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?⃝
D [ IR2 bounded

,
smooth domain

( or D= IT2 )
N?⃝
If - v An + u.tn + Dp = 0

,

t ≥o
✗ c-D

(1) dir alt;) = 0 in D

u .
n→ = 0 on 8D{

no
,
.ru.

③
2=1



Notation (standard) :
0 = CD

, ☒2)

H = { u c- L12 __ ECD
,
IR2) : dir u=O
a.n→ =D on 8D }

✓ = { a c- It
'
=H' CD

,
IR2) : dion -_0

, ub☐=0}
= Hi CD, IR2)http://t
→ H orthogonal projection

( Leroy - Helmholtz _ _.
. )

☐ (A) = IH2N V , A (a) = -Pau )
,
UED(A)

Blu) Blum)
= pcu.tn)
VCHEH

'
C V

'

④



(1) ⇔ a. 2)

G.2) ˢt t An + Bae) =D UC0 )=UoeH

Observation :L . If B =D then ( I.2) is formally

- grad flow w.at. to Hilbertspace
✓
'

=D (A-4)

of the energy

÷Hi
i. e.

It = -Tf , 9- (a)
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Observation 2 . Bcu) 1- An w.r.tn
.
V
'

(1.3) ( Bu
,
Au} , = < A-% Blu) ,A%Au >

= < BU1
,
a > = o

H

H

6



?⃝ The 52- valued heat flow on D

(2. 1) In
It

= - n ✗ In ✗ In)=(sntlDn
%=> ↳ =0 n(9.) = no

(2^1) is formally a - gradfl@ww.r.fi
" riemannian

" structure on

M = { a c- H' CD,R3 ) : he s' a. e.)

induced by [ CD , R3) inner product
of energy7



✗ G) = £ / ☒ n 12
L2 I

^ ? D → s }

(2. 2) On
F-

= - % 4 (n)

There is a more general synth than (2.1) :

( 2.3) On

⇒ = - n ✗ ( n ✗An) +tn
(2.3) = Landau - Lifshitz -Gilbert gyroscopic force

Equations (LL GE)
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observation 3. n ✗ In 1- - n ( n ✗ An )= - Dµ4(n)
Hence LLGES (2-3) have a similar

structure to the one of NSES :

- grad + perp . term

This implies alsimilar a' priori
estimates

G.4) { In G) 12
+ It /Ducs> 12
t

Lads ≤ ≤ luk
t

A.4) { 117^141%+1 In ✗ Ants>I[ ds ≤ {¥12L2

9



Remaf . Such types of finite dimensional

problems were studied by

-
Fridolin - Wentzel ( Springer book)

- Vanden Eijden , Kohn ,
Reznikov (2005J
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Ericksen - Leslie Equations

(3. 1) It + A " +Bu + divan ① Dn) = 0
8h{ It + nxcm ✗An) + In ✗ In

+ a. Dn = 0

Here

④ n ④ Rnli,j ÷
< 2in

, 2in≥ ,
for n : D → s

'
c IR3
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Because

13.2) < divctno.tn) ,u > + ( a. Dn
,
An > ⇒

L2 L2

the ELES (3. 1) have a similar structure of
- grad + perp . term

on the
"

space
" H ✗ Me

with energy

(3-3) Elan) - ≤ tuft £1Bn /{
EEr !
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⑤ The Ginzburg - Landau approximation
to ELES (4--0)

4. 1){
It + A " +Bu + divctno.tk)=o

It + In + { F' (n ) + fe.tn) =0

F' (g) = ↓ ( ly/ 2- 1)
2

has a similar structure
with energy

it µ
+/ Flnks)d×14.2) Elwin) = t.lu/2tlRn/2
D
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system (4. 1) was studied by
Lin etat ( 1996)

The ELES (3. 1) have been studied

by Lin
,
Lin & Wang (201/0)

( 2011 )and Hong ( Min
- Chan )

The former used approximation of
initial

data by smooth data
, the latter

used approximation by ( 3. 1)
.

