Energy balance for 2D incompressible fluid flow

Helena J. Nussenzveig Lopes

Instituto de Matemática, Universidade Federal do Rio de Janeiro

Centre International de Rencontres Mathématiques (CIRM) Jean-Morlet Chair 2022 - Conference: Nonlinear PDEs in Fluid Dynamics

Marseille Luminy, France - 9 to 13 May, 2022

Collaborators:

Collaborators:

Alexey Cheskidov (Univ. Illinois, Chicago)

Collaborators:

Alexey Cheskidov (Univ. Illinois, Chicago)
 Milton Lopes Filho (Universidade Federal do Rio de Janeiro)

Collaborators:

Alexey Cheskidov (Univ. Illinois, Chicago)
Milton Lopes Filho (Universidade Federal do Rio de Janeiro)
Roman Shvydkoy (Univ. Illinois, Chicago)

Equations modeling (unforced) incompressible fluid flow:

Equations modeling (unforced) incompressible fluid flow:

$$
\begin{gathered}
u_{t}+u \cdot \nabla u=-\nabla p+\nu \Delta u, \\
\operatorname{div} u=0 .
\end{gathered}
$$

Equations modeling (unforced) incompressible fluid flow:

$$
\begin{gathered}
u_{t}+u \cdot \nabla u=-\nabla p+\nu \Delta u, \\
\operatorname{div} u=0
\end{gathered}
$$

$\nu=0$: Euler equations,

Equations modeling (unforced) incompressible fluid flow:

$$
\begin{gathered}
u_{t}+u \cdot \nabla u=-\nabla p+\nu \Delta u, \\
\operatorname{div} u=0
\end{gathered}
$$

$\nu=0$: Euler equations, ideal/inviscid

Equations modeling (unforced) incompressible fluid flow:

$$
\begin{gathered}
u_{t}+u \cdot \nabla u=-\nabla p+\nu \Delta u, \\
\operatorname{div} u=0 .
\end{gathered}
$$

$\nu=0$: Euler equations, ideal/inviscid
$\nu>0$: Navier-Stokes equations,

Equations modeling (unforced) incompressible fluid flow:

$$
\begin{aligned}
u_{t}+u \cdot \nabla u & =-\nabla p+\nu \Delta u, \\
\operatorname{div} u & =0 .
\end{aligned}
$$

$\nu=0$: Euler equations, ideal/inviscid
$\nu>0$: Navier-Stokes equations, viscous

Equations modeling (unforced) incompressible fluid flow:

$$
\begin{aligned}
u_{t}+u \cdot \nabla u & =-\nabla p+\nu \Delta u, \\
\operatorname{div} u & =0 .
\end{aligned}
$$

$\nu=0$: Euler equations, ideal/inviscid
$\nu>0$: Navier-Stokes equations, viscous
For smooth solutions have

Equations modeling (unforced) incompressible fluid flow:

$$
\begin{aligned}
u_{t}+u \cdot \nabla u & =-\nabla p+\nu \Delta u, \\
\operatorname{div} u & =0 .
\end{aligned}
$$

$\nu=0$: Euler equations, ideal/inviscid
$\nu>0$: Navier-Stokes equations, viscous
For smooth solutions have

$$
\frac{d}{d t} \frac{1}{2} \int|u|^{2}
$$

Equations modeling (unforced) incompressible fluid flow:

$$
\begin{aligned}
u_{t}+u \cdot \nabla u & =-\nabla p+\nu \Delta u \\
\operatorname{div} u & =0
\end{aligned}
$$

$\nu=0$: Euler equations, ideal/inviscid
$\nu>0$: Navier-Stokes equations, viscous
For smooth solutions have

$$
\frac{d}{d t} \frac{1}{2} \int|u|^{2}=-\int u \cdot[(u \cdot \nabla) u]-\int u \cdot \nabla p+\nu \int u \cdot \Delta u
$$

Equations modeling (unforced) incompressible fluid flow:

$$
\begin{aligned}
u_{t}+u \cdot \nabla u & =-\nabla p+\nu \Delta u \\
\operatorname{div} u & =0
\end{aligned}
$$

$\nu=0$: Euler equations, ideal/inviscid
$\nu>0$: Navier-Stokes equations, viscous
For smooth solutions have

$$
\begin{gathered}
\frac{d}{d t} \frac{1}{2} \int|u|^{2}=-\int u \cdot[(u \cdot \nabla) u]-\int u \cdot \nabla p+\nu \int u \cdot \Delta u \\
=-\frac{1}{2} \int \operatorname{div}\left(|u|^{2} u\right)-\int \operatorname{div}(u p)-\nu \int|\nabla u|^{2}
\end{gathered}
$$

Equations modeling (unforced) incompressible fluid flow:

$$
\begin{aligned}
u_{t}+u \cdot \nabla u & =-\nabla p+\nu \Delta u \\
\operatorname{div} u & =0
\end{aligned}
$$

$\nu=0$: Euler equations, ideal/inviscid
$\nu>0$: Navier-Stokes equations, viscous
For smooth solutions have

$$
\begin{gathered}
\frac{d}{d t} \frac{1}{2} \int|u|^{2}=-\int u \cdot[(u \cdot \nabla) u]-\int u \cdot \nabla p+\nu \int u \cdot \Delta u \\
=-\frac{1}{2} \int \operatorname{div}\left(|u|^{2} u\right)-\int \operatorname{div}(u p)-\nu \int|\nabla u|^{2} \\
\equiv-\nu \int|\nabla u|^{2}
\end{gathered}
$$

Equations modeling (unforced) incompressible fluid flow:

$$
\begin{gathered}
u_{t}+u \cdot \nabla u=-\nabla p+\nu \Delta u, \\
\operatorname{div} u=0 .
\end{gathered}
$$

$\nu=0$: Euler equations, ideal/inviscid
$\nu>0$: Navier-Stokes equations, viscous
For smooth solutions have

$$
\begin{gathered}
\frac{d}{d t} \frac{1}{2} \int|u|^{2}=-\int u \cdot[(u \cdot \nabla) u]-\int u \cdot \nabla p+\nu \int u \cdot \Delta u \\
=-\frac{1}{2} \int \operatorname{div}\left(|u|^{2} u\right)-\int \operatorname{div}(u p)-\nu \int|\nabla u|^{2} \\
\equiv-\nu \int|\nabla u|^{2}
\end{gathered}
$$

Smooth inviscid flows

Equations modeling (unforced) incompressible fluid flow:

$$
\begin{aligned}
u_{t}+u \cdot \nabla u & =-\nabla p+\nu \Delta u, \\
\operatorname{div} u & =0
\end{aligned}
$$

$\nu=0$: Euler equations, ideal/inviscid
$\nu>0$: Navier-Stokes equations, viscous
For smooth solutions have

$$
\begin{gathered}
\frac{d}{d t} \frac{1}{2} \int|u|^{2}=-\int u \cdot[(u \cdot \nabla) u]-\int u \cdot \nabla p+\nu \int u \cdot \Delta u \\
=-\frac{1}{2} \int \operatorname{div}\left(|u|^{2} u\right)-\int \operatorname{div}(u p)-\nu \int|\nabla u|^{2} \\
\equiv-\nu \int|\nabla u|^{2}
\end{gathered}
$$

Smooth inviscid flows $(\nu=0)$

Equations modeling (unforced) incompressible fluid flow:

$$
\begin{aligned}
u_{t}+u \cdot \nabla u & =-\nabla p+\nu \Delta u, \\
\operatorname{div} u & =0
\end{aligned}
$$

$\nu=0$: Euler equations, ideal/inviscid
$\nu>0$: Navier-Stokes equations, viscous
For smooth solutions have

$$
\begin{gathered}
\frac{d}{d t} \frac{1}{2} \int|u|^{2}=-\int u \cdot[(u \cdot \nabla) u]-\int u \cdot \nabla p+\nu \int u \cdot \Delta u \\
=-\frac{1}{2} \int \operatorname{div}\left(|u|^{2} u\right)-\int \operatorname{div}(u p)-\nu \int|\nabla u|^{2} \\
\equiv-\nu \int|\nabla u|^{2}
\end{gathered}
$$

Smooth inviscid flows $(\nu=0)$ conserve kinetic energy

Anomalous dissipation is a cornerstone of turbulence theory:

Anomalous dissipation is a cornerstone of turbulence theory: inviscid

 fluid flows $(\nu=0)$ which do not conserve energy;
Anomalous dissipation is a cornerstone of turbulence theory: inviscid

 fluid flows $(\nu=0)$ which do not conserve energy; dissipation rate does not vanish
Anomalous dissipation is a cornerstone of turbulence theory: inviscid

 fluid flows $(\nu=0)$ which do not conserve energy; dissipation rate does not vanish Turbulence \longleftrightarrow anomalous dissipation \longleftrightarrow irregular flows
Anomalous dissipation is a cornerstone of turbulence theory: inviscid

 fluid flows ($\nu=0$) which do not conserve energy; dissipation rate does not vanishTurbulence \longleftrightarrow anomalous dissipation \longleftrightarrow irregular flows
Onsager 1949:

Anomalous dissipation is a cornerstone of turbulence theory: inviscid fluid flows ($\nu=0$) which do not conserve energy; dissipation rate does not vanish
Turbulence \longleftrightarrow anomalous dissipation \longleftrightarrow irregular flows
Onsager 1949:

- anomalous dissipation may occur in inviscid flow with "less than $1 / 3$ regularity"

Anomalous dissipation is a cornerstone of turbulence theory: inviscid fluid flows $(\nu=0)$ which do not conserve energy; dissipation rate does not vanish
Turbulence \longleftrightarrow anomalous dissipation \longleftrightarrow irregular flows
Onsager 1949:

- anomalous dissipation may occur in inviscid flow with "less than $1 / 3$ regularity"
- inviscid flows with "more than $1 / 3$ regularity" conserve energy

Anomalous dissipation is a cornerstone of turbulence theory: inviscid fluid flows ($\nu=0$) which do not conserve energy; dissipation rate does not vanish
Turbulence \longleftrightarrow anomalous dissipation \longleftrightarrow irregular flows
Onsager 1949:

- anomalous dissipation may occur in inviscid flow with "less than $1 / 3$ regularity"
- inviscid flows with "more than $1 / 3$ regularity" conserve energy

Research developed along two fronts:

Anomalous dissipation is a cornerstone of turbulence theory: inviscid fluid flows ($\nu=0$) which do not conserve energy; dissipation rate does not vanish
Turbulence \longleftrightarrow anomalous dissipation \longleftrightarrow irregular flows
Onsager 1949:

- anomalous dissipation may occur in inviscid flow with "less than $1 / 3$ regularity"
- inviscid flows with "more than $1 / 3$ regularity" conserve energy

Research developed along two fronts: flexibility

Anomalous dissipation is a cornerstone of turbulence theory: inviscid fluid flows ($\nu=0$) which do not conserve energy; dissipation rate does not vanish
Turbulence \longleftrightarrow anomalous dissipation \longleftrightarrow irregular flows
Onsager 1949:

- anomalous dissipation may occur in inviscid flow with "less than $1 / 3$ regularity"
- inviscid flows with "more than $1 / 3$ regularity" conserve energy

Research developed along two fronts: flexibility \times

Anomalous dissipation is a cornerstone of turbulence theory: inviscid fluid flows ($\nu=0$) which do not conserve energy; dissipation rate does not vanish
Turbulence \longleftrightarrow anomalous dissipation \longleftrightarrow irregular flows
Onsager 1949:

- anomalous dissipation may occur in inviscid flow with "less than $1 / 3$ regularity"
- inviscid flows with "more than $1 / 3$ regularity" conserve energy

Research developed along two fronts: flexibility \times rigidity

Anomalous dissipation is a cornerstone of turbulence theory: inviscid fluid flows ($\nu=0$) which do not conserve energy; dissipation rate does not vanish
Turbulence \longleftrightarrow anomalous dissipation \longleftrightarrow irregular flows
Onsager 1949:

- anomalous dissipation may occur in inviscid flow with "less than $1 / 3$ regularity"
- inviscid flows with "more than $1 / 3$ regularity" conserve energy

Research developed along two fronts: flexibility \times rigidity
Brief history...

