On the Navier-Stokes equations on surfaces

Gieri Simonett

Vanderbilt University

Joint work with Jan Prüsst and Mathias Wilke

Non-linear PDEs in Fluid Dynamics

CIRM, Luminy May 9-13, 2022

ヨート

The setting:

 Σ is a smooth, compact, embedded (oriented) hypersurface in ℝ^{d+1} without boundary;

イロト イボト イヨト イヨト

э.

The setting:

- Σ is a smooth, compact, embedded (oriented) hypersurface in ℝ^{d+1} without boundary;
- $T\Sigma$ = the tangent bundle; ν_{Σ} = unit normal field;
- \mathcal{P}_{Σ} = the orthogonal projection onto $\mathsf{T}\Sigma$;
- ∇_{Σ} , div_{Σ} = the surface gradient and surface divergence, respectively;

= nar

イロト イポト イヨト イヨト

The setting:

- Σ is a smooth, compact, embedded (oriented) hypersurface in ℝ^{d+1} without boundary;
- $T\Sigma$ = the tangent bundle; ν_{Σ} = unit normal field;
- \mathcal{P}_{Σ} = the orthogonal projection onto $\mathsf{T}\Sigma$;
- ∇_{Σ} , div_{Σ} = the surface gradient and surface divergence, respectively;
- ρ = density (constant); u = velocity field; T_{Σ} = surface stress tensor.

・ ロ ト ・ 同 ト ・ 三 ト ・ 一 ト

= nar

The setting:

- Σ is a smooth, compact, embedded (oriented) hypersurface in ℝ^{d+1} without boundary;
- $T\Sigma$ = the tangent bundle; ν_{Σ} = unit normal field;
- \mathcal{P}_{Σ} = the orthogonal projection onto $\mathsf{T}\Sigma$;
- ∇_{Σ} , div_{Σ} = the surface gradient and surface divergence, respectively;
- ρ = density (constant); u = velocity field; T_{Σ} = surface stress tensor.

Surface Navier-Stokes equations (incompressible):

$$\varrho(\partial_t u + \mathcal{P}_{\Sigma}(u \cdot \nabla_{\Sigma} u)) - \mathcal{P}_{\Sigma} \operatorname{div}_{\Sigma} \mathcal{T}_{\Sigma} = 0 \quad \text{on } \Sigma$$
$$\operatorname{div}_{\Sigma} u = 0 \quad \text{on } \Sigma$$
$$u(0) = u_0 \quad \text{on } \Sigma.$$
(1)

・ ロ ト ・ 同 ト ・ 三 ト ・ 一 ト

= nar

Surface stress tensor \mathcal{T}_{Σ} via Boussinesq-Scriven:

$$\mathcal{T}_{\Sigma} = \mathcal{T}_{\Sigma}(u, \pi) = 2\mu_s \mathcal{D}_{\Sigma}(u) + (\lambda_s - \mu_s)(\operatorname{div}_{\Sigma} u) \mathcal{P}_{\Sigma} - \pi \mathcal{P}_{\Sigma},$$

where $\mu_s > 0$ is the surface shear viscosity, $\lambda_s > 0$ is the surface dilatational viscosity, π the pressure, and

$$\mathcal{D}_{\Sigma}(u) := \frac{1}{2} \mathcal{P}_{\Sigma} \left(\nabla_{\Sigma} u + \left[\nabla_{\Sigma} u \right]^{\mathsf{T}} \right) \mathcal{P}_{\Sigma}$$

is the surface rate-of-strain tensor.

$$\begin{split} \varrho \big(\partial_t u + \mathcal{P}_{\Sigma} \big(u \cdot \nabla_{\Sigma} u \big) \big) - \mathcal{P}_{\Sigma} \operatorname{div}_{\Sigma} \mathcal{T}_{\Sigma} &= 0 \quad \text{ on } \Sigma \\ \operatorname{div}_{\Sigma} u &= 0 \quad \text{ on } \Sigma \\ u(0) &= u_0 \quad \text{ on } \Sigma. \end{split}$$

• If $u_0 \in \mathsf{T}\Sigma$, then $u(t) \in \mathsf{T}\Sigma$, t > 0.