The first step was to get a'priori estimates :
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(4-4) felt> % + It /Puts >Pds ≤ Hot

4.5) In CH12 + fᵗ In ✗ In fols ≤ Hot?
-

/ And -117ns >12h67 /
"

E
or

¢1.5 ' ) / n'G) /[ +{↳ the + % net -1%12 ) Rds

≤ Inkosi
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Such estimates are not sufficient to

pass to the limit
.

Difficult terms : divan①Rn)

and nlDnf

Both papers
used a method of Struve (198$)

originally applied to
heat flow equation

( with a general target manifold
instead of S2 )

.

Me



Ladyzheuskaya inequality : 7 c, > 0 : t R >0

4.6) If I f- It, × ) /
"dxdt

①F) XD

* c-E.T]

"P / /fax) /×≤ C, esssnp
✗
BG1R)

✗[ \ / 171-4×112dxdt + ¥, \ /
1-4×112dxdtfLIT] XD

①F) XD

It



⑤ There are many reasons
to introduce

randomness
,
e-g.

Landau- Lifshitz v
. V1

,
oh

. ✗ v11 ( 1958)
" Fluid Mechanics

"

( see recent papers by G. Eiynk )

◦ʳ

Faris- Jona Lasinio ( 1982) :
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11

An example of primary importance in physics is provided by hydrodynamics .
As is well known , the behaviour of an impompressibk viscous fluid
is usually described in terms of the Navier Stokes Equations .
However, this equation isknown to be approximate in more than
one aspect . It takes into account only approximately
the microscopic nature of a classical field . Inaddition ,

quantum effects and other sources of quotations are

completely ignored
. It is therefore of interest to know

which properties described by the NSE, survive perturbations,
in particular small stochastic perturbations which

imitate some of the neglected effects .
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This latter problem is also of special importance in
connection with modern theories of turbulence , where one

would like to determine physically interesting
measures invariant under the flow generated
by the NSES and stable under small

perturbations .
"
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According to Landau - Lifshitz the noise

has to be added to the D terms

b. a + dw

An + dÑ

where W ,Ñ two independent
Wiener processes .

There are other theories about noise ,

e. 9 . transport noise
21



G. 1)

{
It + A " +Bu + divctno.tk)=dw

It + nxcmx In) + In ✗ In

+ a. In =

- n ✗ In × dÑ ) - In × dÑ

Very after the terms - n ✗ In ✗ dat )

and ✗ ^ ✗ In

are omitted
22



Hence we get

G.

µ
It + 1- " +Bu + divctno.tk)=dw

It + nx(mxbn) + + a. Dn

=

- In × dÑ

One can also study the GL
approximation of 15.2) :
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II. + An +Bu + divan ① Dn) = dw⇐

↑ It +2¥ '

(n)- An + + a ☐^

.

= - In × dÑ

Note : The term

- in × dÑ
has to be understood in the

Stratono ✓itch sense
,
in order

24



to be able to prove the

constraint condition

nlt
,
✗ ) c- 52

-

Existence of strong maximal

solutions ( D= } ) and

global so solutions (
D= 2) was

proved by
25



E. B
,
P
. Ra -afimaudimby
ad E. Hauseablas (2015,2-021)

However
, uniqueness are existed

of strong global solutions ( D=2)

was only proved after a
break trough paper by A- Hocquet
( 2018) on stochastic heat flow ,

who generalized Struve's approach .
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( forces f-2
-

de Bonard et all CW21 )
,

- ZB + P. Raraefimandim.by / only
noise

in director
- general domain equation

_geueralmi-
☆ The solution to this problem
is based on approximation by

more regular data
and using

a family of
"

Lyapunov
"

functions :
27



✗ c-☐

/ / " 12+117^12 ]Eg ( un) := sup

BGRR)

A solution (un) is H×H
'
- valued

weakly continues
and Vx H2- valued measurable

between finite number th > . _ TN

of stopping times at which

H×H
'
norm jumps down !
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Moreover in a joint paper with

G- Dengue and P. Razafimandiwby
we prove

that thong 's approximation
also leads to a unique

soluh
Remark : Our uniqueness proof uses

H7E norm of Lu ,
n)

.

We learnt this method from

29



an
old (

'
95) PhD thesis

about quasi- geostrophic equations
( and used also for stochastic

Navier-Stokes Eqn . )
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⑤ Large Deviations Principle :

Behaviour as the noise becomes

weak

consider a model problem

(a) { die =
F⇔dt + FE Glue)dw

WE (a) = Un

T > 0
,
no fixed .