Wild solutions, anomalous dissipation

Wild solutions, anomalous dissipation

- Scheffer 93, Shnirelman 95 and De Lellis, Szekelyhidi 2009 -non-uniqueness (compact support in space and time); time-dependent energy.

Wild solutions, anomalous dissipation

- Scheffer 93, Shnirelman 95 and De Lellis, Szekelyhidi 2009 -non-uniqueness (compact support in space and time); time-dependent energy.
- Isett 2013; Buckmaster-De Lellis-Isett-Szekelyhidi 2015: $C^{0,1 / 5-\epsilon}$, Buckmaster, De Lellis, Szekelyhidi 2016, $L_{t}^{1} C_{x}^{0,1 / 3-\epsilon}$. These are all 3D constructions.

Wild solutions, anomalous dissipation

- Scheffer 93, Shnirelman 95 and De Lellis, Szekelyhidi 2009 -non-uniqueness (compact support in space and time); time-dependent energy.
- Isett 2013; Buckmaster-De Lellis-Isett-Szekelyhidi 2015: $C^{0,1 / 5-\epsilon}$, Buckmaster, De Lellis, Szekelyhidi 2016, $L_{t}^{1} C_{x}^{0,1 / 3-\epsilon}$. These are all 3D constructions.
- Choffrut, 2013,

Wild solutions, anomalous dissipation

- Scheffer 93, Shnirelman 95 and De Lellis, Szekelyhidi 2009 -non-uniqueness (compact support in space and time); time-dependent energy.
- Isett 2013; Buckmaster-De Lellis-Isett-Szekelyhidi 2015: $C^{0,1 / 5-\epsilon}$, Buckmaster, De Lellis, Szekelyhidi 2016, $L_{t}^{1} C_{x}^{0,1 / 3-\epsilon}$. These are all 3D constructions.
- Choffrut, 2013, $C^{0,1 / 10}$. Construction works in 2D.

Wild solutions, anomalous dissipation

- Scheffer 93, Shnirelman 95 and De Lellis, Szekelyhidi 2009 -non-uniqueness (compact support in space and time); time-dependent energy.
- Isett 2013; Buckmaster-De Lellis-Isett-Szekelyhidi 2015: $C^{0,1 / 5-\epsilon}$, Buckmaster, De Lellis, Szekelyhidi 2016, $L_{t}^{1} C_{x}^{0,1 / 3-\epsilon}$. These are all 3D constructions.
- Choffrut, 2013, $C^{0,1 / 10}$. Construction works in 2D.
- Isett 2018: $C^{0,1 / 3-\varepsilon}$, compact support in time.

Wild solutions, anomalous dissipation

- Scheffer 93, Shnirelman 95 and De Lellis, Szekelyhidi 2009 -non-uniqueness (compact support in space and time); time-dependent energy.
- Isett 2013; Buckmaster-De Lellis-Isett-Szekelyhidi 2015: $C^{0,1 / 5-\epsilon}$, Buckmaster, De Lellis, Szekelyhidi 2016, $L_{t}^{1} C_{x}^{0,1 / 3-\epsilon}$. These are all 3D constructions.
- Choffrut, 2013, $C^{0,1 / 10}$. Construction works in 2D.
- Isett 2018: $C^{0,1 / 3-\varepsilon}$, compact support in time.
- Buckmaster-De Lellis-Szekelyhidi-Vicol 2019: $C^{0,1 / 3-\varepsilon}+$ prescribed energy profile.

Wild solutions, anomalous dissipation

- Scheffer 93, Shnirelman 95 and De Lellis, Szekelyhidi 2009-non-uniqueness (compact support in space and time); time-dependent energy.
- Isett 2013; Buckmaster-De Lellis-Isett-Szekelyhidi 2015: $C^{0,1 / 5-\epsilon}$, Buckmaster, De Lellis, Szekelyhidi 2016, $L_{t}^{1} C_{x}^{0,1 / 3-\epsilon}$. These are all 3D constructions.
- Choffrut, 2013, $C^{0,1 / 10}$. Construction works in 2D.
- Isett 2018: $C^{0,1 / 3-\varepsilon}$, compact support in time.
- Buckmaster-De Lellis-Szekelyhidi-Vicol 2019: $C^{0,1 / 3-\varepsilon}+$ prescribed energy profile.
- Buckmaster-Vicol 2019: \exists viscous flows with prescribed energy profile;

Wild solutions, anomalous dissipation

- Scheffer 93, Shnirelman 95 and De Lellis, Szekelyhidi 2009-non-uniqueness (compact support in space and time); time-dependent energy.
- Isett 2013; Buckmaster-De Lellis-Isett-Szekelyhidi 2015: $C^{0,1 / 5-\epsilon}$, Buckmaster, De Lellis, Szekelyhidi 2016, $L_{t}^{1} C_{x}^{0,1 / 3-\epsilon}$. These are all 3D constructions.
- Choffrut, 2013, $C^{0,1 / 10}$. Construction works in 2D.
- Isett 2018: $C^{0,1 / 3-\varepsilon}$, compact support in time.
- Buckmaster-De Lellis-Szekelyhidi-Vicol 2019: $C^{0,1 / 3-\varepsilon}+$ prescribed energy profile.
- Buckmaster-Vicol 2019: \exists viscous flows with prescribed energy profile; \exists inviscid limit with anomalous dissipation.

Wild solutions, anomalous dissipation

- Scheffer 93, Shnirelman 95 and De Lellis, Szekelyhidi 2009-non-uniqueness (compact support in space and time); time-dependent energy.
- Isett 2013; Buckmaster-De Lellis-Isett-Szekelyhidi 2015: $C^{0,1 / 5-\epsilon}$, Buckmaster, De Lellis, Szekelyhidi 2016, $L_{t}^{1} C_{x}^{0,1 / 3-\epsilon}$. These are all 3D constructions.
- Choffrut, 2013, $C^{0,1 / 10}$. Construction works in 2D.
- Isett 2018: $C^{0,1 / 3-\varepsilon}$, compact support in time.
- Buckmaster-De Lellis-Szekelyhidi-Vicol 2019: $C^{0,1 / 3-\varepsilon}+$ prescribed energy profile.
- Buckmaster-Vicol 2019: \exists viscous flows with prescribed energy profile; \exists inviscid limit with anomalous dissipation. 3D construction!

Wild solutions, anomalous dissipation

- Scheffer 93, Shnirelman 95 and De Lellis, Szekelyhidi 2009-non-uniqueness (compact support in space and time); time-dependent energy.
- Isett 2013; Buckmaster-De Lellis-Isett-Szekelyhidi 2015: $C^{0,1 / 5-\epsilon}$, Buckmaster, De Lellis, Szekelyhidi 2016, $L_{t}^{1} C_{x}^{0,1 / 3-\epsilon}$. These are all 3D constructions.
- Choffrut, 2013, $C^{0,1 / 10}$. Construction works in 2D.
- Isett 2018: $C^{0,1 / 3-\varepsilon}$, compact support in time.
- Buckmaster-De Lellis-Szekelyhidi-Vicol 2019: $C^{0,1 / 3-\varepsilon}+$ prescribed energy profile.
- Buckmaster-Vicol 2019: \exists viscous flows with prescribed energy profile; \exists inviscid limit with anomalous dissipation. 3D construction!
- Brué-Colombo 2021: nonuniqueness 2D Euler, vorticity in $L^{1, \infty}$.

Wild solutions, anomalous dissipation

- Scheffer 93, Shnirelman 95 and De Lellis, Szekelyhidi 2009-non-uniqueness (compact support in space and time); time-dependent energy.
- Isett 2013; Buckmaster-De Lellis-Isett-Szekelyhidi 2015: $C^{0,1 / 5-\epsilon}$, Buckmaster, De Lellis, Szekelyhidi 2016, $L_{t}^{1} C_{x}^{0,1 / 3-\epsilon}$. These are all 3D constructions.
- Choffrut, 2013, $C^{0,1 / 10}$. Construction works in 2D.
- Isett 2018: $C^{0,1 / 3-\varepsilon}$, compact support in time.
- Buckmaster-De Lellis-Szekelyhidi-Vicol 2019: $C^{0,1 / 3-\varepsilon}+$ prescribed energy profile.
- Buckmaster-Vicol 2019: \exists viscous flows with prescribed energy profile; \exists inviscid limit with anomalous dissipation. 3D construction!
- Brué-Colombo 2021: nonuniqueness 2D Euler, vorticity in $L^{1, \infty}$. Convex integration.

Wild solutions, anomalous dissipation

- Scheffer 93, Shnirelman 95 and De Lellis, Szekelyhidi 2009-non-uniqueness (compact support in space and time); time-dependent energy.
- Isett 2013; Buckmaster-De Lellis-Isett-Szekelyhidi 2015: $C^{0,1 / 5-\epsilon}$, Buckmaster, De Lellis, Szekelyhidi 2016, $L_{t}^{1} C_{x}^{0,1 / 3-\epsilon}$. These are all 3D constructions.
- Choffrut, 2013, $C^{0,1 / 10}$. Construction works in 2D.
- Isett 2018: $C^{0,1 / 3-\varepsilon}$, compact support in time.
- Buckmaster-De Lellis-Szekelyhidi-Vicol 2019: $C^{0,1 / 3-\varepsilon}+$ prescribed energy profile.
- Buckmaster-Vicol 2019: \exists viscous flows with prescribed energy profile; \exists inviscid limit with anomalous dissipation. 3D construction!
- Brué-Colombo 2021: nonuniqueness 2D Euler, vorticity in $L^{1, \infty}$. Convex integration.
- Albritton-Brué-Colombo 2021: nonuniqueness Leray-Hopf solutions.

Wild solutions, anomalous dissipation

- Scheffer 93, Shnirelman 95 and De Lellis, Szekelyhidi 2009-non-uniqueness (compact support in space and time); time-dependent energy.
- Isett 2013; Buckmaster-De Lellis-Isett-Szekelyhidi 2015: $C^{0,1 / 5-\epsilon}$, Buckmaster, De Lellis, Szekelyhidi 2016, $L_{t}^{1} C_{x}^{0,1 / 3-\epsilon}$. These are all 3D constructions.
- Choffrut, 2013, $C^{0,1 / 10}$. Construction works in 2D.
- Isett 2018: $C^{0,1 / 3-\varepsilon}$, compact support in time.
- Buckmaster-De Lellis-Szekelyhidi-Vicol 2019: $C^{0,1 / 3-\varepsilon}+$ prescribed energy profile.
- Buckmaster-Vicol 2019: \exists viscous flows with prescribed energy profile; \exists inviscid limit with anomalous dissipation. 3D construction!
- Brué-Colombo 2021: nonuniqueness 2D Euler, vorticity in $L^{1, \infty}$. Convex integration.
- Albritton-Brué-Colombo 2021: nonuniqueness Leray-Hopf solutions. Not convex integration.

Regularity threshold for conservation of energy

Regularity threshold for conservation of energy

- Frisch-Sulem 1975: $L_{t}^{\infty} H_{x}^{5 / 6}$;

Regularity threshold for conservation of energy

- Frisch-Sulem 1975: $L_{t}^{\infty} H_{x}^{5 / 6}$;
- Eyink 94: a little more than $L_{t}^{3} C_{x}^{1 / 3+\epsilon}$;

Regularity threshold for conservation of energy

- Frisch-Sulem 1975: $L_{t}^{\infty} H_{x}^{5 / 6}$;
- Eyink 94: a little more than $L_{t}^{3} C_{x}^{1 / 3+\epsilon}$;
- Constantin, E, Titi 1994: $L_{t}^{3} B_{3, \infty}^{1 / 3+\epsilon}$.