・ロト ・回ト ・ヨト・

$$\begin{split} \varrho \big(\partial_t u + \mathcal{P}_{\Sigma} (u \cdot \nabla_{\Sigma} u) \big) - \mathcal{P}_{\Sigma} \operatorname{div}_{\Sigma} \mathcal{T}_{\Sigma} &= 0 \quad \text{ on } \Sigma \\ \operatorname{div}_{\Sigma} u &= 0 \quad \text{ on } \Sigma \\ u(0) &= u_0 \quad \text{ on } \Sigma. \end{split}$$

• If
$$u_0 \in \mathsf{T}\Sigma$$
, then $u(t) \in \mathsf{T}\Sigma$, $t > 0$.

• It holds

$$-\mathcal{P}_{\Sigma}\operatorname{div}_{\Sigma}\mathcal{T}_{\Sigma}=-\mu_{s}(\Delta_{\Sigma}u+\operatorname{Ric}_{\Sigma}u)+\nabla_{\Sigma}\pi,$$

≡ ∽ へ (~

・ロン ・回 と ・ ヨ と ・ ヨ と …

$$\begin{split} \varrho \big(\partial_t u + \mathcal{P}_{\Sigma} (u \cdot \nabla_{\Sigma} u) \big) - \mathcal{P}_{\Sigma} \operatorname{div}_{\Sigma} \mathcal{T}_{\Sigma} &= 0 \quad \text{ on } \Sigma \\ \operatorname{div}_{\Sigma} u &= 0 \quad \text{ on } \Sigma \\ u(0) &= u_0 \quad \text{ on } \Sigma. \end{split}$$

• If
$$u_0 \in \mathsf{T}\Sigma$$
, then $u(t) \in \mathsf{T}\Sigma$, $t > 0$.

• It holds

$$-\mathcal{P}_{\Sigma}\operatorname{div}_{\Sigma}\mathcal{T}_{\Sigma}=-\mu_{s}(\Delta_{\Sigma}u+\operatorname{Ric}_{\Sigma}u)+\nabla_{\Sigma}\pi,$$

where

- Δ_{Σ} is the (negative) Bochner-Laplacian and
- $\bullet~\mathrm{Ric}_{\Sigma}$ is the Ricci curvature tensor.

・ロト ・回ト ・ヨト・

$$\begin{split} \varrho \big(\partial_t u + \mathcal{P}_{\Sigma} (u \cdot \nabla_{\Sigma} u) \big) - \mathcal{P}_{\Sigma} \operatorname{div}_{\Sigma} \mathcal{T}_{\Sigma} &= 0 \quad \text{ on } \Sigma \\ \operatorname{div}_{\Sigma} u &= 0 \quad \text{ on } \Sigma \\ u(0) &= u_0 \quad \text{ on } \Sigma. \end{split}$$

• If
$$u_0 \in \mathsf{T}\Sigma$$
, then $u(t) \in \mathsf{T}\Sigma$, $t > 0$.

It holds

$$-\mathcal{P}_{\Sigma}\operatorname{div}_{\Sigma}\mathcal{T}_{\Sigma}=-\mu_{s}(\Delta_{\Sigma}u+\operatorname{Ric}_{\Sigma}u)+\nabla_{\Sigma}\pi,$$

where

- Δ_{Σ} is the (negative) Bochner-Laplacian and
- $\bullet~\operatorname{Ric}_\Sigma$ is the Ricci curvature tensor.

In case d = 2, $\operatorname{Ric}_{\Sigma} u = K_{\Sigma} u$, where K_{Σ} is the Gaussian curvature of Σ (the product of the principal curvatures).

= nar

イロト イポト イヨト イヨト

- $\varrho(\partial_t u + \mathcal{P}_{\Sigma}(u \cdot \nabla_{\Sigma} u)) \mu_s(\Delta_{\Sigma} u + \operatorname{Ric}_{\Sigma} u) + \nabla_{\Sigma} \pi = 0 \quad \text{ on } \Sigma$
 - $\operatorname{div}_{\Sigma} u = 0$ on Σ
 - $u(0) = u_0$ on Σ .

