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The setting:

e Y is a smooth, compact, embedded (oriented) hypersurface in R
without boundary;

@ TX = the tangent bundle; vs = unit normal field;

Ps = the orthogonal projection onto T%;
@ Vs, divs = the surface gradient and surface divergence, respectively;

@ o = density (constant); u = velocity field; 7> = surface stress tensor.

Surface Navier-Stokes equations (incompressible):

Q(Otu+Pz(u-Vzu)) —Psdivs 7y =0 on X
divsu=0 on X (1)
u(0)=uw on X.
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Setting Il

Surface stress tensor Ty via Boussinesg-Scriven:
Ts = Tx(u,7) = 2usDs(u) + (s — ps)(divsu)Ps — 7Ps,

where s > 0 is the surface shear viscosity, \s > 0 is the surface dilatational
viscosity, 7 the pressure, and

Ds(u) == %”P}: (Vzu + [VzU]T> Ps

is the surface rate-of-strain tensor.
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The model |

0(0ru+Ps(u-Vsu)) — Prdivy s =0 on T
divsu =0 on X
u(0)=w on X.

o If up € TE, then u(t) € TE, t > 0.

Gieri Simonett Surface-Navier-Stokes



The model |

0(0ru+Ps(u-Vsu)) — Prdivy s =0 on T
divsu =0 on X
u(0)=w on X.

o If up € TE, then u(t) € TE, t > 0.

o It holds
—Ps divs Tz = —ps(Asu + Ricsu) + Vs,

Gieri Simonett Surface-Navier-Stokes



The model |

0(0ru+Ps(u-Vsu)) — Prdivy s =0 on T
divsu =0 on X
u(0)=w on X.
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The model |

0(0ru+Ps(u-Vsu)) — Prdivy s =0 on T
divsu =0 on X
u(0)=w on X.

o If up € TE, then u(t) € TE, t > 0.

o It holds
—Ps divs Tz = —ps(Asu + Ricsu) + Vs,

where
o Ay is the (negative) Bochner-Laplacian and

e Ricy is the Ricci curvature tensor.

In case d = 2, Ricsu = Ky u, where Ky is the Gaussian curvature of
(the product of the principal curvatures).
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The model Il

0(0ru+ Ps(u-Vsu)) — ps(Asu + Ricsu) + Vsr =0  on ¥
divsu=0 on X
u(0)=uw on X.
Remarks:
@ Ps(u-Vsu) = V,u, where V is the Levi-Civita connection of ¥;
o Dyu=1(Vu+[Vd]"),
o Ay = (Ap + Ricy),

where Ay is the Hodge Laplacian (also called Laplace-de Rham operator),
acting on 1-forms.
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The model Il

0(0ru+ Ps(u-Vsu)) — ps(Asu + Ricsu) + Vsr =0  on ¥
divsu=0 on X
u(0)=uw on X.
Remarks:
@ Ps(u-Vsu) = V,u, where V is the Levi-Civita connection of ¥;
o Dyu=1(Vu+[Vd]"),
o Ay = (Ap + Ricy),

where Ay is the Hodge Laplacian (also called Laplace-de Rham operator),
acting on 1-forms.

o Surface Navier-Stokes equations:
g(@tu—&—vuu) — ps(Apu+2Ricu) +gradm =0 on X
divu=0 on X
u(0)=wuo on X.
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Selected Literature |

0(0ru+Ps(u-Vsu)) — Prdivy s =0 on T
divsu =0 on X
u(0)=wp on X

Justification of model:

@ [Jankuhn-Olshanskii-Reusken, "18] Incompressible fluid problems on embedded
surfaces: modeling and variational formulations.

@ [Koba-Liu-Giga, '17] Energetic variational approaches for incompressible fluid
systems on an evolving surface.

Numerical Analysis:
@ [Jankuhn, Olshanskii, Quaini, Reusken, Voigt, Yushutin, '18-...]
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Selected Literature Il

0(0cu+ Vuu) — ps(Apu +)+grad7r:O on X
divu=0 on X
u(0)=we on X.

@ [Ebin-Marsden, '70]: Note added in Proof.

@ [Taylor, '92]: Existence and uniqueness for initial data in Morrey spaces,
global existence for 2d surfaces.

@ [Mazzucato, 03]: Existence and uniqueness for initial data in Besov-Morrey
spaces.

@ [Chan-Czubak, '13-15] Navier-Stokes on hyperbolic spaces.

@ [Chan-Czubak-Disconzi, '17] Discussion and evaluation of different models for NS

on manifolds.
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Selected Literature Il

Related work:

Q(atquVuu) — pusApu+gradm =0 on X
divu=0 on X
u(0)=wy on X.