Regularity threshold for conservation of energy

- Frisch-Sulem 1975: $L_{t}^{\infty} H_{x}^{5 / 6}$;
- Eyink 94: a little more than $L_{t}^{3} C_{x}^{1 / 3+\epsilon}$;
- Constantin, E, Titi 1994: $L_{t}^{3} B_{3, \infty}^{1 / 3+\epsilon}$.
- State of the art - Cheskidov, Constantin, Friedlander, Shvydkoy 2008: $L_{t}^{3} B_{3, c_{0}}^{1 / 3}$,

Regularity threshold for conservation of energy

- Frisch-Sulem 1975: $L_{t}^{\infty} H_{x}^{5 / 6}$;
- Eyink 94: a little more than $L_{t}^{3} C_{x}^{1 / 3+\epsilon}$;
- Constantin, E, Titi 1994: $L_{t}^{3} B_{3, \infty}^{1 / 3+\epsilon}$.
- State of the art - Cheskidov, Constantin, Friedlander, Shvydkoy 2008: $L_{t}^{3} B_{3, c_{0}}^{1 / 3}$, 3D and 2D.

Regularity threshold for conservation of energy

- Frisch-Sulem 1975: $L_{t}^{\infty} H_{x}^{5 / 6}$;
- Eyink 94: a little more than $L_{t}^{3} C_{x}^{1 / 3+\epsilon}$;
- Constantin, E, Titi 1994: $L_{t}^{3} B_{3, \infty}^{1 / 3+\epsilon}$.
- State of the art - Cheskidov, Constantin, Friedlander, Shvydkoy 2008: $L_{t}^{3} B_{3, c_{0}}^{1 / 3}$, 3D and 2D.
- 2D result - Duchon, Robert 2000: initial vorticity in L^{p}, for $p>3 / 2$ implies conservation of energy.

Regularity threshold for conservation of energy

- Frisch-Sulem 1975: $L_{t}^{\infty} H_{x}^{5 / 6}$;
- Eyink 94: a little more than $L_{t}^{3} C_{x}^{1 / 3+\epsilon}$;
- Constantin, E, Titi 1994: $L_{t}^{3} B_{3, \infty}^{1 / 3+\epsilon}$.
- State of the art - Cheskidov, Constantin, Friedlander, Shvydkoy 2008: $L_{t}^{3} B_{3, c_{0}}^{1 / 3}$, 3D and 2D.
- 2D result - Duchon, Robert 2000: initial vorticity in L^{p}, for $p>3 / 2$ implies conservation of energy.
Extension to $p=3 / 2$ follows from Cheskidov, Constantin, Friedlander, Shvydkoy.

Regularity threshold for conservation of energy

- Frisch-Sulem 1975: $L_{t}^{\infty} H_{x}^{5 / 6}$;
- Eyink 94: a little more than $L_{t}^{3} C_{x}^{1 / 3+\epsilon}$;
- Constantin, E, Titi 1994: $L_{t}^{3} B_{3, \infty}^{1 / 3+\epsilon}$.
- State of the art - Cheskidov, Constantin, Friedlander, Shvydkoy 2008: $L_{t}^{3} B_{3, c_{0}}^{1 / 3}$, 3D and 2D.
- 2D result - Duchon, Robert 2000: initial vorticity in L^{p}, for $p>3 / 2$ implies conservation of energy.
Extension to $p=3 / 2$ follows from Cheskidov, Constantin, Friedlander, Shvydkoy.
Involves studying optimal conditions for energy flux to vanish.

2D flows

2D flows

2D Euler equations on the torus $\mathbb{T}^{2} \equiv[0,2 \pi]^{2}$, with initial data $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$,

2D flows

2D Euler equations on the torus $\mathbb{T}^{2} \equiv[0,2 \pi]^{2}$, with initial data $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$, no forcing:

2D flows

2D Euler equations on the torus $\mathbb{T}^{2} \equiv[0,2 \pi]^{2}$, with initial data $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$, no forcing:

$$
\left\{\begin{array}{l}
\partial_{t} u+(u \cdot \nabla) u=-\nabla p \\
\operatorname{div} u=0 \\
u(t=0)=u_{0}
\end{array}\right.
$$

2D flows

2D Euler equations on the torus $\mathbb{T}^{2} \equiv[0,2 \pi]^{2}$, with initial data $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$, no forcing:

$$
\left\{\begin{array}{l}
\partial_{t} u+(u \cdot \nabla) u=-\nabla p \\
\operatorname{div} u=0 \\
u(t=0)=u_{0} .
\end{array}\right.
$$

Interested in weak solutions

2D flows

2D Euler equations on the torus $\mathbb{T}^{2} \equiv[0,2 \pi]^{2}$, with initial data $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$, no forcing:

$$
\left\{\begin{array}{l}
\partial_{t} u+(u \cdot \nabla) u=-\nabla p \\
\operatorname{div} u=0 \\
u(t=0)=u_{0} .
\end{array}\right.
$$

Interested in weak solutions for which vorticity

2D flows

2D Euler equations on the torus $\mathbb{T}^{2} \equiv[0,2 \pi]^{2}$, with initial data $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$, no forcing:

$$
\left\{\begin{array}{l}
\partial_{t} u+(u \cdot \nabla) u=-\nabla p \\
\operatorname{div} u=0 \\
u(t=0)=u_{0} .
\end{array}\right.
$$

Interested in weak solutions for which vorticity $\omega \equiv \operatorname{curl} u$

2D flows

2D Euler equations on the torus $\mathbb{T}^{2} \equiv[0,2 \pi]^{2}$, with initial data $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$, no forcing:

$$
\left\{\begin{array}{l}
\partial_{t} u+(u \cdot \nabla) u=-\nabla p \\
\operatorname{div} u=0 \\
u(t=0)=u_{0} .
\end{array}\right.
$$

Interested in weak solutions for which vorticity $\omega \equiv$ curl u is p-th power integrable,

2D flows

2D Euler equations on the torus $\mathbb{T}^{2} \equiv[0,2 \pi]^{2}$, with initial data $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$, no forcing:

$$
\left\{\begin{array}{l}
\partial_{t} u+(u \cdot \nabla) u=-\nabla p \\
\operatorname{div} u=0 \\
u(t=0)=u_{0}
\end{array}\right.
$$

Interested in weak solutions for which vorticity $\omega \equiv$ curl u is p-th power integrable,for some $p \geq 1$.

2D flows

2D Euler equations on the torus $\mathbb{T}^{2} \equiv[0,2 \pi]^{2}$, with initial data $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$, no forcing:

$$
\left\{\begin{array}{l}
\partial_{t} u+(u \cdot \nabla) u=-\nabla p \\
\operatorname{div} u=0 \\
u(t=0)=u_{0}
\end{array}\right.
$$

Interested in weak solutions for which vorticity $\omega \equiv$ curl u is p-th power integrable,for some $p \geq 1$.

Note:

2D flows

2D Euler equations on the torus $\mathbb{T}^{2} \equiv[0,2 \pi]^{2}$, with initial data $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$, no forcing:

$$
\left\{\begin{array}{l}
\partial_{t} u+(u \cdot \nabla) u=-\nabla p \\
\operatorname{div} u=0 \\
u(t=0)=u_{0}
\end{array}\right.
$$

Interested in weak solutions for which vorticity $\omega \equiv$ curl u is p-th power integrable,for some $p \geq 1$.

Note:

- Smooth vorticity transported in 2D,

2D flows

2D Euler equations on the torus $\mathbb{T}^{2} \equiv[0,2 \pi]^{2}$, with initial data $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$, no forcing:

$$
\left\{\begin{array}{l}
\partial_{t} u+(u \cdot \nabla) u=-\nabla p \\
\operatorname{div} u=0 \\
u(t=0)=u_{0} .
\end{array}\right.
$$

Interested in weak solutions for which vorticity $\omega \equiv$ curl u is p-th power integrable,for some $p \geq 1$.

Note:

- Smooth vorticity transported in 2D, L^{p} bounds preserved by evolution

2D flows

2D Euler equations on the torus $\mathbb{T}^{2} \equiv[0,2 \pi]^{2}$, with initial data $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$, no forcing:

$$
\left\{\begin{array}{l}
\partial_{t} u+(u \cdot \nabla) u=-\nabla p \\
\operatorname{div} u=0 \\
u(t=0)=u_{0} .
\end{array}\right.
$$

Interested in weak solutions for which vorticity $\omega \equiv$ curl u is p-th power integrable,for some $p \geq 1$.

Note:

- Smooth vorticity transported in 2D, L^{p} bounds preserved by evolution
- wild solutions:

2D flows

2D Euler equations on the torus $\mathbb{T}^{2} \equiv[0,2 \pi]^{2}$, with initial data $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$, no forcing:

$$
\left\{\begin{array}{l}
\partial_{t} u+(u \cdot \nabla) u=-\nabla p \\
\operatorname{div} u=0 \\
u(t=0)=u_{0} .
\end{array}\right.
$$

Interested in weak solutions for which vorticity $\omega \equiv$ curl u is p-th power integrable,for some $p \geq 1$.

Note:

- Smooth vorticity transported in 2D, L^{p} bounds preserved by evolution
- wild solutions: no control on integrability of vorticity

Definition

Fix $T>0$ and $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$ with initial vorticity $\omega_{0}=\operatorname{curl} u_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$, for some $p \geq 1$.

Definition

Fix $T>0$ and $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$ with initial vorticity $\omega_{0}=\operatorname{curl} u_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$, for some $p \geq 1$. Let $u \in C\left(0, T ; L_{\text {weak }}^{2}\left(\mathbb{T}^{2}\right)\right)$ with $\omega \in L^{\infty}\left(0, T ; L^{p}\left(\mathbb{T}^{2}\right)\right)$.

Definition

Fix $T>0$ and $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$ with initial vorticity $\omega_{0}=$ curl $u_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$, for some $p \geq 1$. Let $u \in C\left(0, T ; L_{\text {weak }}^{2}\left(\mathbb{T}^{2}\right)\right)$ with $\omega \in L^{\infty}\left(0, T ; L^{p}\left(\mathbb{T}^{2}\right)\right)$. We say u is a weak solution of the incompressible Euler equations with initial velocity u_{0} if

Definition

Fix $T>0$ and $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$ with initial vorticity $\omega_{0}=\operatorname{curl} u_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$, for some $p \geq 1$. Let $u \in C\left(0, T ; L_{\text {weak }}^{2}\left(\mathbb{T}^{2}\right)\right)$ with $\omega \in L^{\infty}\left(0, T ; L^{p}\left(\mathbb{T}^{2}\right)\right)$. We say u is a weak solution of the incompressible Euler equations with initial velocity u_{0} if
(1) for every test vector field $\Phi \in C^{\infty}\left([0, T) \times \mathbb{T}^{2}\right)$ such that $\operatorname{div} \Phi(t, \cdot)=0$ the following identity holds true:

Definition

Fix $T>0$ and $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$ with initial vorticity $\omega_{0}=\operatorname{curl} u_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$, for some $p \geq 1$. Let $u \in C\left(0, T ; L_{\text {weak }}^{2}\left(\mathbb{T}^{2}\right)\right)$ with $\omega \in L^{\infty}\left(0, T ; L^{p}\left(\mathbb{T}^{2}\right)\right)$. We say u is a weak solution of the incompressible Euler equations with initial velocity u_{0} if
(0) for every test vector field $\Phi \in C^{\infty}\left([0, T) \times \mathbb{T}^{2}\right)$ such that $\operatorname{div} \Phi(t, \cdot)=0$ the following identity holds true:

$$
\int_{0}^{T} \int_{\mathbb{T}^{2}} \partial_{t} \Phi \cdot u+u \cdot D \Phi u d x d t+\int_{\mathbb{T}^{2}} \Phi(0, \cdot) \cdot u_{0} d x=0 .
$$