・ロト ・ 一下・ ・ ヨト・

= nar

Remarks:

- $\mathcal{P}_{\Sigma}(u \cdot \nabla_{\Sigma} u) = \nabla_u u$, where ∇ is the Levi-Civita connection of Σ ;
- $\mathcal{D}_{\Sigma} u = \frac{1}{2} \left(\nabla u + [\nabla u]^{\mathsf{T}} \right)$,
- $\Delta_{\Sigma} = (\Delta_H + \operatorname{Ric}_{\Sigma}),$

where Δ_{H} is the Hodge Laplacian (also called Laplace-de Rham operator), acting on 1-forms.

$$\varrho(\partial_t u + \mathcal{P}_{\Sigma}(u \cdot \nabla_{\Sigma} u)) - \mu_s(\Delta_{\Sigma} u + \operatorname{Ric}_{\Sigma} u) + \nabla_{\Sigma} \pi = 0 \quad \text{on } \Sigma$$

 $\operatorname{div}_{\Sigma} u = 0$ on Σ

$$u(0) = u_0$$
 on Σ

Remarks:

- $\mathcal{P}_{\Sigma}(u \cdot \nabla_{\Sigma} u) = \nabla_{u} u$, where ∇ is the Levi-Civita connection of Σ ;
- $\mathcal{D}_{\Sigma} u = \frac{1}{2} \left(\nabla u + [\nabla u]^{\mathsf{T}} \right),$
- $\Delta_{\Sigma} = (\Delta_H + \operatorname{Ric}_{\Sigma}),$

where Δ_{H} is the Hodge Laplacian (also called Laplace-de Rham operator), acting on 1-forms.

• Surface Navier-Stokes equations:

$$\begin{split} \varrho \big(\partial_t u + \nabla_u u \big) - \mu_s (\Delta_H u + 2 \text{Ric } u) + \text{grad} \, \pi &= 0 \quad \text{ on } \Sigma \\ \text{div} u &= 0 \quad \text{ on } \Sigma \end{split}$$

$$u(0) = u_0$$
 on Σ .

ヘロト ヘヨト ヘヨト ・

э.

$$\begin{split} \varrho \big(\partial_t u + \mathcal{P}_{\Sigma} (u \cdot \nabla_{\Sigma} u) \big) - \mathcal{P}_{\Sigma} \operatorname{div}_{\Sigma} \mathcal{T}_{\Sigma} &= 0 \quad \text{ on } \Sigma \\ \operatorname{div}_{\Sigma} u &= 0 \quad \text{ on } \Sigma \\ u(0) &= u_0 \quad \text{ on } \Sigma. \end{split}$$

Justification of model:

- [Jankuhn-Olshanskii-Reusken, '18] Incompressible fluid problems on embedded surfaces: modeling and variational formulations.
- [Koba-Liu-Giga, '17] Energetic variational approaches for incompressible fluid systems on an evolving surface.

Numerical Analysis:

• [Jankuhn, Olshanskii, Quaini, Reusken, Voigt, Yushutin, '18-...]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\varrho(\partial_t u + \nabla_u u) - \mu_s(\Delta_H u + \boxed{2\operatorname{Ric} u}) + \operatorname{grad} \pi = 0 \quad \text{on } \Sigma$$
$$\operatorname{div} u = 0 \quad \text{on } \Sigma$$
$$u(0) = u_0 \quad \text{on } \Sigma.$$

- [Ebin-Marsden, '70]: Note added in Proof.
- [Taylor, '92]: Existence and uniqueness for initial data in Morrey spaces, global existence for 2d surfaces.
- [Mazzucato, 03]: Existence and uniqueness for initial data in Besov-Morrey spaces.
- [Chan-Czubak, '13-15] Navier-Stokes on hyperbolic spaces.
- [Chan-Czubak-Disconzi, '17] Discussion and evaluation of different models for NS on manifolds.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

э.

Related work:

$$\begin{split} \varrho \big(\partial_t u + \nabla_u u \big) - \mu_s \Delta_H u + \operatorname{grad} \pi &= 0 \quad \text{ on } \Sigma \\ \operatorname{div} u &= 0 \quad \text{ on } \Sigma \\ u(0) &= u_0 \quad \text{ on } \Sigma. \end{split}$$

- [II'in, II'in-Filatov, '89-'94]: $\dim \Sigma = 2$: Existence and uniqueness of generalized solutions.
- [Cao-Rammaha-Titi, '99]:

$$\begin{split} \varrho \big(\partial_t u + \nabla_u u \big) - \mu_s \Delta_H u + \gamma \, \nu_{\mathbb{S}^2} \times u + \operatorname{grad} \pi = f & \text{on } \mathbb{S}^2 \\ & \operatorname{div} u = 0 & \text{on } \mathbb{S}^2 \\ & u(0) = u_0 & \text{on } \mathbb{S}^2. \end{split}$$

NS on rotating S^2 : Gevrey regularity for t > 0, degrees of freedom.

• [Foias-Temam, '89]: 2d NS on periodic domains: Gevrey regularity for t > 0.

