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Dispersive problems in 1D:

i∂tu−A(Dx)u = N(u), u(0) = u0

Dispersion relation:
τ = −a(ξ)

Group velocity:
vξ = a′(ξ)

Dispersive models:
a′′(ξ) 6= 0

NLS: a(ξ) = ξ2

KdV: a(ξ) = ξ3

Deep gravity waves a(ξ) = |ξ|
1
2

Deep gravity waves a(ξ) = |ξ|
3
2

Shallow gravity waves a(ξ) =
√
ξ tanh ξ

Shallow capillary waves: a(ξ) =
√
ξ3 tanh ξ
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The nonlinearity
a) Classified by strength:

semilinear (e.g. NLS3, KdV), Lipschitz dependence on data

quasilinear (e.g. water waves), continuous dependence on data

b) Classified by leading homogeneity:

quadratic,

N(u) = Q1(u, u) +Q2(u, ū) +Q3(ū, ū)

cubic, e,g.
N(u) = Q(u, ū, u)

higher order

c) Classified by leading order nonlinear effect (cubic case):

defocusing

focusing
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The fundamental solution for the linear flow
Self-similar asymptotic behavior,

K(t, x) ≈ 1√
ta′′(ξv)

eitφ

where φ solves the eikonal equation

φt + a(φx) = 0

Based on the dispersion relation and the group velocity of waves

τ + a(ξ) = 0, v = a′(ξ),

the (unique) selfsimilar solution φ(t, x) = tψ(x/t) satisfies

ψ′(v) = ξv := [a′]−1(v)

Asymptotic solutions for the linear flow with localized data:

u(t, x) ≈ 1√
t
γ(x/t)eitψ(x/t)

Asymptotic profile:
γ(v) = c(v)û0(ξv)
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Dispersive decay for the linear equation

Dispersive bounds:

‖u(t)‖L∞ . t−
1
2 ‖u(0)‖L1

Strichartz estimates:

‖u‖L6
x,t

+ ‖u‖L4
tL

∞
x

. ‖u(0)‖L2

- better for data in L2 based spaces

Bilinear L2 bounds for frequency separated solutions:

‖uv‖L2
x,t

. ‖u0‖L2‖v0‖L2

- transversality rather than dispersive bounds
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Main Question: Does the nonlinear problem have global, dispersive
solutions for small initial data ?

Scenario 1: The initial data is small and localized. Do we then have
global solutions with dispersive, t−

1
2 decay ?

Scenario 2: The initial data is small but unlocalized (e.g. Hs). Do
we then have global solutions with L6 Strichartz decay ?
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Quadratic vs. cubic nonlinearities
a) Quadratic problems

i∂tu−A(Dx)u = Q2(u, u)

stronger nonlinear interactions for small data

resonance analysis for two wave resonances

Two favourable cases:
I nonresonant structure
I null structure ( resonant interactions are killed by the nonlinearity)

b) Cubic problems

i∂tv −A(Dx)v = Q2(v, v, v)

weaker nonlinear interactions for small data

resonance analysis for three wave resonances: many resonant
interactions
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Normal form methods
From (good) quadratic to cubic analysis:

1 Normal form transformations (Shatah)

v = u+B(u, u)

I works for some semilinear problems, but unbounded for quasilinear
problems

2 (Quasilinear) Modified energy methods (Hunter-Ifrim-T.): Modify
the energy functionals rather than the solutions, to produce cubic
energies

d

dt
Es(u) . ‖u‖2Es(u)

I works for some quasilinear problems, e.g. gravity waves, capillary
waves

3 Paradiagonalization (Alazard-Delort) Apply a partial NFT
combined with a paradifferential symmetrization

I e.g. for gravity waves
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A cubic model
Divide and conquer strategy: avoiding quasilinear features and
quadratic normal forms, we consider a cubic model

i∂tu−A(Dx)u = Q(u, ū, u)

with a cubic, translation and phase rotation invariant nonlinearity:

̂Q(u, ū, u)(ξ) =

∫
ξ=ξ1−ξ2+ξ3

q(ξ1, ξ2, ξ3)û(ξ1)û(ξ2)û(ξ3)dσ

Conservative nonlinearity:

q(ξ, ξ, ξ) ∈ R

Focusing/defocusing character given by sign of q(ξ, ξ, ξ) relative to
the sign of a′′(ξ).

