo, no). This result generalizes a result by Z.B., S. Cerrai al M. Freidlin (2015) for 2-D SNE on a brus (44)

and	by ZB. L. Li ad for 1-D <u>LL</u>	EH (2019)
Th-	7.2 LDP	for Stochartic
	ELE's	holds.
	Thank you	
(45)		