Definition

Fix $T>0$ and $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$ with initial vorticity $\omega_{0}=\operatorname{curl} u_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$, for some $p \geq 1$. Let $u \in C\left(0, T ; L_{\text {weak }}^{2}\left(\mathbb{T}^{2}\right)\right)$ with $\omega \in L^{\infty}\left(0, T ; L^{p}\left(\mathbb{T}^{2}\right)\right)$. We say u is a weak solution of the incompressible Euler equations with initial velocity u_{0} if
(1) for every test vector field $\Phi \in C^{\infty}\left([0, T) \times \mathbb{T}^{2}\right)$ such that $\operatorname{div} \Phi(t, \cdot)=0$ the following identity holds true:

$$
\int_{0}^{T} \int_{\mathbb{T}^{2}} \partial_{t} \Phi \cdot u+u \cdot D \Phi u d x d t+\int_{\mathbb{T}^{2}} \Phi(0, \cdot) \cdot u_{0} d x=0 .
$$

(2) For almost every $t \in(0, T)$,

Definition

Fix $T>0$ and $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$ with initial vorticity $\omega_{0}=\operatorname{curl} u_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$, for some $p \geq 1$. Let $u \in C\left(0, T ; L_{\text {weak }}^{2}\left(\mathbb{T}^{2}\right)\right)$ with $\omega \in L^{\infty}\left(0, T ; L^{p}\left(\mathbb{T}^{2}\right)\right)$. We say u is a weak solution of the incompressible Euler equations with initial velocity u_{0} if
(1) for every test vector field $\Phi \in C^{\infty}\left([0, T) \times \mathbb{T}^{2}\right)$ such that $\operatorname{div} \Phi(t, \cdot)=0$ the following identity holds true:

$$
\int_{0}^{T} \int_{\mathbb{T}^{2}} \partial_{t} \Phi \cdot u+u \cdot D \Phi u d x d t+\int_{\mathbb{T}^{2}} \Phi(0, \cdot) \cdot u_{0} d x=0 .
$$

(2) For almost every $t \in(0, T)$, $\operatorname{div} u(t, \cdot)=0$, in the sense of distributions.

Definition

Fix $T>0$ and $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$ with initial vorticity $\omega_{0}=\operatorname{curl} u_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$, for some $p \geq 1$. Let $u \in C\left(0, T ; L_{\text {weak }}^{2}\left(\mathbb{T}^{2}\right)\right)$ with $\omega \in L^{\infty}\left(0, T ; L^{p}\left(\mathbb{T}^{2}\right)\right)$. We say u is a weak solution of the incompressible Euler equations with initial velocity u_{0} if
(1) for every test vector field $\Phi \in C^{\infty}\left([0, T) \times \mathbb{T}^{2}\right)$ such that $\operatorname{div} \Phi(t, \cdot)=0$ the following identity holds true:

$$
\int_{0}^{T} \int_{\mathbb{T}^{2}} \partial_{t} \Phi \cdot u+u \cdot D \Phi u d x d t+\int_{\mathbb{T}^{2}} \Phi(0, \cdot) \cdot u_{0} d x=0 .
$$

(2) For almost every $t \in(0, T)$, $\operatorname{div} u(t, \cdot)=0$, in the sense of distributions.

Existence of such weak solutions is known (DiPerna, Majda 87; Vecchi, Wu 93), but uniqueness is open...except for $L^{\infty} \ldots$...and nearby.

Definition

Fix $T>0$ and $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$ with initial vorticity $\omega_{0}=\operatorname{curl} u_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$, for some $p \geq 1$. Let $u \in C\left(0, T ; L_{\text {weak }}^{2}\left(\mathbb{T}^{2}\right)\right)$ with $\omega \in L^{\infty}\left(0, T ; L^{p}\left(\mathbb{T}^{2}\right)\right)$. We say u is a weak solution of the incompressible Euler equations with initial velocity u_{0} if
(1) for every test vector field $\Phi \in C^{\infty}\left([0, T) \times \mathbb{T}^{2}\right)$ such that $\operatorname{div} \Phi(t, \cdot)=0$ the following identity holds true:

$$
\int_{0}^{T} \int_{\mathbb{T}^{2}} \partial_{t} \Phi \cdot u+u \cdot D \Phi u d x d t+\int_{\mathbb{T}^{2}} \Phi(0, \cdot) \cdot u_{0} d x=0 .
$$

(2) For almost every $t \in(0, T)$, $\operatorname{div} u(t, \cdot)=0$, in the sense of distributions.

Existence of such weak solutions is known (DiPerna, Majda 87; Vecchi, Wu 93), but uniqueness is open...except for $L^{\infty} \ldots$...and nearby. We call a weak solution conservative if the L^{2}-norm of velocity is constant in time.

Baseline result

Baseline result

Theorem

Fix $T>0$ and let $u \in C\left(0, T ; L_{\text {weak }}^{2}\left(\mathbb{T}^{2}\right)\right)$ be a weak solution with $\omega \equiv$ curl $u \in L^{\infty}\left(0, T ; L^{3 / 2}\left(\mathbb{T}^{2}\right)\right)$.

Baseline result

Theorem

Fix $T>0$ and let $u \in C\left(0, T ; L_{\text {weak }}^{2}\left(T^{2}\right)\right)$ be a weak solution with $\omega \equiv$ curl $u \in L^{\infty}\left(0, T ; L^{3 / 2}\left(\mathbb{T}^{2}\right)\right)$. Then u is conservative.

Baseline result

Theorem

Fix $T>0$ and let $u \in C\left(0, T ; L_{\text {weak }}^{2}\left(\mathbb{T}^{2}\right)\right)$ be a weak solution with $\omega \equiv$ curl $u \in L^{\infty}\left(0, T ; L^{3 / 2}\left(\mathbb{T}^{2}\right)\right)$. Then u is conservative. Moreover, the following local energy balance law holds in the sense of distributions:

Baseline result

Theorem

Fix $T>0$ and let $u \in C\left(0, T ; L_{\text {weak }}^{2}\left(T^{2}\right)\right)$ be a weak solution with $\omega \equiv$ curl $u \in L^{\infty}\left(0, T ; L^{3 / 2}\left(\mathbb{T}^{2}\right)\right)$. Then u is conservative. Moreover, the following local energy balance law holds in the sense of distributions:

$$
\begin{equation*}
\partial_{t}\left(\frac{|u|^{2}}{2}\right)+\operatorname{div}\left[u\left(\frac{|u|^{2}}{2}+p\right)\right]=0 . \tag{1}
\end{equation*}
$$

Baseline result

Theorem

Fix $T>0$ and let $u \in C\left(0, T ; L_{\text {weak }}^{2}\left(\mathbb{T}^{2}\right)\right)$ be a weak solution with $\omega \equiv$ curl $u \in L^{\infty}\left(0, T ; L^{3 / 2}\left(\mathbb{T}^{2}\right)\right)$. Then u is conservative. Moreover, the following local energy balance law holds in the sense of distributions:

$$
\begin{equation*}
\partial_{t}\left(\frac{|u|^{2}}{2}\right)+\operatorname{div}\left[u\left(\frac{|u|^{2}}{2}+p\right)\right]=0 \tag{1}
\end{equation*}
$$

This result is contained in Cheskidov et alli 2008,

Baseline result

Theorem

Fix $T>0$ and let $u \in C\left(0, T ; L_{\text {weak }}^{2}\left(\mathbb{T}^{2}\right)\right)$ be a weak solution with $\omega \equiv$ curl $u \in L^{\infty}\left(0, T ; L^{3 / 2}\left(\mathbb{T}^{2}\right)\right)$. Then u is conservative. Moreover, the following local energy balance law holds in the sense of distributions:

$$
\begin{equation*}
\partial_{t}\left(\frac{|u|^{2}}{2}\right)+\operatorname{div}\left[u\left(\frac{|u|^{2}}{2}+p\right)\right]=0 \tag{1}
\end{equation*}
$$

This result is contained in Cheskidov et alli 2008, since $L_{t}^{\infty} W_{x}^{1,3 / 2} \subseteq L_{t}^{3} B_{3, c_{0}}^{1 / 3}$

Baseline result

Theorem

Fix $T>0$ and let $u \in C\left(0, T ; L_{\text {weak }}^{2}\left(\mathbb{T}^{2}\right)\right)$ be a weak solution with $\omega \equiv$ curl $u \in L^{\infty}\left(0, T ; L^{3 / 2}\left(\mathbb{T}^{2}\right)\right)$. Then u is conservative. Moreover, the following local energy balance law holds in the sense of distributions:

$$
\begin{equation*}
\partial_{t}\left(\frac{|u|^{2}}{2}\right)+\operatorname{div}\left[u\left(\frac{|u|^{2}}{2}+p\right)\right]=0 \tag{1}
\end{equation*}
$$

This result is contained in Cheskidov et alli 2008, since $L_{t}^{\infty} W_{x}^{1,3 / 2} \subseteq L_{t}^{3} B_{3, c_{0}}^{1 / 3}$ we outline an elementary proof.

Idea of the proof of the Theorem

Let $\zeta_{\varepsilon}=\zeta_{\varepsilon}(x)$ be $C^{\infty}\left(\mathbb{T}^{2}\right)$-mollifier.

Idea of the proof of the Theorem

Let $\zeta_{\varepsilon}=\zeta_{\varepsilon}(x)$ be $C^{\infty}\left(\mathbb{T}^{2}\right)$-mollifier. Take convolution of Euler

Idea of the proof of the Theorem

Let $\zeta_{\varepsilon}=\zeta_{\varepsilon}(x)$ be $C^{\infty}\left(\mathbb{T}^{2}\right)$-mollifier. Take convolution of Euler with ζ_{ε};

Idea of the proof of the Theorem

Let $\zeta_{\varepsilon}=\zeta_{\varepsilon}(x)$ be $C^{\infty}\left(\mathbb{T}^{2}\right)$-mollifier. Take convolution of Euler with ζ_{ε}; let $u^{\varepsilon}=\zeta_{\varepsilon} * u, p^{\varepsilon}=\zeta_{\varepsilon} * p$.