×
,

_

a space of trajectories

hEf
,
w ) C- ✗

T ,
WE&

.
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(6-2) ME :-. Law ( UE
) - a Borel

prob .
measure on the top .

space XT .

⑤ I :X, →
Eco] is a ged rate

function if t R >
0

{ ☒ I ≤ Rt is closed ( lower
se)

at { I ≤ R ) is compact
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Example:-| yj-fct.tl; IR)

I( ×) = { Eli
's> Rds .ifxqH

"

-0
,

otherwise

D2_ . Family ✗
& /
{so satisfies LDP

on ✗
+

with a good rate

(~ )function I iff

if It ) )(6.37 felt) - e✗p[-I ✗c-+

33



t.xanpk-ZI.tw is a BM on ④ its

ad
/
{
=
Law crew)

/
{
satisfies LDP on Xpthen

with ± as in Example 1 .
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Theorem 6.1 ( D- Bt U Manna t A Panda,
201 9)

%É + AU4B if + divctrio.DE)=%w
(6.4) { {

It + F '

(A)- Ane + + at. Die

= re f- 1m€ dÑ)
The family
'
= Law (n; 14
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satisfies LDP on

✗
+
= KEEP];H> nkco.IN) ]

with rate functional ≥
×# it? HD
n LY91-5HY

defined as follows .

let K
,

I be RKHS associated

with IN
,
Ñ

.

Put

⑥ 5) 5=12 Cop; k ) ✗ [ to,T, E)
If (f , g) c- S , J°(fig) =(u.nl

iff
36



Skeleton equation

ˢ+ + An +Bu + divan ① In =of
C6. 6) { It + F '

(n - An) + + a. Dn

= f- In × g)

ulo)=uo,7(o)=✗

37



± ( Cain) ) := iuf{£KCf , g) If[cat;k>✗[cat,ñ)
(6-7) : Cain) = J°(f. g) }

If A C XT is agodsef

Cortland
µ
µ ,
(f) > 0 HE >°

.
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Proof is based on the Laplace

principle version of LDP

proved by Budhirag.at/3upui:

Two results are needed .

Lemma B
.

A stochastic version

of lemma A

lemur A . If (fn , gn ) → Cf
, g)

weakly in LYOIIK
) ✗ L40, IE )

then ](fn8n) → Jct , G)

strongly in XT .
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VII. Theorem 6.1 has been generalised
(ZB

,
PR + GD ) to the ELES

.

The skeleton equation corresp.co/nigtoC5.2) :

II. + An +Bu + divctno.tk)=fHi { It + nx(mxAn) + + a. Dn

=

- In ✗ of
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The second equation in (7-1) can be

generalised to contain anisotropy
energy ⑨ (a) ,

i.e.

II. + An +Bu + divctno.tk)=f"""{ It + nxfnxsfn-q.cn )) ) +"""

=

- In ✗ of

4:52 → to ,•)

e. g. ∅(n)=(n.tl )?
41 HE IR3



Th
. 7.1 If f- C- L70

,qu
')

and of c- to,o, L2 )

then 17.2) has a unique strong
Struve solution with a finite
number of singular times

.

If KF11
, Hgh

are
small enough

then the selection is regular, i.e .

without singular
times

.

④



Moreover, if ye C- 52 is a strict

local minimum of ∅ and ño= go

then 7 E > 0 : if I/ Ñ - no Kµ , < E

Kuo Ku < E then 77, of c-EE99 .. )

and solutions ( ain ) of ( 7.2)

on C- ago) s.tk .

ten / C- a) = to,ño
)

fun )lo ) = (
no
/ %)

L④



Moreover,

{int (f) 11-6>12 dsi-fjfg.es>12V
'

µ
ds }

= E ( no , no ) .

This result generalizes
a result

by 7. B, S . Certain
al M Friedkin ( 20151

for 2-D SNE on a
tres

④



and by 2-B. L.li at EH ( 2019)

for 1-D LLGEs_ .

LDP for stochasticTh?
ELE , holds .

-

Thank you .
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