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Setting I

The setting:

Σ is a smooth, compact, embedded (oriented) hypersurface in Rd+1

without boundary;

TΣ = the tangent bundle; νΣ = unit normal field;

PΣ = the orthogonal projection onto TΣ;

∇Σ, divΣ = the surface gradient and surface divergence, respectively;

% = density (constant); u = velocity field; TΣ = surface stress tensor.

Surface Navier-Stokes equations (incompressible):

%
(
∂tu + PΣ(u · ∇Σu)

)
− PΣ divΣ TΣ = 0 on Σ

divΣu = 0 on Σ

u(0) = u0 on Σ.

(1)
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Setting II

Surface stress tensor TΣ via Boussinesq-Scriven:

TΣ = TΣ(u, π) = 2µsDΣ(u) + (λs − µs)(divΣu)PΣ − πPΣ,

where µs > 0 is the surface shear viscosity, λs > 0 is the surface dilatational
viscosity, π the pressure, and

DΣ(u) :=
1

2
PΣ

(
∇Σu + [∇Σu]T

)
PΣ

is the surface rate-of-strain tensor.
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The model I

%
(
∂tu + PΣ(u · ∇Σu)

)
− PΣ divΣ TΣ = 0 on Σ

divΣu = 0 on Σ

u(0) = u0 on Σ.

If u0 ∈ TΣ, then u(t) ∈ TΣ, t > 0.

It holds
−PΣ divΣ TΣ = −µs(∆Σu + RicΣu) +∇Σπ,

where
∆Σ is the (negative) Bochner-Laplacian and

RicΣ is the Ricci curvature tensor.

In case d = 2, RicΣu = KΣu, where KΣ is the Gaussian curvature of Σ
(the product of the principal curvatures).
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The model II

%
(
∂tu + PΣ(u · ∇Σu)

)
− µs(∆Σu + RicΣu) +∇Σπ = 0 on Σ

divΣu = 0 on Σ

u(0) = u0 on Σ.

Remarks:

PΣ(u · ∇Σu) = ∇uu, where ∇ is the Levi-Civita connection of Σ;

DΣu = 1
2

(
∇u + [∇u]T

)
,

∆Σ = (∆H + RicΣ),

where ∆H is the Hodge Laplacian (also called Laplace-de Rham operator),
acting on 1-forms.

Surface Navier-Stokes equations:

%
(
∂tu +∇uu

)
− µs(∆Hu + 2Ric u) + gradπ = 0 on Σ

divu = 0 on Σ

u(0) = u0 on Σ.
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Selected Literature I

%
(
∂tu + PΣ(u · ∇Σu)

)
− PΣ divΣ TΣ = 0 on Σ

divΣu = 0 on Σ

u(0) = u0 on Σ.

Justification of model:

[Jankuhn-Olshanskii-Reusken, ’18] Incompressible fluid problems on embedded
surfaces: modeling and variational formulations.

[Koba-Liu-Giga, ’17] Energetic variational approaches for incompressible fluid
systems on an evolving surface.

Numerical Analysis:

[Jankuhn, Olshanskii, Quaini, Reusken, Voigt, Yushutin, ’18-...]
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Selected Literature II

%
(
∂tu +∇uu

)
− µs(∆Hu + 2Ric u ) + gradπ = 0 on Σ

div u = 0 on Σ

u(0) = u0 on Σ.

[Ebin-Marsden, ’70]: Note added in Proof.

[Taylor, ’92]: Existence and uniqueness for initial data in Morrey spaces,
global existence for 2d surfaces.

[Mazzucato, 03]: Existence and uniqueness for initial data in Besov-Morrey
spaces.

[Chan-Czubak, ’13-15] Navier-Stokes on hyperbolic spaces.

[Chan-Czubak-Disconzi, ’17] Discussion and evaluation of different models for NS
on manifolds.
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Selected Literature III

Related work:

%
(
∂tu +∇uu

)
− µs∆Hu + gradπ = 0 on Σ

div u = 0 on Σ

u(0) = u0 on Σ.

[Il’in, Il’in-Filatov, ’89-’94]: dimΣ = 2 : Existence and uniqueness of generalized
solutions.

[Cao-Rammaha-Titi, ’99]:

%
(
∂tu +∇uu

)
− µs∆Hu + γ νS2 × u + gradπ = f on S2

div u = 0 on S2

u(0) = u0 on S2.

NS on rotating S2 : Gevrey regularity for t > 0, degrees of freedom.

[Foias-Temam, ’89]: 2d NS on periodic domains: Gevrey regularity for t > 0.
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Existence and Uniqueness I

Surface Navier-Stokes equations:

%
(
∂tu +∇uu

)
− µs(∆Σu + RicΣ u) +∇Σπ = 0 on Σ

divΣu = 0 on Σ

u(0) = u0 on Σ.