Semilinear/quasilinear character given by the size of q(ξ1, ξ2, ξ3)
relative to the size of a for unbalanced ξ’s.
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Part I: the localized data result

Theorem (Small and localized data)

Suppose q is conservative, and

‖u0‖Hs0 + ‖xu0‖Hs1 � 1

Then the solution u is global, and has global dispersive decay

‖u(t)‖L∞ . t−
1
2

Recent expository notes, Ifrim-T.
I Simplest case: q has compact support, s0 = s1 = 0
I General case, q global, bounded, a′′ ≈ |ξ|σ , σ ∈ R

Many contributions over time: Hayashi-Naumkin, Lindblad-Soffer,
Kato-Pusateri, Alazard-Delort, Ifrim-T., Delort, etc.
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Linear dispersion via vector fields

iut −A(D)u = 0

Conserved quantity
‖u‖L2 = const

Vector field ( via Egorov)

L(x,D) = x− taξ(D), [L,P ] = 0

Second conserved quantity:

‖Lu‖L2 = const

Dispersion via energy estimates:

‖u(t)‖L∞ . t−
1
2 ‖u‖L2‖Lu‖L2
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Nonlinear dispersion via vector fields
1. Bootstrap assumption:

‖u‖L∞ . εt−
1
2

2. Energy estimates for u

d

dt
‖u‖2L2 . ‖u‖2L∞‖u‖2L2

3. Energy estimates for LNLu

d

dt
‖LNLu‖2L2 . ‖u‖2L∞‖Lu‖2L2

where LNL is a nonlinear correction of L,

LNLu = Lu+ tB(u, ū, u)

4. Gronwall:
‖u‖L2 + ‖Lu‖L2 . tCε

2

5. (Possibly nonlinear) vectorfield bound:

‖u‖L∞ . t−
1
2 (‖u‖L2 + ‖LNLu‖L2)
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The asymptotic profile and the asymptotic
equation
Objective: Close the bootstrap for ‖u‖L∞ .

Ansatz inspired by linear behavior:

u(t, x) ≈ 1√
t
γ(t, v)eitψ(v), v = x/t

Then we need a uniform bound for the asymptotic profile γ

Modified scattering: We have to allow a slow time dependence on γ,
which should approximately solve an asymptotic equation

γ̇(t, v) ≈ −iq(ξv, ξv, ξv)t−1γ(t, v)|γ(t, v)|2

The global boundedness of gamma follows if q(ξv, ξv, ξv) is real.

Difficulty: We need to make a good choice for γ in terms of the
solution u.
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Asymptotic equations in NLS context
A. Hayashi-Naumkin, refined by Kato-Pusateri; derive an asymptotic

equation for the Fourier transform of the solutions,

d

dt
û(t, ξ) = λit−1 û(t, ξ)|û(t, ξ)|2 +OL∞(t−1−ε).

B. Lindblad-Soffer; derive an asymptotic equation in the physical
space along rays,

(t∂t + x∂x)u(t, x) = λitu(t, x)|u(t, x)|2 +OL∞(t−ε).

C. Deift-Zhou used complete integrability and the inverse scattering
method to obtain long range asymptotics

D. Ifrim-T. wave packet testing: test the NLS solution with an
approximate wave packet type linear wave expanding on the t

1
2

spatial scale.
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Wave packets with time dependent scale
Spatial scales associated to time scale t at velocity v and associated
frequency a′(ξv) = v:

δx = t
1
2aξξ(ξv)

1
2 , δξ = t−

1
2a
− 1

2
ξξ (ξv).