くロン 不得 とくほ とくほ とうほう

Surface Navier-Stokes equations:

$$\varrho(\partial_t u + \nabla_u u) - \mu_s(\Delta_{\Sigma} u + \operatorname{Ric}_{\Sigma} u) + \nabla_{\Sigma} \pi = 0 \quad \text{on } \Sigma$$

$$\operatorname{div}_{\Sigma} u = 0$$
 on Σ

$$u(0) = u_0$$
 on Σ

イロト イボト イヨト イヨト

æ

In local coordinates:

Surface Navier-Stokes equations:

$$\begin{split} \varrho \big(\partial_t u + \nabla_u u \big) - \mu_s (\Delta_{\Sigma} u + \operatorname{Ric}_{\Sigma} u) + \nabla_{\Sigma} \pi &= 0 \quad \text{ on } \Sigma \\ \operatorname{div}_{\Sigma} u &= 0 \quad \text{ on } \Sigma \\ u(0) &= u_0 \quad \text{ on } \Sigma. \end{split}$$

In local coordinates:

$$\begin{split} \Delta_{\Sigma} u &= g^{ij} (\nabla_i \nabla_j - \Lambda^k_{ij} \nabla_k) u_j \\ \operatorname{Ric}_{\Sigma} u &= R^i_j u^j \frac{\partial}{\partial x^i}, \\ \nabla_{\Sigma} \pi &= g^{ij} \partial_j \pi \frac{\partial}{\partial x^i}, \end{split}$$

where

- ∇_i are covariant derivatives,
- Λ_{ii}^k are the Christoffel symbols.

Locally, this results in generalized Stokes equations in \mathbb{R}^d .

• The surface Stokes operator

 $Au := -2 \mathbb{P} \mathcal{P}_{\Sigma} \mathrm{div}_{\Sigma} \mathcal{D}_{\Sigma}(u) = -\mu_s \mathbb{P}(\Delta_{\Sigma} + \mathrm{Ric}_{\Sigma})u, \quad u \in H^2_{q,\sigma}(\Sigma, \mathsf{T}\Sigma).$

A has maximal regularity in $L_{q,\sigma}(\Sigma, T\Sigma)$. [Prüss, S, Wilke '21].

イロト 不同 トイヨト イヨト

= nar

The surface Stokes operator

 $Au := -2 \mathbb{P} \mathcal{P}_{\Sigma} \operatorname{div}_{\Sigma} \mathcal{D}_{\Sigma}(u) = -\mu_{s} \mathbb{P}(\Delta_{\Sigma} + \operatorname{Ric}_{\Sigma})u, \quad u \in H^{2}_{q,\sigma}(\Sigma, \mathsf{T}\Sigma).$

A has maximal regularity in $L_{q,\sigma}(\Sigma, T\Sigma)$. [Prüss, S, Wilke '21].

• By the contraction mapping principle, for any $u_0 \in B_{qp}^{2-2/p}(\Sigma, T\Sigma)$ with $\operatorname{div}_{\Sigma} u_0 = 0$ there exists a number $a = a(u_0) > 0$ and a unique solution

 $u \in H^1_p((0,a); L_{q,\sigma}(\Sigma, \mathsf{T}\Sigma)) \cap L_p((0,a); H^2_{q,\sigma}(\Sigma, \mathsf{T}\Sigma)),$

 $\pi \in L_p((0,a); \dot{H}^1_q(\Sigma))$

of the surface Navier Stokes equations (1), provided p, q are subject to additional conditions.

• Time weights of Muckenhoupt type allow to decrease the initial regularity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

• A admits a bounded H^{∞} -calculus in $L_{q,\sigma}(\Sigma, T\Sigma)$. [S, Wilke '21].

イロト イボト イヨト イヨト

э.

Existence and Uniqueness III

- A admits a bounded H^{∞} -calculus in $L_{q,\sigma}(\Sigma, T\Sigma)$. [S, Wilke '21].
- Critical spaces:

$$u_0 \in B^{d/q-1}_{qp,\sigma}(\Sigma, \mathsf{T}\Sigma) \quad \text{where} \quad \begin{cases} 2/p + d/q \le 3, \ q \in (d/3, d) \\ 2/p + d/q \le 2, \ q \in (d/2, \infty) \end{cases} \text{ weak setting.}$$

The Sobolev index is always -1, independent of q, p.

