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Dispersive problems in 1D:

i0yu — A(Dg)u = N(u), u(0) = up

Dispersion relation:

= —a(¢)
Group velocity:
ve =d'(€)
Dispersive models:
a’(§) # 0
e NLS: a(¢) = &2
o KdV:a(¢) =¢3

Deep gravity waves a(§) = |€ |%

Deep gravity waves a(§) = |€ |%
Shallow gravity waves a(§) = /£ tanh &

Shallow capillary waves: a(£) = /&3 tanh &
May 10, 2022  2/21



The nonlinearity
a) Classified by strength:
e semilinear (e.g. NLS3, KdV), Lipschitz dependence on data

e quasilinear (e.g. water waves), continuous dependence on data

b) Classified by leading homogeneity:

@ quadratic,

N(u) = Q1(u,u) + Qa(u, u) + Q3(u, n)

@ cubic, e,g.

@ higher order

c) Classified by leading order nonlinear effect (cubic case):
o defocusing
o focusing
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The fundamental solution for the linear flow
Self-similar asymptotic behavior,

1 .
K(t, $) =~ T(é‘)elt¢
a”(Qu

where ¢ solves the eikonal equation

¢t + a(ﬁbx) =0

Based on the dispersion relation and the group velocity of waves
T+a(§) =0, v=d(g),
the (unique) selfsimilar solution ¢(t,x) = ty(x/t) satisfies
V() =& = [d]7H ()
Asymptotic solutions for the linear flow with localized data:

1 ,
u(t,x) =~ %w(x/t)enwx/t)

Asymptotic profile:
Y(v) = e(v)to(&)
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Dispersive decay for the linear equation

@ Dispersive bounds:
_1
[u(®)[[Lee <t 2[[u(0)]| 1
@ Strichartz estimates:
lullzs , + llullpsre < llu(0)]] L2

- better for data in L? based spaces

e Bilinear L? bounds for frequency separated solutions:
HUUHLiyt S lluollz2[lvo| 2

- transversality rather than dispersive bounds
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Main Question: Does the nonlinear problem have global, dispersive
solutions for small initial data 7

Scenario 1: The initial data is small and locallized. Do we then have
global solutions with dispersive, t~2 decay 7

Scenario 2: The initial data is small but unlocalized (e.g. H®). Do
we then have global solutions with L® Strichartz decay ?
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Quadratic vs. cubic nonlinearities
a) Quadratic problems

10U — A(Dw)u = Q2(u7 u)

@ stronger nonlinear interactions for small data

@ resonance analysis for two wave resonances
e Two favourable cases:
» nonresonant structure
» null structure ( resonant interactions are killed by the nonlinearity)

b) Cubic problems

10w — A(Dy)v = Q2(v, v,v)

o weaker nonlinear interactions for small data

@ resonance analysis for three wave resonances: many resonant
interactions
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Normal form methods
From (good) quadratic to cubic analysis:
© Normal form transformations (Shatah)

v =u+ B(u,u)

» works for some semilinear problems, but unbounded for quasilinear
problems
© (Quasilinear) Modified energy methods (Hunter-Ifrim-T.): Modify
the energy functionals rather than the solutions, to produce cubic
energies

d
il 0 < 2E8
% pr(u) 5 Jul2E*(w)

» works for some quasilinear problems, e.g. gravity waves, capillary
waves
@ Paradiagonalization (Alazard-Delort) Apply a partial NFT
combined with a paradifferential symmetrization
» e.g. for gravity waves

Wave packet testing May 10, 2022 8/21



A cubic model

Divide and conquer strategy: avoiding quasilinear features and
quadratic normal forms, we consider a cubic model

i0u — A(Dg)u = Q(u, u,u)

with a cubic, translation and phase rotation invariant nonlinearity:

—

Quan©= [ 4l &)@ i)

o Conservative nonlinearity:

q(§,6,8) €R

e Focusing/defocusing character given by sign of ¢(&, &, ) relative to
the sign of a”(§).

@ Semilinear/quasilinear character given by the size of ¢(&1, &2, &3)
relative to the size of a for unbalanced &’s.
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Part I: the localized data result

Theorem (Small and localized data)

Suppose q is conservative, and

luol| 750 + ||zuol| =1 < 1

Then the solution u is global, and has global dispersive decay

_1
[u()|lp= S 72

@ Recent expository notes, Ifrim-T.
» Simplest case: ¢ has compact support, sg = s;1 =0

» General case, ¢ global, bounded, a” ~ |£]7 , 0 € R

@ Many contributions over time: Hayashi-Naumkin, Lindblad-Soffer,
Kato-Pusateri, Alazard-Delort, Ifrim-T., Delort, etc.
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Linear dispersion via vector fields

Conserved quantity
|lu||z2 = const

Vector field ( via Egorov)
L(xz,D) = x — tag(D), [L,P]=0
Second conserved quantity:
|| Lu|| 72 = const

Dispersion via energy estimates:

_1
[u(®)llzee S €2 |Jull g2 || Lull 2
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Nonlinear dispersion via vector fields
1. Bootstrap assumption:
lullze < et™2
2. Energy estimates for
d
dt
3. Energy estimates for LNy

lullze < lullZeslullZ:

d
%HLNLUHE S Nl Zoo | Ll 72
is a nonlinear correction of L,

LNEy = Lu + tB(u, @, u)

where LNL

4. Gronwall: ,
2 + || Lull g2 < t°°

5. (Possibly nonlinear) vectorfield bound:
_1
lullzee S 72 (lull g2 + 1L Full 2)
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The asymptotic profile and the asymptotic

equation
Objective: Close the bootstrap for ||u|fe.