Idea of the proof of the Theorem

Let $\zeta_{\varepsilon}=\zeta_{\varepsilon}(x)$ be $C^{\infty}\left(\mathbb{T}^{2}\right)$-mollifier. Take convolution of Euler with ζ_{ε}; let $u^{\varepsilon}=\zeta_{\varepsilon} * u, p^{\varepsilon}=\zeta_{\varepsilon} * p$. Then:

Idea of the proof of the Theorem

Let $\zeta_{\varepsilon}=\zeta_{\varepsilon}(x)$ be $C^{\infty}\left(\mathbb{T}^{2}\right)$-mollifier. Take convolution of Euler with ζ_{ε}; let $u^{\varepsilon}=\zeta_{\varepsilon} * u, p^{\varepsilon}=\zeta_{\varepsilon} * p$. Then:

$$
\begin{equation*}
\partial_{t} u^{\varepsilon}+\left(u^{\varepsilon} \cdot \nabla\right) u^{\varepsilon}=-\nabla p^{\varepsilon}+\mathcal{R}^{\varepsilon} \tag{2}
\end{equation*}
$$

Idea of the proof of the Theorem

Let $\zeta_{\varepsilon}=\zeta_{\varepsilon}(x)$ be $C^{\infty}\left(\mathbb{T}^{2}\right)$-mollifier. Take convolution of Euler with ζ_{ε}; let $u^{\varepsilon}=\zeta_{\varepsilon} * u, p^{\varepsilon}=\zeta_{\varepsilon} * p$. Then:

$$
\begin{equation*}
\partial_{t} u^{\varepsilon}+\left(u^{\varepsilon} \cdot \nabla\right) u^{\varepsilon}=-\nabla p^{\varepsilon}+\mathcal{R}^{\varepsilon}, \tag{2}
\end{equation*}
$$

with

$$
\mathcal{R}^{\varepsilon} \equiv\left(u^{\varepsilon} \cdot \nabla\right) u^{\varepsilon}-\zeta_{\varepsilon} *[(u \cdot \nabla) u] .
$$

Idea of the proof of the Theorem

Let $\zeta_{\varepsilon}=\zeta_{\varepsilon}(x)$ be $C^{\infty}\left(\mathbb{T}^{2}\right)$-mollifier. Take convolution of Euler with ζ_{ε}; let $u^{\varepsilon}=\zeta_{\varepsilon} * u, p^{\varepsilon}=\zeta_{\varepsilon} * p$. Then:

$$
\begin{equation*}
\partial_{t} u^{\varepsilon}+\left(u^{\varepsilon} \cdot \nabla\right) u^{\varepsilon}=-\nabla p^{\varepsilon}+\mathcal{R}^{\varepsilon}, \tag{2}
\end{equation*}
$$

with

$$
\mathcal{R}^{\varepsilon} \equiv\left(u^{\varepsilon} \cdot \nabla\right) u^{\varepsilon}-\zeta_{\varepsilon} *[(u \cdot \nabla) u] .
$$

Multiply the equation by u^{ε} :

Idea of the proof of the Theorem

Let $\zeta_{\varepsilon}=\zeta_{\varepsilon}(x)$ be $C^{\infty}\left(\mathbb{T}^{2}\right)$-mollifier. Take convolution of Euler with ζ_{ε}; let $u^{\varepsilon}=\zeta_{\varepsilon} * u, p^{\varepsilon}=\zeta_{\varepsilon} * p$. Then:

$$
\begin{equation*}
\partial_{t} u^{\varepsilon}+\left(u^{\varepsilon} \cdot \nabla\right) u^{\varepsilon}=-\nabla p^{\varepsilon}+\mathcal{R}^{\varepsilon}, \tag{2}
\end{equation*}
$$

with

$$
\mathcal{R}^{\varepsilon} \equiv\left(u^{\varepsilon} \cdot \nabla\right) u^{\varepsilon}-\zeta_{\varepsilon} *[(u \cdot \nabla) u] .
$$

Multiply the equation by u^{ε} :

$$
\begin{equation*}
\partial_{t}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}\right)+\operatorname{div}\left[u^{\varepsilon}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}+p^{\varepsilon}\right)\right]=u^{\varepsilon} \cdot \mathcal{R}^{\varepsilon} \tag{3}
\end{equation*}
$$

As $\varepsilon \rightarrow 0$, we have:

As $\varepsilon \rightarrow 0$, we have:
(A) $\partial_{t}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}\right) \rightarrow \partial_{t}\left(\frac{|u|^{2}}{2}\right)$ in the sense of distributions;

As $\varepsilon \rightarrow 0$, we have:
(A) $\partial_{t}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}\right) \rightarrow \partial_{t}\left(\frac{\mid u^{2}}{2}\right)$ in the sense of distributions;
(B) $\operatorname{div}\left[u^{\varepsilon}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}+p^{\varepsilon}\right)\right] \rightarrow \operatorname{div}\left[u\left(\frac{|u|^{2}}{2}+p\right)\right]$ in the sense of distributions;

As $\varepsilon \rightarrow 0$, we have:
(A) $\partial_{t}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}\right) \rightarrow \partial_{t}\left(\frac{\mid u^{2}}{2}\right)$ in the sense of distributions;
(B) $\operatorname{div}\left[u^{\varepsilon}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}+p^{\varepsilon}\right)\right] \rightarrow \operatorname{div}\left[u\left(\frac{|u|^{2}}{2}+p\right)\right]$ in the sense of distributions;
(C) $u^{\varepsilon} \cdot \mathcal{R}^{\varepsilon} \rightarrow 0$ strongly in $L^{\infty}\left(0, T ; L^{1}\left(\mathbb{T}^{2}\right)\right)$.

As $\varepsilon \rightarrow 0$, we have:
(A) $\partial_{t}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}\right) \rightarrow \partial_{t}\left(\frac{\mid u^{2}}{2}\right)$ in the sense of distributions;
(B) $\operatorname{div}\left[u^{\varepsilon}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}+p^{\varepsilon}\right)\right] \rightarrow \operatorname{div}\left[u\left(\frac{|u|^{2}}{2}+p\right)\right]$ in the sense of distributions;
(C) $u^{\varepsilon} \cdot \mathcal{R}^{\varepsilon} \rightarrow 0$ strongly in $L^{\infty}\left(0, T ; L^{1}\left(\mathbb{T}^{2}\right)\right)$.
(A) and (B) are subcritical for $\omega \in L^{3 / 2}$.

As $\varepsilon \rightarrow 0$, we have:
(A) $\partial_{t}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}\right) \rightarrow \partial_{t}\left(\frac{\mid u^{2}}{2}\right)$ in the sense of distributions;
(B) $\operatorname{div}\left[u^{\varepsilon}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}+p^{\varepsilon}\right)\right] \rightarrow \operatorname{div}\left[u\left(\frac{|u|^{2}}{2}+p\right)\right]$ in the sense of distributions;
(C) $u^{\varepsilon} \cdot \mathcal{R}^{\varepsilon} \rightarrow 0$ strongly in $L^{\infty}\left(0, T ; L^{1}\left(\mathbb{T}^{2}\right)\right)$.
(A) and (B) are subcritical for $\omega \in L^{3 / 2}$. In fact, they require $\omega \in L^{6 / 5}$.

As $\varepsilon \rightarrow 0$, we have:
(A) $\partial_{t}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}\right) \rightarrow \partial_{t}\left(\frac{| |^{2}}{2}\right)$ in the sense of distributions;
(B) $\operatorname{div}\left[u^{\varepsilon}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}+p^{\varepsilon}\right)\right] \rightarrow \operatorname{div}\left[u\left(\frac{|u|^{2}}{2}+p\right)\right]$ in the sense of distributions;
(C) $u^{\varepsilon} \cdot \mathcal{R}^{\varepsilon} \rightarrow 0$ strongly in $L^{\infty}\left(0, T ; L^{1}\left(\mathbb{T}^{2}\right)\right)$.
(A) and (B) are subcritical for $\omega \in L^{3 / 2}$. In fact, they require $\omega \in L^{6 / 5}$. It is the convergence of the energy flux term, which is (C), that requires $\omega \in L^{3 / 2}$.

As $\varepsilon \rightarrow 0$, we have:
(A) $\partial_{t}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}\right) \rightarrow \partial_{t}\left(\frac{| |^{2}}{2}\right)$ in the sense of distributions;
(B) $\operatorname{div}\left[u^{\varepsilon}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}+p^{\varepsilon}\right)\right] \rightarrow \operatorname{div}\left[u\left(\frac{|u|^{2}}{2}+p\right)\right]$ in the sense of distributions;
(C) $u^{\varepsilon} \cdot \mathcal{R}^{\varepsilon} \rightarrow 0$ strongly in $L^{\infty}\left(0, T ; L^{1}\left(\mathbb{T}^{2}\right)\right)$.
(A) and (B) are subcritical for $\omega \in L^{3 / 2}$. In fact, they require $\omega \in L^{6 / 5}$. It is the convergence of the energy flux term, which is (C), that requires $\omega \in L^{3 / 2}$. (Good behavior of the energy flux term is the key point in all results along these lines.)

As $\varepsilon \rightarrow 0$, we have:
(A) $\partial_{t}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}\right) \rightarrow \partial_{t}\left(\frac{| |^{2}}{2}\right)$ in the sense of distributions;
(B) $\operatorname{div}\left[u^{\varepsilon}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}+p^{\varepsilon}\right)\right] \rightarrow \operatorname{div}\left[u\left(\frac{|u|^{2}}{2}+p\right)\right]$ in the sense of distributions;
(C) $u^{\varepsilon} \cdot \mathcal{R}^{\varepsilon} \rightarrow 0$ strongly in $L^{\infty}\left(0, T ; L^{1}\left(\mathbb{T}^{2}\right)\right)$.
(A) and (B) are subcritical for $\omega \in L^{3 / 2}$. In fact, they require $\omega \in L^{6 / 5}$. It is the convergence of the energy flux term, which is (C), that requires $\omega \in L^{3 / 2}$. (Good behavior of the energy flux term is the key point in all results along these lines.)

The proof of (C) uses convergence of mollifications together with the Sobolev imbedding: $\omega \in L^{3 / 2} \Longrightarrow u^{\varepsilon}$ bounded in $L^{\infty}\left(0, T ; L^{6}\left(\mathbb{T}^{2}\right)\right)$.

As $\varepsilon \rightarrow 0$, we have:
(A) $\partial_{t}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}\right) \rightarrow \partial_{t}\left(\frac{| |^{2}}{2}\right)$ in the sense of distributions;
(B) $\operatorname{div}\left[u^{\varepsilon}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}+p^{\varepsilon}\right)\right] \rightarrow \operatorname{div}\left[u\left(\frac{|u|^{2}}{2}+p\right)\right]$ in the sense of distributions;
(C) $u^{\varepsilon} \cdot \mathcal{R}^{\varepsilon} \rightarrow 0$ strongly in $L^{\infty}\left(0, T ; L^{1}\left(\mathbb{T}^{2}\right)\right)$.
(A) and (B) are subcritical for $\omega \in L^{3 / 2}$. In fact, they require $\omega \in L^{6 / 5}$. It is the convergence of the energy flux term, which is (C), that requires $\omega \in L^{3 / 2}$. (Good behavior of the energy flux term is the key point in all results along these lines.)

The proof of (C) uses convergence of mollifications together with the Sobolev imbedding: $\omega \in L^{3 / 2} \Longrightarrow u^{\varepsilon}$ bounded in $L^{\infty}\left(0, T ; L^{6}\left(\mathbb{T}^{2}\right)\right)$.

Key fact:

As $\varepsilon \rightarrow 0$, we have:
(A) $\partial_{t}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}\right) \rightarrow \partial_{t}\left(\frac{| |^{2}}{2}\right)$ in the sense of distributions;
(B) $\operatorname{div}\left[u^{\varepsilon}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}+p^{\varepsilon}\right)\right] \rightarrow \operatorname{div}\left[u\left(\frac{|u|^{2}}{2}+p\right)\right]$ in the sense of distributions;
(C) $u^{\varepsilon} \cdot \mathcal{R}^{\varepsilon} \rightarrow 0$ strongly in $L^{\infty}\left(0, T ; L^{1}\left(\mathbb{T}^{2}\right)\right)$.
(A) and (B) are subcritical for $\omega \in L^{3 / 2}$. In fact, they require $\omega \in L^{6 / 5}$. It is the convergence of the energy flux term, which is (C), that requires $\omega \in L^{3 / 2}$. (Good behavior of the energy flux term is the key point in all results along these lines.)

The proof of (C) uses convergence of mollifications together with the Sobolev imbedding: $\omega \in L^{3 / 2} \Longrightarrow u^{\varepsilon}$ bounded in $L^{\infty}\left(0, T ; L^{6}\left(\mathbb{T}^{2}\right)\right)$.

Key fact: $u \cdot(u \cdot \nabla) u \in L^{1}$;

As $\varepsilon \rightarrow 0$, we have:
(A) $\partial_{t}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}\right) \rightarrow \partial_{t}\left(\frac{|u|^{2}}{2}\right)$ in the sense of distributions;
(B) $\operatorname{div}\left[u^{\varepsilon}\left(\frac{\left|u^{\varepsilon}\right|^{2}}{2}+p^{\varepsilon}\right)\right] \rightarrow \operatorname{div}\left[u\left(\frac{|u|^{2}}{2}+p\right)\right]$ in the sense of distributions;
(C) $u^{\varepsilon} \cdot \mathcal{R}^{\varepsilon} \rightarrow 0$ strongly in $L^{\infty}\left(0, T ; L^{1}\left(\mathbb{T}^{2}\right)\right)$.
(A) and (B) are subcritical for $\omega \in L^{3 / 2}$. In fact, they require $\omega \in L^{6 / 5}$. It is the convergence of the energy flux term, which is (C), that requires $\omega \in L^{3 / 2}$. (Good behavior of the energy flux term is the key point in all results along these lines.)