イロト 不得 トイヨト イヨト

Existence and Uniqueness III

- A admits a bounded H^{∞} -calculus in $L_{q,\sigma}(\Sigma, T\Sigma)$. [S, Wilke '21].
- Critical spaces:

$$u_0 \in B^{d/q-1}_{qp,\sigma}(\Sigma,\mathsf{T}\Sigma) \quad \text{where} \quad \begin{cases} 2/p + d/q \le 3, \ q \in (d/3,d) & \text{strong setting}, \\ 2/p + d/q \le 2, \ q \in (d/2,\infty) & \text{weak setting}. \end{cases}$$

The Sobolev index is always -1, independent of q, p.

•
$$d = 3$$
, $u_0 \in H^{1/2}_{2,\sigma}(\Sigma, \mathsf{T}\Sigma)$. 'Fujita-Kato'.
 $d = 2$, $u_0 \in L_{2,\sigma}(\Sigma, \mathsf{T}\Sigma)$.

イロト 不得 トイヨト イヨト

Energy dissipation and equilibria

$$\begin{split} \partial_t u + \nabla_u u - 2\mu_s \mathcal{P}_{\Sigma} \operatorname{div}_{\Sigma} \mathcal{D}_{\Sigma}(u) + \nabla_{\Sigma} \pi &= 0 \quad \text{ on } \Sigma \\ \operatorname{div}_{\Sigma} u &= 0 \quad \text{ on } \Sigma \\ u(0) &= u_0 \quad \text{ on } \Sigma. \end{split}$$

Energy dissipation:

$$\mathsf{E}(t) := \int_{\Sigma} \frac{1}{2} |u(t)|^2 \, d\Sigma, \qquad \frac{d}{dt} \mathsf{E}(t) = -2\mu_s \int_{\Sigma} |\mathcal{D}_{\Sigma}(u(t))|^2 \, d\Sigma.$$

If u is an equilibrium, then $\mathcal{D}_{\Sigma}(u) = 0$.

・ロン ・回 と ・ ヨ と ・ ヨ と …

Ξ.

Energy dissipation and equilibria

$$\begin{split} \partial_t u + \nabla_u u - 2\mu_s \mathcal{P}_{\Sigma} \operatorname{div}_{\Sigma} \mathcal{D}_{\Sigma}(u) + \nabla_{\Sigma} \pi &= 0 \quad \text{ on } \Sigma \\ \operatorname{div}_{\Sigma} u &= 0 \quad \text{ on } \Sigma \\ u(0) &= u_0 \quad \text{ on } \Sigma. \end{split}$$

Energy dissipation:

$$\mathsf{E}(t):=\int_{\Sigma}rac{1}{2}|u(t)|^2\,d\Sigma,\qquad rac{d}{dt}\mathsf{E}(t)=-2\mu_s\int_{\Sigma}|\mathcal{D}_{\Sigma}(u(t))|^2\,d\Sigma.$$

If *u* is an equilibrium, then $\mathcal{D}_{\Sigma}(u) = 0$. This readily implies $\nabla_{\Sigma}\pi = \frac{1}{2}\nabla_{\Sigma}|u|^2$.

Set of equilibria:

$$\mathfrak{E} = \left\{ (u,\pi) : \operatorname{div}_{\Sigma} u = 0, \ \mathcal{D}_{\Sigma}(u) = 0, \ \pi = \frac{1}{2} |u|^2 + c \right\}.$$

イロト 不得 トイヨト イヨト

Set of equilibria:

$$\mathfrak{E} = \left\{ (u,\pi) : \operatorname{div}_{\Sigma} u = 0, \ \mathcal{D}_{\Sigma}(u) = 0, \ \pi = \frac{1}{2} |u|^2 + c \right\}.$$

A tangential field is called a Killing field if

 $(\nabla_{v} u | w) + (\nabla_{w} u | v) = 0$ for all tangential fields v, w on Σ ,

where $\boldsymbol{\nabla}$ is the Levi-Civita connection.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ ・

= nar

Set of equilibria:

$$\mathfrak{E} = \left\{ (u,\pi) : \operatorname{div}_{\Sigma} u = 0, \ \mathcal{D}_{\Sigma}(u) = 0, \ \pi = \frac{1}{2} |u|^2 + c \right\}.$$

A tangential field is called a Killing field if

$$(\nabla_v u|w) + (\nabla_w u|v) = 0$$
 for all tangential fields v, w on Σ ,

where $\boldsymbol{\nabla}$ is the Levi-Civita connection.