In local coordinates:

∆Σu = g ij (∇i∇j − Λk
ij∇k )u,

RicΣu = R i
j u

j ∂

∂x i
,

∇Σπ = g ij∂jπ
∂

∂x i
,

where

∇i are covariant derivatives,

Λk
ij are the Christoffel symbols.

Locally, this results in generalized Stokes equations in Rd .

Gieri Simonett Surface-Navier-Stokes



Existence and Uniqueness I

Surface Navier-Stokes equations:

%
(
∂tu +∇uu

)
− µs(∆Σu + RicΣ u) +∇Σπ = 0 on Σ

divΣu = 0 on Σ

u(0) = u0 on Σ.

In local coordinates:

∆Σu = g ij (∇i∇j − Λk
ij∇k )u,

RicΣu = R i
j u

j ∂

∂x i
,

∇Σπ = g ij∂jπ
∂

∂x i
,

where

∇i are covariant derivatives,

Λk
ij are the Christoffel symbols.

Locally, this results in generalized Stokes equations in Rd .

Gieri Simonett Surface-Navier-Stokes



Existence and Uniqueness II

The surface Stokes operator

Au := −2PPΣdivΣDΣ(u) = −µsP(∆Σ + RicΣ)u, u ∈ H2
q,σ(Σ,TΣ).

A has maximal regularity in Lq,σ(Σ,TΣ). [Prüss, S, Wilke ’21].

By the contraction mapping principle, for any u0 ∈ B
2−2/p
qp (Σ,TΣ) with

divΣ u0 = 0 there exists a number a = a(u0) > 0 and a unique solution

u ∈ H1
p ((0, a); Lq,σ(Σ,TΣ)) ∩ Lp((0, a);H2

q,σ(Σ,TΣ)),

π ∈ Lp((0, a); Ḣ1
q (Σ))

of the surface Navier Stokes equations (1), provided p, q are subject to additional
conditions.

Time weights of Muckenhoupt type allow to decrease the initial regularity.
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Existence and Uniqueness III

A admits a bounded H∞-calculus in Lq,σ(Σ,TΣ). [S, Wilke ’21].

Critical spaces:

u0 ∈ B
d/q−1
qp,σ (Σ,TΣ) where

{
2/p + d/q ≤ 3, q ∈ (d/3, d) strong setting,

2/p + d/q ≤ 2, q ∈ (d/2,∞) weak setting.

The Sobolev index is always −1, independent of q, p.

d = 3, u0 ∈ H
1/2
2,σ (Σ,TΣ). ‘Fujita-Kato’.

d = 2, u0 ∈ L2,σ(Σ,TΣ).
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Energy dissipation and equilibria

∂tu +∇uu − 2µsPΣ divΣDΣ(u) +∇Σπ = 0 on Σ

divΣu = 0 on Σ

u(0) = u0 on Σ.

Energy dissipation:

E(t) :=

∫
Σ

1

2
|u(t)|2 dΣ,

d

dt
E(t) = −2µs

∫
Σ
|DΣ(u(t))|2 dΣ.

If u is an equilibrium, then DΣ(u) = 0.

This readily implies ∇Σπ = 1
2
∇Σ|u|2.

Set of equilibria:

E =
{

(u, π) : divΣu = 0, DΣ(u) = 0, π =
1

2
|u|2 + c

}
.

Gieri Simonett Surface-Navier-Stokes



Energy dissipation and equilibria

∂tu +∇uu − 2µsPΣ divΣDΣ(u) +∇Σπ = 0 on Σ

divΣu = 0 on Σ

u(0) = u0 on Σ.

Energy dissipation:

E(t) :=

∫
Σ

1

2
|u(t)|2 dΣ,

d

dt
E(t) = −2µs

∫
Σ
|DΣ(u(t))|2 dΣ.

If u is an equilibrium, then DΣ(u) = 0.

This readily implies ∇Σπ = 1
2
∇Σ|u|2.

Set of equilibria:

E =
{

(u, π) : divΣu = 0, DΣ(u) = 0, π =
1

2
|u|2 + c

}
.

Gieri Simonett Surface-Navier-Stokes



Equilibria

Set of equilibria:

E =
{

(u, π) : divΣu = 0, DΣ(u) = 0, π =
1

2
|u|2 + c

}
.

A tangential field is called a Killing field if

(∇vu|w) + (∇wu|v) = 0 for all tangential fields v ,w on Σ,

where ∇ is the Levi-Civita connection.