The proof of (C) uses convergence of mollifications together with the Sobolev imbedding: $\omega \in L^{3 / 2} \Longrightarrow u^{\varepsilon}$ bounded in $L^{\infty}\left(0, T ; L^{6}\left(\mathbb{T}^{2}\right)\right)$.

Key fact: $u \cdot(u \cdot \nabla) u \in L^{1} ;\|u \cdot[(u \cdot \nabla) u]\| \lesssim\|u\|_{W^{1, \frac{3}{2}}}^{3}$.
$p=\frac{3}{2}$ is optimal
$p=\frac{3}{2}$ is optimal

Theorem (Cheskidov, Lopes Filho, N-L, Shvydkoy; 2016)

There exists a divergence free vector field $u \in B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right)$, for any $1 \leq p<3 / 2$, such that $\lim \sup _{q \rightarrow \infty} \Pi_{q}[u] \neq 0$,
$p=\frac{3}{2}$ is optimal

Theorem (Cheskidov, Lopes Filho, N-L, Shvydkoy; 2016)

There exists a divergence free vector field $u \in B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right)$, for any $1 \leq p<3 / 2$, such that $\lim \sup _{q \rightarrow \infty} \Pi_{q}[u] \neq 0$, with

$$
\Pi_{q}[u]=\int_{\mathbb{T}^{2}} S_{q}[u] \cdot S_{q}[(u \cdot \nabla) u] d x
$$

$p=\frac{3}{2}$ is optimal

Theorem (Cheskidov, Lopes Filho, N-L, Shvydkoy; 2016)

There exists a divergence free vector field $u \in B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right)$, for any $1 \leq p<3 / 2$, such that $\lim \sup _{q \rightarrow \infty} \Pi_{q}[u] \neq 0$, with

$$
\Pi_{q}[u]=\int_{\mathbb{T}^{2}} S_{q}[u] \cdot S_{q}[(u \cdot \nabla) u] d x
$$

Above S_{q} Littlewood-Paley truncation:
$p=\frac{3}{2}$ is optimal

Theorem (Cheskidov, Lopes Filho, N-L, Shvydkoy; 2016)

There exists a divergence free vector field $u \in B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right)$, for any $1 \leq p<3 / 2$, such that $\lim \sup _{q \rightarrow \infty} \Pi_{q}[u] \neq 0$, with

$$
\Pi_{q}[u]=\int_{\mathbb{T}^{2}} S_{q}[u] \cdot S_{q}[(u \cdot \nabla) u] d x
$$

Above S_{q} Littlewood-Paley truncation:

$$
S_{q}[f]=\widehat{f}_{(0,0)}+\sum_{p \leq q-1} \Delta_{p} f=\sum_{\alpha \in \mathbb{Z}^{2}} \chi\left(\lambda_{q}^{-1} \alpha\right) \widehat{f}(\alpha) e^{2 \pi i \alpha \cdot x}
$$

$p=\frac{3}{2}$ is optimal

Theorem (Cheskidov, Lopes Filho, N-L, Shvydkoy; 2016)

There exists a divergence free vector field $u \in B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right)$, for any $1 \leq p<3 / 2$, such that $\lim \sup _{q \rightarrow \infty} \Pi_{q}[u] \neq 0$, with

$$
\Pi_{q}[u]=\int_{\mathbb{T}^{2}} S_{q}[u] \cdot S_{q}[(u \cdot \nabla) u] d x
$$

Above S_{q} Littlewood-Paley truncation:

$$
S_{q}[f]=\widehat{f}_{(0,0)}+\sum_{p \leq q-1} \Delta_{p} f=\sum_{\alpha \in \mathbb{Z}^{2}} \chi\left(\lambda_{q}^{-1} \alpha\right) \widehat{f}(\alpha) e^{2 \pi i \alpha \cdot x} .
$$

Note S_{q} is a convolution with a mollifier.

Note.

Note. The div-free vector field u

Note. The div-free vector field u in $B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right), 1 \leq p<3 / 2$,

Note. The div-free vector field u in $B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right), 1 \leq p<3 / 2$, not a dynamical example;

Note. The div-free vector field u in $B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right), 1 \leq p<3 / 2$, not a dynamical example; not solution of Euler

Note. The div-free vector field u in $B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right), 1 \leq p<3 / 2$, not a dynamical example; not solution of Euler

QUESTION:

Note. The div-free vector field u in $B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right), 1 \leq p<3 / 2$, not a dynamical example; not solution of Euler

QUESTION: Is there an Euler (weak) solution,

Note. The div-free vector field u in $B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right), 1 \leq p<3 / 2$, not a dynamical example; not solution of Euler

QUESTION: Is there an Euler (weak) solution, in 2D,

Note. The div-free vector field u in $B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right), 1 \leq p<3 / 2$, not a dynamical example; not solution of Euler

QUESTION: Is there an Euler (weak) solution, in 2D, with some control on (integrability of) vorticity,

Note. The div-free vector field u in $B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right), 1 \leq p<3 / 2$, not a dynamical example; not solution of Euler

QUESTION: Is there an Euler (weak) solution, in 2D, with some control on (integrability of) vorticity, which is not conservative?

Note. The div-free vector field u in $B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right), 1 \leq p<3 / 2$, not a dynamical example; not solution of Euler

QUESTION: Is there an Euler (weak) solution, in 2D, with some control on (integrability of) vorticity, which is not conservative?

Kraichnan 2D turbulence theory:

Note. The div-free vector field u in $B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right), 1 \leq p<3 / 2$, not a dynamical example; not solution of Euler

QUESTION: Is there an Euler (weak) solution, in 2D, with some control on (integrability of) vorticity, which is not conservative?

Kraichnan 2D turbulence theory: forward enstrophy cascade

Note. The div-free vector field u in $B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right), 1 \leq p<3 / 2$, not a dynamical example; not solution of Euler

QUESTION: Is there an Euler (weak) solution, in 2D, with some control on (integrability of) vorticity, which is not conservative?

Kraichnan 2D turbulence theory: forward enstrophy cascade \rightarrow regularizing effect in 2D

Note. The div-free vector field u in $B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right), 1 \leq p<3 / 2$, not a dynamical example; not solution of Euler

QUESTION: Is there an Euler (weak) solution, in 2D, with some control on (integrability of) vorticity, which is not conservative?

Kraichnan 2D turbulence theory: forward enstrophy cascade \rightarrow regularizing effect in 2D

Suggests exists dynamical mechanism preventing anomalous dissipation in 2D

Note. The div-free vector field u in $B_{3, \infty}^{1 / 3} \cap W^{1, p}\left(\mathbb{T}^{2}\right), 1 \leq p<3 / 2$, not a dynamical example; not solution of Euler

QUESTION: Is there an Euler (weak) solution, in 2D, with some control on (integrability of) vorticity, which is not conservative?

Kraichnan 2D turbulence theory: forward enstrophy cascade \rightarrow regularizing effect in 2D

Suggests exists dynamical mechanism preventing anomalous dissipation in 2D even for supercritical (less than $1 / 3$ regular) flows

Vanishing viscosity solutions

Vanishing viscosity solutions

Definition

Let $u \in C\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$.

Vanishing viscosity solutions

Definition

Let $u \in C\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$. We say that u is a physically realizable weak solution of the incompressible 2D Euler equations with initial velocity $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$ if the following conditions hold.

Vanishing viscosity solutions

Definition

Let $u \in C\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$. We say that u is a physically realizable weak solution of the incompressible 2D Euler equations with initial velocity $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$ if the following conditions hold.
(1) u is a weak solution of the Euler equations;

Vanishing viscosity solutions

Definition

Let $u \in C\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$. We say that u is a physically realizable weak solution of the incompressible 2D Euler equations with initial velocity $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$ if the following conditions hold.
(1) u is a weak solution of the Euler equations;
(2) there exists a family of solutions of the incompressible 2D Navier-Stokes equations with viscosity $\nu>0,\left\{u^{\nu}\right\}$, such that, as $\nu \rightarrow 0$,

Vanishing viscosity solutions

Definition

Let $u \in C\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$. We say that u is a physically realizable weak solution of the incompressible 2D Euler equations with initial velocity $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$ if the following conditions hold.
(1) u is a weak solution of the Euler equations;
(2) there exists a family of solutions of the incompressible 2D Navier-Stokes equations with viscosity $\nu>0,\left\{u^{\nu}\right\}$, such that, as $\nu \rightarrow 0$,

- $u^{\nu} \rightharpoonup u$ weakly* in $L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$;

Vanishing viscosity solutions

Definition

Let $u \in C\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$. We say that u is a physically realizable weak solution of the incompressible 2D Euler equations with initial velocity $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$ if the following conditions hold.
(1) u is a weak solution of the Euler equations;
(2) there exists a family of solutions of the incompressible 2D Navier-Stokes equations with viscosity $\nu>0,\left\{u^{\nu}\right\}$, such that, as $\nu \rightarrow 0$,

- $u^{\nu} \rightarrow u$ weakly* in $L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$;
- $u^{\nu}(0, \cdot) \equiv u_{0}^{\nu} \rightarrow u_{0}$ strongly in $L^{2}\left(\mathbb{T}^{2}\right)$.

Vanishing viscosity solutions

Definition

Let $u \in C\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$. We say that u is a physically realizable weak solution of the incompressible 2D Euler equations with initial velocity $u_{0} \in L^{2}\left(\mathbb{T}^{2}\right)$ if the following conditions hold.
(1) u is a weak solution of the Euler equations;
(2) there exists a family of solutions of the incompressible 2D Navier-Stokes equations with viscosity $\nu>0,\left\{u^{\nu}\right\}$, such that, as $\nu \rightarrow 0$,

- $u^{\nu} \rightarrow u$ weakly ${ }^{*} L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$;
- $u^{\nu}(0, \cdot) \equiv u_{0}^{\nu} \rightarrow u_{0}$ strongly in $L^{2}\left(\mathbb{T}^{2}\right)$.

The family $\left\{u^{\nu}\right\}$ is called a physical realization of u.

Energy

Energy

Theorem (Cheskidov,Lopes Filho, N-L, Shvydkoy; 2016)

Let $u \in C\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$ be a physically realizable weak solution of the incompressible 2D Euler equations.

Energy

Theorem (Cheskidov,Lopes Filho, N-L, Shvydkoy; 2016)

Let $u \in C\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$ be a physically realizable weak solution of the incompressible 2D Euler equations. Suppose that $u_{0} \in L^{2}$ is such that curl $u_{0} \equiv \omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$, for some $p>1$. Suppose that there is a physical realization $\left\{u^{\nu}\right\}$ such that $\left\{\omega_{0}^{\nu}\right\}$ is bounded in $L^{P}\left(\mathbb{T}^{2}\right)$.

Energy

Theorem (Cheskidov,Lopes Filho, N-L, Shvydkoy; 2016)

Let $u \in C\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$ be a physically realizable weak solution of the incompressible 2D Euler equations. Suppose that $u_{0} \in L^{2}$ is such that curl $u_{0} \equiv \omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$, for some $p>1$. Suppose that there is a physical realization $\left\{u^{\nu}\right\}$ such that $\left\{\omega_{0}^{\nu}\right\}$ is bounded in $L^{p}\left(\mathbb{T}^{2}\right)$. Then u conserves energy.