It holds

$$(\mathcal{D}_{\Sigma}(u)v|w) + (\mathcal{D}_{\Sigma}(u)w|v) = (\nabla_{v}u|w) + (\nabla_{w}u|v),$$

hence

 $\mathcal{D}_{\Sigma}(u) = 0 \iff u$ is a Killing field.

イロト イヨト イヨト

• Killing fields on a Riemannian manifold form a sub Lie-algebra of the Lie-algebra of all tangential fields.

イロト イボト イヨト イヨト

- Killing fields on a Riemannian manifold form a sub Lie-algebra of the Lie-algebra of all tangential fields.
- Killing fields of a Riemannian manifold (M, g) are the infinitesimal generators of the isometries I(M, g) on (M, g), that is, the generators of flows that are isometries on (M, g).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Killing fields on a Riemannian manifold form a sub Lie-algebra of the Lie-algebra of all tangential fields.
- Killing fields of a Riemannian manifold (M, g) are the infinitesimal generators of the isometries I(M, g) on (M, g), that is, the generators of flows that are isometries on (M, g).
- If (M, g) is compact and the Ricci tensor is negative definite everywhere, then any Killing field on M is equal to zero and I(M, g) is a finite group.

< ロ > < 同 > < 回 > < 回 > < 回 > <

-

- Killing fields on a Riemannian manifold form a sub Lie-algebra of the Lie-algebra of all tangential fields.
- Killing fields of a Riemannian manifold (M, g) are the infinitesimal generators of the isometries I(M, g) on (M, g), that is, the generators of flows that are isometries on (M, g).
- If (M, g) is compact and the Ricci tensor is negative definite everywhere, then any Killing field on M is equal to zero and I(M, g) is a finite group.
- Dimension is less or equal to d(d+1)/2 with equality if and only if Σ is compact and isomorphic to \mathbb{S}^d .

< ロ > < 同 > < 回 > < 回 > < 回 > <

-

Killing fields II: Examples

(a) Sphere:

 $\Sigma = \mathbb{S}^2 : \dim \mathcal{E} = 3.$

 $u_* \in \mathcal{E} \iff u_*(x) = \omega \times x, \quad x \in \mathbb{S}^2, \ \omega \in \mathbb{R}^3.$

イロト イヨト イヨト

э.

Killing fields II: Examples

(a) Sphere:

 $\Sigma = \mathbb{S}^2 : \dim \mathcal{E} = 3.$

$$u_* \in \mathcal{E} \iff u_*(x) = \omega \times x, \quad x \in \mathbb{S}^2, \ \omega \in \mathbb{R}^3.$$

(b) Torus:

 $\Sigma = \mathbb{T}^2$: dim $\mathcal{E} = 1$. Every equilibrium (Killing field) u_* is a rotation w.r.t. the z-axis.

イロト 不得 トイヨト イヨト

Theorem (Prüss, S, Wilke, J. Evol. Eq. 2021)

Each solution that starts out close to an equilibrium $u_* \in \mathcal{E}$ exists globally and converges to a (possibly different) equilibrium $u_{\infty} \in \mathcal{E}$ at an exponential rate.

 $u_{\infty} = P_{\mathcal{E}} u_0$, where $P_{\mathcal{E}}$ is the orthogonal projection of u_0 onto \mathcal{E} (with respect to the L_2 -inner product).

Proof:

- Each equilibrium is normally stable.
 Dimension of kernel of linearization at u_{*} = dimension of *E*.
- Generalized principle of linearized stability [Prüss, S, Zacher, '09].

イロト イポト イラト イラト

Suppose d = 2 and $u_0 \in L_{2,\sigma}(\Sigma, T\Sigma)$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Suppose d = 2 and $u_0 \in L_{2,\sigma}(\Sigma, \mathsf{T}\Sigma)$.

Then the solution exists globally and converges exponentially fast to the equilibrium $u_* = P_{\mathcal{E}} u_0$ in the topology of $H^2_q(\Sigma, \top \Sigma)$ for any fixed $q \in (1, \infty)$.

Suppose d = 2 and $u_0 \in L_{2,\sigma}(\Sigma, T\Sigma)$.

Then the solution exists globally and converges exponentially fast to the equilibrium $u_* = P_{\mathcal{E}} u_0$ in the topology of $H^2_q(\Sigma, \top \Sigma)$ for any fixed $q \in (1, \infty)$.