Global in time wave packets with time dependent scale:

uv = aξξ(ξv)
1
2χ

(
x− vt

t
1
2aξξ(ξv)

1
2

)
eiφ

Good approximate solutions for the linear flow on dyadic time scales:

(i∂t −A(D))uv = O(t−1)

Better estimate using quadratic expansion of a(ξ) near ξ = ξv:

(i∂t −A(D))uv = ct−2Luv +O(t−
3
2 )
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Wave packet testing
The asymptotic profile function γ:

γ(t, v) = 〈uv, u〉L2

Main estimates:

Good approximation for u:

u(t, x) = γ(t, v)t−
1
2 eiφ +O(t−

5
8 )

Asymptotic equation for γ:

γ̇(t, v) = iq(ξv, ξv, ξv)t
−1γ(t, v)|γ(t, v)|2+O(εt−1−), γ(1, α) = O(ε)

Further goals:

Modified scattering:

u(t, x) = W (v)t−
1
2 eiφeiq(ξv ,ξv ,ξv)|W (v)|2 log t +O(t−

5
8 )

Asymptotic completeness.
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Part II: the non-localized data result

Theorem (Small and non-localized data)

Suppose q is conservative and defocusing.

‖u0‖L2 ≤ ε� 1

Then the solution u is global, and satisfies global Strichartz estimates

‖u(t)‖L6 . ε
2
3

and bilinear estimates

‖PAuPBu‖L2 . ε2d(A,B)−
1
2

work in progress, Ifrim-T.

First result of this type

The estimates are new even for NLS3 (weaker bounds by
Planchon-Vega in this case)

Wave packet testing May 10, 2022 17 / 21



The bootstrap set-up

Bootstrap assumption based on unit scale frequency decomposition

u =
∑

uj

with slowly varying frequency envelope {cj} so that

‖u0j‖L2 . cj

Then assume that

(BOOT1) ‖uj‖L∞L2 . εcj

(BOOT2) ‖uj(t)‖L6 . (εcj)
2
3

(BOOT3) ‖∂x(uj ūk)‖L2 . ε2(1 + |j − k|)
1
2

- bootstraping both Strichartz and bilinear: Ifrim-T., Benjamin Ono
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Localized density flux identities
a) Linear /nonlinear case:

∂tmj(u, ū) = ∂xpj(u, ū) + quartic

∂tpj(u, ū) = ∂xej(u, ū) + quartic

b) Nonlinear case, modified energies

m]
j(u, ū) = mj(u, ū)+B4

j,p(u, ū, u, ū), p]j(u, ū) = pj(u, ū)+B4
j,p(u, ū, u, ū),

Density flux identities:

∂tm
]
j(u, ū) = ∂x(pj(u, ū) +R4

j,m(u, ū, u, ū)) +R6
j,m(u, ū, u, ū, u, ū)

∂tp
]
j(u, ū) = ∂x(ej(u, ū) +R4

j,p(u, ū, u, ū)) +R6
j,p(u, ū, u, ū, u, ū)

This requires solving a complex division problem

Energy bounds follow by direct integration
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Interaction Morawetz bounds
a) Interaction Morawetz functional:

I(uj , uj) =

∫
x<y

m]
j(x)p]j(y)−m]

j(y)p]j(x)dxdy

Time differentiation:

d

dt
I(uj , uj) ≈ ‖∂x(uj ūj)‖2L2 + ‖uj‖6L6 + Errors (6,8,10)

This proves the L6 Strichartz and diagonal bilinear L2.
b) Transversal Interaction Morawetz functional:

I(uj , uk) =

∫
x<y

m]
j(x)p]k(y)−m]

k(y)p]j(x)dxdy

Time differentiation:

d

dt
I(uj , uk) ≈ ‖∂x(uj ūk)‖2L2 + Errors (6,8,10)

This proves the off-diagonal bilinear L2.
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Thank you !
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