Energy

Theorem (Cheskidov,Lopes Filho, N-L, Shvydkoy; 2016)

Let $u \in C\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$ be a physically realizable weak solution of the incompressible 2D Euler equations. Suppose that $u_{0} \in L^{2}$ is such that curl $u_{0} \equiv \omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$, for some $p>1$. Suppose that there is a physical realization $\left\{u^{\nu}\right\}$ such that $\left\{\omega_{0}^{\nu}\right\}$ is bounded in $L^{p}\left(\mathbb{T}^{2}\right)$. Then u conserves energy.

Obs.

Energy

Theorem (Cheskidov,Lopes Filho, N-L, Shvydkoy; 2016)

Let $u \in C\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$ be a physically realizable weak solution of the incompressible 2D Euler equations. Suppose that $u_{0} \in L^{2}$ is such that curl $u_{0} \equiv \omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$, for some $p>1$. Suppose that there is a physical realization $\left\{u^{\nu}\right\}$ such that $\left\{\omega_{0}^{\nu}\right\}$ is bounded in $L^{p}\left(\mathbb{T}^{2}\right)$. Then u conserves energy.

Obs. $1<p<3 / 2$ 'Onsager supercritical'.

Proof:

Proof: Assume $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$ for some $p<2$,

Proof: Assume $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$ for some $p<2$, and $\omega_{0} \notin L^{2}\left(\mathbb{T}^{2}\right)$

Proof: Assume $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$ for some $p<2$, and $\omega_{0} \notin L^{2}\left(\mathbb{T}^{2}\right)$ otherwise, the result is trivial.

Proof: Assume $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$ for some $p<2$, and $\omega_{0} \notin L^{2}\left(\mathbb{T}^{2}\right)$ otherwise, the result is trivial. u is physically realizable \Longrightarrow

Proof: Assume $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$ for some $p<2$, and $\omega_{0} \notin L^{2}\left(\mathbb{T}^{2}\right)$ otherwise, the result is trivial. u is physically realizable $\Longrightarrow \exists$ physical realization $\left\{u^{\nu}\right\}$ solutions of Navier-Stokes with $\left\{\omega_{0}^{\nu}\right\}$ bounded in L^{p}.

Proof: Assume $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$ for some $p<2$, and $\omega_{0} \notin L^{2}\left(\mathbb{T}^{2}\right)$ otherwise, the result is trivial. u is physically realizable $\Longrightarrow \exists$ physical realization $\left\{u^{\nu}\right\}$ solutions of Navier-Stokes with $\left\{\omega_{0}^{\nu}\right\}$ bounded in L^{p}. $\omega^{\nu}=\operatorname{curl} u^{\nu}$.

Proof: Assume $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$ for some $p<2$, and $\omega_{0} \notin L^{2}\left(\mathbb{T}^{2}\right)$ otherwise, the result is trivial. u is physically realizable $\Longrightarrow \exists$ physical realization $\left\{u^{\nu}\right\}$ solutions of Navier-Stokes with $\left\{\omega_{0}^{\nu}\right\}$ bounded in L^{p}. $\omega^{\nu}=\operatorname{curl} u^{\nu}$. The vorticity equation given by:

Proof: Assume $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$ for some $p<2$, and $\omega_{0} \notin L^{2}\left(\mathbb{T}^{2}\right)$ otherwise, the result is trivial. u is physically realizable $\Longrightarrow \exists$ physical realization $\left\{u^{\nu}\right\}$ solutions of Navier-Stokes with $\left\{\omega_{0}^{\nu}\right\}$ bounded in L^{p}. $\omega^{\nu}=\operatorname{curl} u^{\nu}$. The vorticity equation given by:

$$
\partial_{t} \omega^{\nu}+u^{\nu} \cdot \nabla \omega^{\nu}=\nu \Delta \omega^{\nu} .
$$

Proof: Assume $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$ for some $p<2$, and $\omega_{0} \notin L^{2}\left(\mathbb{T}^{2}\right)$ otherwise, the result is trivial. u is physically realizable $\Longrightarrow \exists$ physical realization $\left\{u^{\nu}\right\}$ solutions of Navier-Stokes with $\left\{\omega_{0}^{\nu}\right\}$ bounded in L^{p}. $\omega^{\nu}=\operatorname{curl} u^{\nu}$. The vorticity equation given by:

$$
\partial_{t} \omega^{\nu}+u^{\nu} \cdot \nabla \omega^{\nu}=\nu \Delta \omega^{\nu} .
$$

Multiply by ω^{ν} and integrate on torus:

Proof: Assume $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$ for some $p<2$, and $\omega_{0} \notin L^{2}\left(\mathbb{T}^{2}\right)$ otherwise, the result is trivial. u is physically realizable $\Longrightarrow \exists$ physical realization $\left\{u^{\nu}\right\}$ solutions of Navier-Stokes with $\left\{\omega_{0}^{\nu}\right\}$ bounded in L^{p}. $\omega^{\nu}=\operatorname{curl} u^{\nu}$. The vorticity equation given by:

$$
\partial_{t} \omega^{\nu}+u^{\nu} \cdot \nabla \omega^{\nu}=\nu \Delta \omega^{\nu} .
$$

Multiply by ω^{ν} and integrate on torus:

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\nabla \omega^{\nu}\right\|_{L^{2}}^{2} .
$$

Proof: Assume $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$ for some $p<2$, and $\omega_{0} \notin L^{2}\left(\mathbb{T}^{2}\right)$ otherwise, the result is trivial. u is physically realizable $\Longrightarrow \exists$ physical realization $\left\{u^{\nu}\right\}$ solutions of Navier-Stokes with $\left\{\omega_{0}^{\nu}\right\}$ bounded in L^{p}. $\omega^{\nu}=\operatorname{curl} u^{\nu}$. The vorticity equation given by:

$$
\partial_{t} \omega^{\nu}+u^{\nu} \cdot \nabla \omega^{\nu}=\nu \Delta \omega^{\nu} .
$$

Multiply by ω^{ν} and integrate on torus:

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\nabla \omega^{\nu}\right\|_{L^{2}}^{2} .
$$

Gagliardo-Nirenberg \Longrightarrow

Proof: Assume $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$ for some $p<2$, and $\omega_{0} \notin L^{2}\left(\mathbb{T}^{2}\right)$ otherwise, the result is trivial. u is physically realizable $\Longrightarrow \exists$ physical realization $\left\{u^{\nu}\right\}$ solutions of Navier-Stokes with $\left\{\omega_{0}^{\nu}\right\}$ bounded in L^{p}. $\omega^{\nu}=$ curl u^{ν}. The vorticity equation given by:

$$
\partial_{t} \omega^{\nu}+u^{\nu} \cdot \nabla \omega^{\nu}=\nu \Delta \omega^{\nu} .
$$

Multiply by ω^{ν} and integrate on torus:

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\nabla \omega^{\nu}\right\|_{L^{2}}^{2} .
$$

Gagliardo-Nirenberg \Longrightarrow for any $1<p<2$:

Proof: Assume $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$ for some $p<2$, and $\omega_{0} \notin L^{2}\left(\mathbb{T}^{2}\right)$ otherwise, the result is trivial. u is physically realizable $\Longrightarrow \exists$ physical realization $\left\{u^{\nu}\right\}$ solutions of Navier-Stokes with $\left\{\omega_{0}^{\nu}\right\}$ bounded in L^{p}. $\omega^{\nu}=\operatorname{curl} u^{\nu}$. The vorticity equation given by:

$$
\partial_{t} \omega^{\nu}+u^{\nu} \cdot \nabla \omega^{\nu}=\nu \Delta \omega^{\nu} .
$$

Multiply by ω^{ν} and integrate on torus:

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\nabla \omega^{\nu}\right\|_{L^{2}}^{2} .
$$

Gagliardo-Nirenberg \Longrightarrow for any $1<p<2$:

$$
\left\|\omega^{\nu}\right\|_{L^{2}} \leq\left\|\nabla \omega^{\nu}\right\|_{L^{2}}^{1-\frac{p}{2}}\left\|\omega^{\nu}\right\|_{L^{p}}^{\frac{p}{2}} .
$$

Proof: Assume $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$ for some $p<2$, and $\omega_{0} \notin L^{2}\left(\mathbb{T}^{2}\right)$ otherwise, the result is trivial. u is physically realizable $\Longrightarrow \exists$ physical realization $\left\{u^{\nu}\right\}$ solutions of Navier-Stokes with $\left\{\omega_{0}^{\nu}\right\}$ bounded in L^{p}. $\omega^{\nu}=\operatorname{curl} u^{\nu}$. The vorticity equation given by:

$$
\partial_{t} \omega^{\nu}+u^{\nu} \cdot \nabla \omega^{\nu}=\nu \Delta \omega^{\nu} .
$$

Multiply by ω^{ν} and integrate on torus:

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\nabla \omega^{\nu}\right\|_{L^{2}}^{2} .
$$

Gagliardo-Nirenberg \Longrightarrow for any $1<p<2$:

$$
\left\|\omega^{\nu}\right\|_{L^{2}} \leq\left\|\nabla \omega^{\nu}\right\|_{L^{2}}^{1-\frac{p}{2}}\left\|\omega^{\nu}\right\|_{L^{p}}^{\frac{p}{2}} .
$$

Then

Proof: Assume $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$ for some $p<2$, and $\omega_{0} \notin L^{2}\left(\mathbb{T}^{2}\right)$ otherwise, the result is trivial. u is physically realizable $\Longrightarrow \exists$ physical realization $\left\{u^{\nu}\right\}$ solutions of Navier-Stokes with $\left\{\omega_{0}^{\nu}\right\}$ bounded in L^{p}. $\omega^{\nu}=\operatorname{curl} u^{\nu}$. The vorticity equation given by:

$$
\partial_{t} \omega^{\nu}+u^{\nu} \cdot \nabla \omega^{\nu}=\nu \Delta \omega^{\nu} .
$$

Multiply by ω^{ν} and integrate on torus:

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\nabla \omega^{\nu}\right\|_{L^{2}}^{2} .
$$

Gagliardo-Nirenberg \Longrightarrow for any $1<p<2$:

$$
\left\|\omega^{\nu}\right\|_{L^{2}} \leq\left\|\nabla \omega^{\nu}\right\|_{L^{2}}^{1-\frac{p}{2}}\left\|\omega^{\nu}\right\|_{L^{\rho}}^{\frac{p}{2}} .
$$

Then

$$
-2 \nu\left\|\nabla \omega^{\nu}\right\|_{L^{2}}^{2} \leq-2 \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{\frac{4}{2-p}}\left\|\omega^{\nu}\right\|_{L^{p}}^{\frac{2 p}{\rho^{2}-\rho}} .
$$

Multiply the vorticity equation by $\left|\omega^{\nu}\right|^{p-2} \omega^{\nu}$ and integrate on torus \Longrightarrow maximum principle for L^{p} norm of vorticity:

Multiply the vorticity equation by $\left|\omega^{\nu}\right|^{p-2} \omega^{\nu}$ and integrate on torus \Longrightarrow maximum principle for L^{p} norm of vorticity:

$$
\left\|\omega^{\nu}(t, \cdot)\right\|_{L^{p}} \leq\left\|\omega_{0}^{\nu}\right\|_{L^{p}},
$$

Multiply the vorticity equation by $\left|\omega^{\nu}\right|^{p-2} \omega^{\nu}$ and integrate on torus \Longrightarrow maximum principle for L^{p} norm of vorticity:

$$
\left\|\omega^{\nu}(t, \cdot)\right\|_{L^{p}} \leq\left\|\omega_{0}^{\nu}\right\|_{L^{p}}
$$

for any $t \geq 0$. Therefore:

Multiply the vorticity equation by $\left|\omega^{\nu}\right|^{p-2} \omega^{\nu}$ and integrate on torus \Longrightarrow maximum principle for L^{p} norm of vorticity:

$$
\left\|\omega^{\nu}(t, \cdot)\right\|_{L^{p}} \leq\left\|\omega_{0}^{\nu}\right\|_{L^{p}},
$$

for any $t \geq 0$.
Therefore:

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \leq-2 \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{\frac{4}{2-p}}\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-p}} .
$$

Multiply the vorticity equation by $\left|\omega^{\nu}\right|^{p-2} \omega^{\nu}$ and integrate on torus \Longrightarrow maximum principle for L^{p} norm of vorticity:

$$
\left\|\omega^{\nu}(t, \cdot)\right\|_{L^{p}} \leq\left\|\omega_{0}^{\nu}\right\|_{L^{p}}
$$

for any $t \geq 0$.
Therefore:

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \leq-2 \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{\frac{4}{2-p}}\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-p}} .
$$

Write $y=y(t)=\left\|\omega^{\nu}\right\|_{L^{2}}^{2}$ and $C_{0}=\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2^{2-p}}}$.