Ansatz inspired by linear behavior:
u(t,x) =~ ify(t v)et®) v=ua/t
) ﬁ ) )

Then we need a uniform bound for the asymptotic profile ~y

Modified scattering: We have to allow a slow time dependence on 7,
which should approximately solve an asymptotic equation

At v) & —iq(€n, &o, &)t 0) [y (E,0)
The global boundedness of gamma follows if q(&,, &y, &) is real.

Difficulty: We need to make a good choice for v in terms of the
solution u.
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Asymptotic equations in NLS context
A. Hayashi-Naumkin, refined by Kato-Pusateri; derive an asymptotic
equation for the Fourier transform of the solutions,
d

Za(t,€) = Xt a(t, §)[a(t, O + O (7).

B. Lindblad-Soffer; derive an asymptotic equation in the physical
space along rays,

(t0r + 20y )u(t, x) = Nitu(t, z)|u(t, z)|> + Ope (t7°).

C. Deift-Zhou used complete integrability and the inverse scattering
method to obtain long range asymptotics

D. Ifrim-T. wave packet testing: test the NLS solution with an )
approximate wave packet type linear wave expanding on the ¢2
spatial scale.
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Wave packets with time dependent scale
Spatial scales associated to time scale t at velocity v and associated
frequency d'(&,) = v:

bz = thage(€,)?, 66 =1 Tag? (&),

N

Global in time wave packets with time dependent scale:

1 T — vt i
u, = age (o) x <ﬁ> e
t2age(§0)?
Good approximate solutions for the linear flow on dyadic time scales:
(10 — A(D))u, = O(t™ 1)
Better estimate using quadratic expansion of a(£) near £ = &,:
(10, — A(D))u, = ct2Lu, + O(t"2)

‘Wave packet testing May 10, 2022 15 /21



Wave packet testing
The asymptotic profile function ~:

'7(t7 1)) - <11U, u>L2

Main estimates:

e Good approximation for u:
ult, ) = y(t,v)t 26 + Ot %)
e Asymptotic equation for ~:
(t,v) = ig(&, o, €)Y (E V)V (E V) PHO(t™7), (1,0) = O(e)

Further goals:
e Modified scattering:

u(t,z) = W (v)t~3 e ittt W) logt | 0=3)

o Asymptotic completeness.
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Part II: the non-localized data result

Theorem (Small and non-localized data)

Suppose q is conservative and defocusing.
uollr2 < e <1

Then the solution u is global, and satisfies global Strichartz estimates
lu(®)llzs S €3

and bilinear estimates

|PauPpgul| 2 < €2d(A, B)2

@ work in progress, Ifrim-T.

o First result of this type

e The estimates are new even for NLS3 (weaker bounds by
Planchon-Vega in this case)
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The bootstrap set-up
Bootstrap assumption based on unit scale frequency decomposition
u= Z uj
with slowly varying frequency envelope {c¢;} so that
luojllze < ¢
Then assume that
(BOOT1)  |ujllpeor2 S €
(BOOT2)  [luj(1)|1s < (ec;)5
(BOOT3)  [da(wjwn)llze S (1 +1j — k|)?2

- bootstraping both Strichartz and bilinear: Ifrim-T., Benjamin Ono
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Localized density flux identities
a) Linear /nonlinear case:

Oymj(u, w) = Ozp;j(u, w) + quartic

Opj(u,u) = Ogej(u, ) + quartic
b) Nonlinear case, modified energies

mg(u,ﬂ) = mj(u,ﬂ)+B;-{p(u,ﬂ,u,ﬂ), pg-(u,ﬂ) = pj(u, a)+Bﬁp(u,ﬂ,u,ﬂ),

Density flux identities:

8tm§- (u, @) = 0z(pj(u,u) + R;{m(u, U, u,w)) + R?,m(u, Uy Uy Uy Uy W)
8tp§ (’LL, ’I_L) = a$ (e] (U, ﬂ’) + R?,p(ua u,u, ﬂ)) + R?,p(ua u,u, U, u, ﬁ)

@ This requires solving a complex division problem
e Energy bounds follow by direct integration
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Interaction Morawetz bounds
a) Interaction Morawetz functional:

Hujou) = [ mb()pb(y) - m ) o) dady
<y
Time differentiation:

d
El(uj’uj) ~ ||05(uj;) |72 + [|uj||Ss + Errors (6,8,10)

This proves the L8 Strichartz and diagonal bilinear L?.
b) Transversal Interaction Morawetz functional:

Ty, ) = / (@) () — mi (y)p () dady
<y

Time differentiation:

d
al(uj,uk) ~ |10 (ujy) |22 + Errors (6,8,10)

This proves the off-diagonal bilinear L?.
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Thank you !
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