It holds
(DΣ(u)v |w) + (DΣ(u)w |v) = (∇vu|w) + (∇wu|v),

hence
DΣ(u) = 0 ⇐⇒ u is a Killing field.
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Killing fields I

Some properties of Killing fields:

Killing fields on a Riemannian manifold form a sub Lie-algebra of the Lie-algebra
of all tangential fields.

Killing fields of a Riemannian manifold (M, g) are the infinitesimal generators of
the isometries I (M, g) on (M, g), that is, the generators of flows that are
isometries on (M, g).

If (M, g) is compact and the Ricci tensor is negative definite everywhere, then
any Killing field on M is equal to zero and I (M, g) is a finite group.

Dimension is less or equal to d(d + 1)/2 with equality if and only if Σ is compact
and isomorphic to Sd .
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Killing fields II: Examples

(a) Sphere:

Σ = S2 : dim E = 3.

u∗ ∈ E ⇐⇒ u∗(x) = ω × x , x ∈ S2, ω ∈ R3.

(b) Torus:

Σ = T2 : dim E = 1. Every equilibrium (Killing field) u∗ is a rotation w.r.t. the z-axis.
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Stability

Theorem (Prüss, S, Wilke, J. Evol. Eq. 2021)

Each solution that starts out close to an equilibrium u∗ ∈ E exists globally and
converges to a (possibly different) equilibrium u∞ ∈ E at an exponential rate.

u∞ = PEu0, where PE is the orthogonal projection of u0 onto E (with respect to the
L2-inner product).

Proof:

Each equilibrium is normally stable.
Dimension of kernel of linearization at u∗ = dimension of E.

Generalized principle of linearized stability [Prüss, S, Zacher, ’09].
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Global existence for two-dimensional surfaces

Theorem (S, Wilke. 2021)

Suppose d = 2 and u0 ∈ L2,σ(Σ,TΣ).

Then the solution exists globally and converges exponentially fast to the equilibrium
u∗ = PEu0 in the topology of H2

q (Σ,TΣ) for any fixed q ∈ (1,∞).

Proof:

Critical spaces (critical weights),

extrapolation scale,

Korn’s inequality (factoring out the Killing vector fields),

energy estimate,

parabolic regularization.

Numerical simulations: Courtesy of Maxim Olshanskii, University of Houston.

Webpage

Sphere I

Sphere I

Torus
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energy estimate,

parabolic regularization.

Numerical simulations: Courtesy of Maxim Olshanskii, University of Houston.
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Some steps in the proof

Let
V j

2(Σ) := {v ∈ H j
2,σ(Σ,TΣ) | (v |z)L2

= 0 for all z ∈ E}, j ∈ {0, 1}.

Note that H j
2,σ(Σ,TΣ) = E ⊕ V j

2(Σ).

Proposition (S, Wilke. 2021)

Let d = 2. Suppose v0 ∈ V 0
2 (Σ) and let v be the solution with initial value v0. Then

(a) v(t) ∈ V 0
2 (Σ) for t ∈ [0, t+(v0)) and v(t) ∈ V 1

2 (Σ) for t ∈ (0, t+(v0)).

(b) There exists a universal constant M > 0 such that

|v(t)|2L2(Σ) +

∫ t

0
|v(s)|2

H1
2 (Σ)

ds ≤ M|v0|2L2(Σ), t ∈ (0, t+(v0)).

(c) t+(v0) =∞ and there exists a constant α > 0 such that

|v(t)|L2(Σ) ≤ e−αt |v0|L2(Σ), t ≥ 0.

Proof:

(b) Energy estimate & Korn’s inequality for functions in V 1
2 (Σ).

(c) Global existence: H∞-calculus, critical spaces & result in [Prüss, S, Wilke ’18]. �
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Some steps in the proof

Theorem (Main Theorem for 2D-surfaces)

Suppose d = 2 and u0 ∈ L2,σ(Σ,TΣ).

Then the solution exists globally and converges exponentially fast to the equilibrium
u∗ = PEu0 in the topology of H2

q (Σ,TΣ) for any fixed q ∈ (1,∞), where PE is the

(orthogonal) projection of u0 onto E.

Proof: Let u0 ∈ L2,σ(Σ,TΣ) be given. Then

u0 = u∗ + v0

with u∗ = PEu0 and v0 ∈ V 0
2 (Σ). Let v be the global solution with initial value v0 and

let
u(t) = u∗ + v(t), t ≥ 0.

We know that
|v(t)|L2(Σ) ≤ e−αt |v0|L2(Σ), t ≥ 0.

Using Lq-Lq maximal regularity and reiteration, we can show exponential convergence
in the topology of H2

q (Σ,TΣ) for any fixed q ∈ (1,∞).
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Outlook

Manifolds with boundary.

Free boundary problems on manifolds.

Navier Stokes equations on moving surfaces.
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