@ [IIin, I'in-Filatov, '89-'94]: dim X = 2 : Existence and uniqueness of generalized
solutions.

@ [Cao-Rammaha-Titi, '99]:
g(é)tquVuu) — usApu+yvgpe X u+gradm = f on S§?
divu=0 on S?
u(0)=u on S%
NS on rotating S? : Gevrey regularity for t > 0, degrees of freedom.
@ [Foias-Temam, '89]: 2d NS on periodic domains: Gevrey regularity for t > 0.
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Existence and Uniqueness |

Surface Navier-Stokes equations:
g(atu-l—vuu) — ps(Ayu+Ricyu)+ Vgr =0 on X
divsu =20 on X
u(0) =wu on X.

In local coordinates:
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Existence and Uniqueness |

Surface Navier-Stokes equations:
g(@tu-l—vuu) — ps(Ayu+Ricyu)+ Vgr =0 on X
divsu =20 on X
u(0) =wu on X.

In local coordinates:

Asu=gi(ViV;— NV,

. ;0
Ricsu = Rj{ujé)x"’
Vzﬂ' = guajﬂaxl.,

where
@ V; are covariant derivatives,

) /\fj. are the Christoffel symbols.

Locally, this results in generalized Stokes equations in RY.
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Existence and Uniqueness I

@ The surface Stokes operator
Au = —2PPsdivy Dy (u) = —pusP(Ax + Ricg)u, u€ H; (X, TX).
A has maximal regularity in Lq o (X, TX). [Priss, S, Wilke '21].
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Existence and Uniqueness I

@ The surface Stokes operator
Au = —2PPsdivy Dy (u) = —pusP(Ax + Ricg)u, u€ H; (X, TX).
A has maximal regularity in Lq o (X, TX). [Priss, S, Wilke '21].

@ By the contraction mapping principle, for any up € Bg;z/p(Z,TZ) with
divy ugp = 0 there exists a number a = a(ug) > 0 and a unique solution

u€ H;((O7 a); Lg,o (X, TX)) N Lp((0, a); H§10(27 %)),
™ € Lp((0,a); H3 (X))

of the surface Navier Stokes equations (1), provided p, g are subject to additional
conditions.

@ Time weights of Muckenhoupt type allow to decrease the initial regularity.
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Existence and Uniqueness ||

@ A admits a bounded H*-calculus in Lq (X, TX). [S, Wilke '21].
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Existence and Uniqueness ||

@ A admits a bounded H*-calculus in Lq (X, TX). [S, Wilke '21].

@ Critical spaces:

2/p+d/q <3, g€ (d/3,d) strong setting,

d/q—1
B YT h
up € Bgp'o (X, TX) where {2/p+ d/q <2, qe(d/2,00) weak setting.

The Sobolev index is always —1, independent of q, p.
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Existence and Uniqueness ||

@ A admits a bounded H*-calculus in Lq (X, TX). [S, Wilke '21].
@ Critical spaces:

2/p+d/q <3, g€ (d/3,d) strong setting,

d/q—1
B YT h
up € Bgp'o (X, TX) where {2/p+ d/q <2, qe(d/2,00) weak setting.

The Sobolev index is always —1, independent of q, p.

o d=3, uye HyY?(,TE). 'Fujita-Kato'.

d=2, uy€ Ly, (%, TE).
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Energy dissipation and equilibria

Oru+ Vyu —2usPy divy Dy (u) + Vsmr =0 on T
divsu =0 on X
u(0) =wup on X.

Energy dissipation:
1 d
E(t) := / 7|u(t)|2 dxy, —E(t) = —QMS/ |7.)):(u(t))|2 dx.
b 2 dt x

If uis an equilibrium, then Dy (u) = 0.

Gieri Simonett Surface-Navier-Stokes



Energy dissipation and equilibria

Oru+ Vyu —2usPy divy Dy (u) + Vsmr =0 on T
divsu =0 on X
u(0) =wup on X.

Energy dissipation:
1 d
E(t) := / 7|u(t)|2 dxy, —E(t) = —QMS/ |7.)):(u(t))|2 dx.
b 2 dt x

If uis an equilibrium, then Dy (u) = 0.

This readily implies V7 = 1V |u|?.
Set of equilibria:

1
¢ = {(u,ﬂ) cdivsu =0, Dy(u) =0, 7 = §|u|2+c}.
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Equilibria

Set of equilibria:

1
¢ = {(u,ﬂ') tdivyu =0, Dy(u) =0, 7 = §|u|2 + C}.
A tangential field is called a Killing field if
(Vvulw) 4+ (Vwu|v) =0 for all tangential fields v, w on X,

where V is the Levi-Civita connection.
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Equilibria

Set of equilibria:
1
¢ = {(u,ﬂ') tdivyu =0, Dy(u) =0, 7 = §|u|2 + C}.
A tangential field is called a Killing field if
(Vvulw) 4+ (Vwu|v) =0 for all tangential fields v, w on X,
where V is the Levi-Civita connection.