Proof:

• Critical spaces (critical weights),

イロト 不同 トイヨト イヨト

I nar

Suppose d = 2 and $u_0 \in L_{2,\sigma}(\Sigma, T\Sigma)$.

Then the solution exists globally and converges exponentially fast to the equilibrium $u_* = P_{\mathcal{E}} u_0$ in the topology of $H^2_q(\Sigma, \top \Sigma)$ for any fixed $q \in (1, \infty)$.

Proof:

- Critical spaces (critical weights),
- extrapolation scale,

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

I nar

Suppose d = 2 and $u_0 \in L_{2,\sigma}(\Sigma, T\Sigma)$.

Then the solution exists globally and converges exponentially fast to the equilibrium $u_* = P_{\mathcal{E}} u_0$ in the topology of $H^2_q(\Sigma, \top \Sigma)$ for any fixed $q \in (1, \infty)$.

Proof:

- Critical spaces (critical weights),
- extrapolation scale,
- Korn's inequality (factoring out the Killing vector fields),

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

I nar

Suppose d = 2 and $u_0 \in L_{2,\sigma}(\Sigma, T\Sigma)$.

Then the solution exists globally and converges exponentially fast to the equilibrium $u_* = P_{\mathcal{E}} u_0$ in the topology of $H^2_q(\Sigma, \top \Sigma)$ for any fixed $q \in (1, \infty)$.

Proof:

- Critical spaces (critical weights),
- extrapolation scale,
- Korn's inequality (factoring out the Killing vector fields),
- energy estimate,

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

Suppose d = 2 and $u_0 \in L_{2,\sigma}(\Sigma, T\Sigma)$.

Then the solution exists globally and converges exponentially fast to the equilibrium $u_* = P_{\mathcal{E}} u_0$ in the topology of $H^2_q(\Sigma, \top \Sigma)$ for any fixed $q \in (1, \infty)$.

Proof:

- Critical spaces (critical weights),
- extrapolation scale,
- Korn's inequality (factoring out the Killing vector fields),
- energy estimate,
- parabolic regularization.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

Suppose d = 2 and $u_0 \in L_{2,\sigma}(\Sigma, T\Sigma)$.

Then the solution exists globally and converges exponentially fast to the equilibrium $u_* = P_{\mathcal{E}} u_0$ in the topology of $H^2_q(\Sigma, \top \Sigma)$ for any fixed $q \in (1, \infty)$.

Proof:

- Critical spaces (critical weights),
- extrapolation scale,
- Korn's inequality (factoring out the Killing vector fields),
- energy estimate,
- parabolic regularization.

Numerical simulations: Courtesy of Maxim Olshanskii, University of Houston.

- Webpage
- Sphere I
- Sphere I
- Torus

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

Let

 $V_2^j(\Sigma) := \{ v \in H_{2,\sigma}^j(\Sigma, \mathsf{T}\Sigma) \mid (v|z)_{L_2} = 0 \text{ for all } z \in \mathcal{E} \}, \quad j \in \{0, 1\}.$ Note that $H_{2,\sigma}^j(\Sigma, \mathsf{T}\Sigma) = \mathcal{E} \oplus V_2^j(\Sigma).$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Let

 $V_2^j(\Sigma) := \{ v \in H_{2,\sigma}^j(\Sigma, \mathsf{T}\Sigma) \mid (v|z)_{L_2} = 0 \text{ for all } z \in \mathcal{E} \}, \quad j \in \{0,1\}.$ Note that $H_{2,\sigma}^j(\Sigma, \mathsf{T}\Sigma) = \mathcal{E} \oplus V_2^j(\Sigma).$

Proposition (S, Wilke. 2021)

Let d = 2. Suppose $v_0 \in V_2^0(\Sigma)$ and let v be the solution with initial value v_0 . Then

(a) $v(t) \in V_2^0(\Sigma)$ for $t \in [0, t^+(v_0))$ and $v(t) \in V_2^1(\Sigma)$ for $t \in (0, t^+(v_0))$.