It holds
(Dx(v)viw) + (Pe(v)wlv) = (Vvulw) + (Vwulv),
hence
Dy(u) =0 <= uis a Killing field.
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Killing fields |

Some properties of Killing fields:

@ Killing fields on a Riemannian manifold form a sub Lie-algebra of the Lie-algebra
of all tangential fields.
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Killing fields |

Some properties of Killing fields:

@ Killing fields on a Riemannian manifold form a sub Lie-algebra of the Lie-algebra
of all tangential fields.

o Killing fields of a Riemannian manifold (M, g) are the infinitesimal generators of
the isometries (M, g) on (M, g), that is, the generators of flows that are
isometries on (M, g).
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o Killing fields of a Riemannian manifold (M, g) are the infinitesimal generators of
the isometries (M, g) on (M, g), that is, the generators of flows that are
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o If (M, g) is compact and the Ricci tensor is negative definite everywhere, then
any Killing field on M is equal to zero and I(M, g) is a finite group.
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Killing fields |

Some properties of Killing fields:
@ Killing fields on a Riemannian manifold form a sub Lie-algebra of the Lie-algebra
of all tangential fields.

o Killing fields of a Riemannian manifold (M, g) are the infinitesimal generators of
the isometries (M, g) on (M, g), that is, the generators of flows that are
isometries on (M, g).

o If (M, g) is compact and the Ricci tensor is negative definite everywhere, then
any Killing field on M is equal to zero and I(M, g) is a finite group.

@ Dimension is less or equal to d(d + 1)/2 with equality if and only if X is compact
and isomorphic to S?.
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Killing fields Il: Examples

(a) Sphere:

Y =85%:dim€ =3.
U €E <= u(x)=wxx, xe8 weks.
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Killing fields Il: Examples

(a) Sphere:

Y =85%:dim€ =3.
U €E <= u(x)=wxx, xe8 weks.

(b) Torus:

¥ =T?:dim& = 1. Every equilibrium (Killing field) v, is a rotation w.r.t. the z-axis.
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Theorem (Priss, S, Wilke, J. Evol. Eq. 2021)

Each solution that starts out close to an equilibrium u, € £ exists globally and
converges to a (possibly different) equilibrium u~, € £ at an exponential rate.

Uso = Pgug, where Pg is the orthogonal projection of uy onto £ (with respect to the
Lo-inner product).

Proof:

@ Each equilibrium is normally stable.
Dimension of kernel of linearization at u. = dimension of £.

@ Generalized principle of linearized stability [Priiss, S, Zacher, '09].
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Global existence for two-dimensional surfaces

Theorem (S, Wilke. 2021)

Suppose d =2 and ug € Ly (X, TX).
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Global existence for two-dimensional surfaces

Theorem (S, Wilke. 2021)

Suppose d =2 and ug € Ly (X, TX).

Then the solution exists globally and converges exponentially fast to the equilibrium
usx = Pgug in the topology of Hf,(Z7 TX) for any fixed q € (1,00).
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Global existence for two-dimensional surfaces

Theorem (S, Wilke. 2021)

Suppose d =2 and ug € Ly (X, TX).

Then the solution exists globally and converges exponentially fast to the equilibrium
usx = Pgug in the topology of Hf,(Z7 TX) for any fixed q € (1,00).

Proof:

o Critical spaces (critical weights),
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Global existence for two-dimensional surfaces

Theorem (S, Wilke. 2021)

Suppose d =2 and ug € Ly (X, TX).

Then the solution exists globally and converges exponentially fast to the equilibrium
usx = Pgug in the topology of Hf,(Z7 TX) for any fixed q € (1,00).

Proof:
o Critical spaces (critical weights),

@ extrapolation scale,
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Global existence for two-dimensional surfaces

Theorem (S, Wilke. 2021)

Suppose d =2 and ug € Ly (X, TX).

Then the solution exists globally and converges exponentially fast to the equilibrium
usx = Pgug in the topology of Hf,(Z7 TX) for any fixed q € (1,00).

Proof:
o Critical spaces (critical weights),
@ extrapolation scale,

@ Korn's inequality (factoring out the Killing vector fields),

Gieri Simonett Surface-Navier-Stokes


https://www.math.uh.edu/~molshan/maniflows.html
https://www.youtube.com/watch?v=plH-J0fL68s&t=13s
https://www.youtube.com/watch?v=EwF3vCgFhuI&t=13s
https://www.youtube.com/watch?v=v0bmM-NqRqo&t=19s

Global existence for two-dimensional surfaces

Theorem (S, Wilke. 2021)

Suppose d =2 and ug € Ly (X, TX).

Then the solution exists globally and converges exponentially fast to the equilibrium
usx = Pgug in the topology of Hf,(Z7 TX) for any fixed q € (1,00).

Proof:
o Critical spaces (critical weights),
@ extrapolation scale,
@ Korn's inequality (factoring out the Killing vector fields),

@ energy estimate,
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Global existence for two-dimensional surfaces

Theorem (S, Wilke. 2021)

Suppose d =2 and ug € Ly (X, TX).

Then the solution exists globally and converges exponentially fast to the equilibrium
usx = Pgug in the topology of Hf,(Z7 TX) for any fixed q € (1,00).

Proof:
o Critical spaces (critical weights),
extrapolation scale,
Korn's inequality (factoring out the Killing vector fields),

energy estimate,

parabolic regularization.
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Global existence for two-dimensional surfaces

Theorem (S, Wilke. 2021)

Suppose d =2 and ug € Ly (X, TX).

Then the solution exists globally and converges exponentially fast to the equilibrium
usx = Pgug in the topology of Hf,(Z7 TX) for any fixed q € (1,00).

Proof:

Critical spaces (critical weights),

extrapolation scale,
Korn's inequality (factoring out the Killing vector fields),
energy estimate,

parabolic regularization.

Numerical simulations: Courtesy of Maxim Olshanskii, University of Houston.
@ Webpage

@ Sphere |

@ Sphere |

°

Torus
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Some steps in the proof

Let . .
V(X)) :={veH, (5,TY) | (v|z), =0forall ze £}, jec{0,1}.

Note that H) (T, T¥) = € @ VJ(%).
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Some steps in the proof

Let . .
V(X)) :={veH, (5,TY) | (v|z), =0forall ze £}, jec{0,1}.

Note that H) (T, T¥) = € @ VJ(%).

Proposition (S, Wilke. 2021)

Let d = 2. Suppose vy € VZO(Z) and let v be the solution with initial value vy. Then

(a) v(t) € VI(X) for t € [0, t(w)) and v(t) € VI(X) for t € (0, t+(vp)).

.

Gieri Simonett Surface-Navier-Stokes



Some steps in the proof

Let . .
V(X)) :={veH, (5,TY) | (v|z), =0forall ze £}, jec{0,1}.

Note that H) (T, T¥) = € @ VJ(%).

Proposition (S, Wilke. 2021)

Let d = 2. Suppose vy € VZO(Z) and let v be the solution with initial value vy. Then
(a) v(t) € VI(X) for t € [0, t(w)) and v(t) € VI(X) for t € (0, t+(vp)).
(b) There exists a universal constant M > 0 such that

VOB, / V(5) 2y gy 9 < MlwolZ, ). £ € (0, (v0)).

.
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Some steps in the proof

Let . .
V(X)) :={veH, (5,TY) | (v|z), =0forall ze £}, jec{0,1}.

Note that H) (T, T¥) = € @ VJ(%).

Proposition (S, Wilke. 2021)

Let d = 2. Suppose vy € VZO(Z) and let v be the solution with initial value vy. Then
(a) v(t) € VI(X) for t € [0, t(w)) and v(t) € VI(X) for t € (0, t+(vp)).
(b) There exists a universal constant M > 0 such that

VOB, / V(5) 2y gy 9 < MlwolZ, ). £ € (0, (v0)).

(c) tT(v) = co and there exists a constant « > 0 such that

|V(t)|L2 <e @t \V0|L (%)s t > 0.

.

Proof:
(b) Energy estimate & Korn's inequality for functions in VJ}(X).

(c) Global existence: H*°-calculus, critical spaces & result in [Priiss, S, Wilke '18]. O
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Some steps in the proof

Theorem (Main Theorem for 2D-surfaces)

Suppose d =2 and ug € Ly (X, TX).

Then the solution exists globally and converges exponentially fast to the equilibrium
ux = Pgug in the topology of Hg(Z, TX) for any fixed q € (1,00), where Pg is the
(orthogonal) projection of uy onto E.

Proof: Let up € Ly (X, TX) be given. Then
up = Usx + vo

with vy, = Pgug and vy € VZO(Z). Let v be the global solution with initial value vy and
let
u(t) = ux +v(t), t>0.
We know that
V()| ,x) < € “volyx), t>0.

Using Lgq-Lg maximal regularity and reiteration, we can show exponential convergence
in the topology of Hg(Z,TZ) for any fixed g € (1, 0).
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@ Manifolds with boundary.
@ Free boundary problems on manifolds.

o Navier Stokes equations on moving surfaces.
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