< (17) > < (17) > (17)

= nar

Let

 $V_2^j(\Sigma) := \{ v \in H_{2,\sigma}^j(\Sigma, \mathsf{T}\Sigma) \mid (v|z)_{L_2} = 0 \text{ for all } z \in \mathcal{E} \}, \quad j \in \{0,1\}.$ Note that $H_{2,\sigma}^j(\Sigma, \mathsf{T}\Sigma) = \mathcal{E} \oplus V_2^j(\Sigma).$

Proposition (S, Wilke. 2021)

Let d = 2. Suppose $v_0 \in V_2^0(\Sigma)$ and let v be the solution with initial value v_0 . Then

- (a) $v(t) \in V_2^0(\Sigma)$ for $t \in [0, t^+(v_0))$ and $v(t) \in V_2^1(\Sigma)$ for $t \in (0, t^+(v_0))$.
- (b) There exists a universal constant M > 0 such that

$$|v(t)|^2_{L_2(\Sigma)} + \int_0^t |v(s)|^2_{H^1_2(\Sigma)} \, ds \leq M |v_0|^2_{L_2(\Sigma)}, \quad t \in (0,t^+(v_0)).$$

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● のへで

Let

 $V_2^j(\Sigma) := \{ v \in H_{2,\sigma}^j(\Sigma, \mathsf{T}\Sigma) \mid (v|z)_{L_2} = 0 \text{ for all } z \in \mathcal{E} \}, \quad j \in \{0,1\}.$ Note that $H_{2,\sigma}^j(\Sigma, \mathsf{T}\Sigma) = \mathcal{E} \oplus V_2^j(\Sigma).$

Proposition (S, Wilke. 2021)

Let d = 2. Suppose $v_0 \in V_2^0(\Sigma)$ and let v be the solution with initial value v_0 . Then

(a) $v(t) \in V_2^0(\Sigma)$ for $t \in [0, t^+(v_0))$ and $v(t) \in V_2^1(\Sigma)$ for $t \in (0, t^+(v_0))$.

(b) There exists a universal constant M > 0 such that

$$|v(t)|^2_{L_2(\Sigma)} + \int_0^t |v(s)|^2_{H^1_2(\Sigma)} \, ds \leq M |v_0|^2_{L_2(\Sigma)}, \quad t \in (0,t^+(v_0)).$$

(c) $t^+(v_0) = \infty$ and there exists a constant $\alpha > 0$ such that

 $|\mathbf{v}(t)|_{L_2(\Sigma)} \leq e^{-\alpha t} |\mathbf{v}_0|_{L_2(\Sigma)}, \quad t \geq 0.$

Proof:

(b) Energy estimate & Korn's inequality for functions in $V_2^1(\Sigma)$.

(c) Global existence: H[∞]-calculus, critical spaces & result in [Prüss, S, Wilke '18]. □

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Theorem (Main Theorem for 2D-surfaces)

Suppose d = 2 and $u_0 \in L_{2,\sigma}(\Sigma, T\Sigma)$.

Then the solution exists globally and converges exponentially fast to the equilibrium $u_* = P_{\mathcal{E}} u_0$ in the topology of $H_q^2(\Sigma, T\Sigma)$ for any fixed $q \in (1, \infty)$, where $P_{\mathcal{E}}$ is the (orthogonal) projection of u_0 onto \mathcal{E} .

Proof: Let $u_0 \in L_{2,\sigma}(\Sigma, T\Sigma)$ be given. Then

 $u_0 = u_* + v_0$

with $u_* = P_{\mathcal{E}} u_0$ and $v_0 \in V_2^0(\Sigma)$. Let v be the global solution with initial value v_0 and let

 $u(t)=u_*+v(t),\quad t\geq 0.$

We know that

$$|v(t)|_{L_2(\Sigma)} \leq e^{-\alpha t} |v_0|_{L_2(\Sigma)}, \quad t \geq 0.$$

Using L_q - L_q maximal regularity and reiteration, we can show exponential convergence in the topology of $H_a^2(\Sigma, T\Sigma)$ for any fixed $q \in (1, \infty)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

• G. Simonett, M. Wilke.

 H^{∞} -calculus for the surface Stokes operator and applications. arXiv:2111.12586. Submitted for publication.

 J. Prüss, G. Simonett, M. Wilke. On the Navier-Stokes equations on surfaces. J. Evol. Equ. 21 (2020), 3153-3179.

• J. Prüss, G. Simonett, M. Wilke.

Critical spaces for quasilinear parabolic evolution equations and applications. J. Differential Equations **264** (2018), 2028-2074.

• J. Prüss, G. Simonett.

Moving Interfaces and Quasilinear Parabolic Evolution Equations. Monographs in Mathematics **105**, Birkhäuser 2016.

不是下 不是下

- Manifolds with boundary.
- Free boundary problems on manifolds.
- Navier Stokes equations on moving surfaces.

< (T) >

ヨート