Multiply the vorticity equation by $\left|\omega^{\nu}\right|^{p-2} \omega^{\nu}$ and integrate on torus \Longrightarrow maximum principle for L^{p} norm of vorticity:

$$
\left\|\omega^{\nu}(t, \cdot)\right\|_{L^{p}} \leq\left\|\omega_{0}^{\nu}\right\|_{L^{p}}
$$

for any $t \geq 0$.
Therefore:

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \leq-2 \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{\frac{4}{2-p}}\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-\rho}} .
$$

Write $y=y(t)=\left\|\omega^{\nu}\right\|_{L^{2}}^{2}$ and $C_{0}=\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-p}}$. Then:

Multiply the vorticity equation by $\left|\omega^{\nu}\right|^{p-2} \omega^{\nu}$ and integrate on torus \Longrightarrow maximum principle for L^{p} norm of vorticity:

$$
\left\|\omega^{\nu}(t, \cdot)\right\|_{L^{p}} \leq\left\|\omega_{0}^{\nu}\right\|_{L^{p}}
$$

for any $t \geq 0$.
Therefore:

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \leq-2 \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{\frac{4}{2-p}}\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-\rho}} .
$$

Write $y=y(t)=\left\|\omega^{\nu}\right\|_{L^{2}}^{2}$ and $C_{0}=\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-p}}$. Then: $\mathbf{y}^{\prime} \leq-2 C_{0} \nu \mathbf{y}^{\frac{2}{2-p}}$

Multiply the vorticity equation by $\left|\omega^{\nu}\right|^{p-2} \omega^{\nu}$ and integrate on torus \Longrightarrow maximum principle for L^{p} norm of vorticity:

$$
\left\|\omega^{\nu}(t, \cdot)\right\|_{L^{p}} \leq\left\|\omega_{0}^{\nu}\right\|_{L^{p}}
$$

for any $t \geq 0$.
Therefore:

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \leq-2 \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{\frac{4}{2-p}}\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-\rho}} .
$$

Write $y=y(t)=\left\|\omega^{\nu}\right\|_{L^{2}}^{2}$ and $C_{0}=\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-p}}$. Then: $\mathbf{y}^{\prime} \leq-2 C_{0} \nu \mathbf{y}^{\frac{2}{2-p}}$ and

Multiply the vorticity equation by $\left|\omega^{\nu}\right|^{p-2} \omega^{\nu}$ and integrate on torus \Longrightarrow maximum principle for L^{p} norm of vorticity:

$$
\left\|\omega^{\nu}(t, \cdot)\right\|_{L^{p}} \leq\left\|\omega_{0}^{\nu}\right\|_{L^{p}}
$$

for any $t \geq 0$.
Therefore:

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \leq-2 \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{\frac{4}{2-p}}\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-\rho}} .
$$

Write $y=y(t)=\left\|\omega^{\nu}\right\|_{L^{2}}^{2}$ and $C_{0}=\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-p}}$. Then: $\mathbf{y}^{\prime} \leq-2 \mathrm{C}_{0} \nu \mathbf{y}^{\frac{2}{2-p}}$
and $\frac{\mathbf{2}}{\mathbf{2 - p}}>\mathbf{2}$.

Multiply the vorticity equation by $\left|\omega^{\nu}\right|^{p-2} \omega^{\nu}$ and integrate on torus \Longrightarrow maximum principle for L^{p} norm of vorticity:

$$
\left\|\omega^{\nu}(t, \cdot)\right\|_{L^{p}} \leq\left\|\omega_{0}^{\nu}\right\|_{L^{p}}
$$

for any $t \geq 0$.
Therefore:

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \leq-2 \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{\frac{4}{2-p}}\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-\rho}} .
$$

Write $y=y(t)=\left\|\omega^{\nu}\right\|_{L^{2}}^{2}$ and $C_{0}=\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-p}}$. Then: $\mathbf{y}^{\prime} \leq-2 \mathrm{C}_{0} \nu \mathbf{y}^{\frac{2}{2-\boldsymbol{p}}}$
and $\frac{\mathbf{2}}{2-p}>2$. Integrating in time,

Multiply the vorticity equation by $\left|\omega^{\nu}\right|^{p-2} \omega^{\nu}$ and integrate on torus \Longrightarrow maximum principle for L^{p} norm of vorticity:

$$
\left\|\omega^{\nu}(t, \cdot)\right\|_{L^{p}} \leq\left\|\omega_{0}^{\nu}\right\|_{L^{p}}
$$

for any $t \geq 0$.
Therefore:

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \leq-2 \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{\frac{4}{2-p}}\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-p}} .
$$

Write $y=y(t)=\left\|\omega^{\nu}\right\|_{L^{2}}^{2}$ and $C_{0}=\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-p}}$. Then: $\mathbf{y}^{\prime} \leq-2 \mathrm{C}_{0} \nu \mathbf{y}^{\frac{2}{2-\boldsymbol{p}}}$
and $\frac{\mathbf{2}}{\mathbf{2 - \mathbf { p }}}>\mathbf{2}$. Integrating in time, starting from $\delta>0$:

Multiply the vorticity equation by $\left|\omega^{\nu}\right|^{p-2} \omega^{\nu}$ and integrate on torus \Longrightarrow maximum principle for L^{p} norm of vorticity:

$$
\left\|\omega^{\nu}(t, \cdot)\right\|_{L^{p}} \leq\left\|\omega_{0}^{\nu}\right\|_{L^{p}}
$$

for any $t \geq 0$.
Therefore:

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \leq-2 \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{\frac{4}{2-p}}\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-p}} .
$$

Write $y=y(t)=\left\|\omega^{\nu}\right\|_{L^{2}}^{2}$ and $C_{0}=\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-p}}$. Then: $\mathbf{y}^{\prime} \leq-2 \mathrm{C}_{0} \nu \mathbf{y}^{\frac{2}{2-\boldsymbol{p}}}$
and $\frac{\mathbf{2}}{\mathbf{2 - p}}>\mathbf{2}$. Integrating in time, starting from $\delta>0$:

$$
[y(t)]^{\frac{-p}{2-p}}-[y(\delta)]^{\frac{-p}{2-p}} \geq \frac{2 \nu C_{0} p}{2-p}(t-\delta)
$$

Multiply the vorticity equation by $\left|\omega^{\nu}\right|^{p-2} \omega^{\nu}$ and integrate on torus \Longrightarrow maximum principle for L^{p} norm of vorticity:

$$
\left\|\omega^{\nu}(t, \cdot)\right\|_{L^{p}} \leq\left\|\omega_{0}^{\nu}\right\|_{L^{p}}
$$

for any $t \geq 0$.
Therefore:

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \leq-2 \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{\frac{4}{2-p}}\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-p}} .
$$

Write $y=y(t)=\left\|\omega^{\nu}\right\|_{L^{2}}^{2}$ and $C_{0}=\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-p}}$. Then: $\mathbf{y}^{\prime} \leq-2 \mathrm{C}_{0} \nu \mathbf{y}^{\frac{2}{2-\boldsymbol{p}}}$
and $\frac{\mathbf{2}}{\mathbf{2 - p}}>\mathbf{2}$. Integrating in time, starting from $\delta>0$:

$$
[y(t)]^{\frac{-p}{2-p}}-[y(\delta)]^{\frac{-p}{2-p}} \geq \frac{2 \nu C_{0} p}{2-p}(t-\delta)
$$

Then, in the limit $\delta \rightarrow 0$,

Multiply the vorticity equation by $\left|\omega^{\nu}\right|^{p-2} \omega^{\nu}$ and integrate on torus \Longrightarrow maximum principle for L^{p} norm of vorticity:

$$
\left\|\omega^{\nu}(t, \cdot)\right\|_{L^{p}} \leq\left\|\omega_{0}^{\nu}\right\|_{L^{p}}
$$

for any $t \geq 0$.
Therefore:

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \leq-2 \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{\frac{4}{2-p}}\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-\rho}} .
$$

Write $y=y(t)=\left\|\omega^{\nu}\right\|_{L^{2}}^{2}$ and $C_{0}=\left\|\omega_{0}^{\nu}\right\|_{L^{p}}^{-\frac{2 p}{2-p}}$. Then: $\mathbf{y}^{\prime} \leq-2 \mathrm{C}_{0} \nu \mathbf{y}^{\frac{2}{2-\boldsymbol{p}}}$
and $\frac{\mathbf{2}}{\mathbf{2 - p}}>\mathbf{2}$. Integrating in time, starting from $\delta>0$:

$$
[y(t)]^{\frac{-p}{2-p}}-[y(\delta)]^{\frac{-p}{2-p}} \geq \frac{2 \nu C_{0} p}{2-p}(t-\delta)
$$

Then, in the limit $\delta \rightarrow 0$,

$$
\left\|\omega^{\nu}(t, \cdot)\right\|_{L^{2}}^{2} \leq\left(\left\|\omega_{0}^{\nu}\right\|_{L^{2}}^{-\frac{2 p}{(2-p)}}+\frac{2 \nu p C_{0} t}{2-p}\right)^{-\frac{2-p}{p}}
$$

Energy identity for 2D Navier-Stokes:

Energy identity for 2D Navier-Stokes:

$$
\begin{equation*}
\frac{d}{d t}\left\|u^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\nabla u^{\nu}\right\|_{L^{2}}^{2} . \tag{4}
\end{equation*}
$$

Energy identity for 2D Navier-Stokes:

$$
\begin{equation*}
\frac{d}{d t}\left\|u^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\nabla u^{\nu}\right\|_{L^{2}}^{2} . \tag{4}
\end{equation*}
$$

Rewriting in terms of vorticity yields

Energy identity for 2D Navier-Stokes:

$$
\begin{equation*}
\frac{d}{d t}\left\|u^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\nabla u^{\nu}\right\|_{L^{2}}^{2} . \tag{4}
\end{equation*}
$$

Rewriting in terms of vorticity yields

$$
\begin{equation*}
\frac{d}{d t}\left\|u^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \tag{5}
\end{equation*}
$$

Energy identity for 2D Navier-Stokes:

$$
\begin{equation*}
\frac{d}{d t}\left\|u^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\nabla u^{\nu}\right\|_{L^{2}}^{2} . \tag{4}
\end{equation*}
$$

Rewriting in terms of vorticity yields

$$
\begin{equation*}
\frac{d}{d t}\left\|u^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \tag{5}
\end{equation*}
$$

Integrating in time and using the estimate for vorticity

Energy identity for 2D Navier-Stokes:

$$
\begin{equation*}
\frac{d}{d t}\left\|u^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\nabla u^{\nu}\right\|_{L^{2}}^{2} . \tag{4}
\end{equation*}
$$

Rewriting in terms of vorticity yields

$$
\begin{equation*}
\frac{d}{d t}\left\|u^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \tag{5}
\end{equation*}
$$

Integrating in time and using the estimate for vorticity we get

Energy identity for 2D Navier-Stokes:

$$
\begin{equation*}
\frac{d}{d t}\left\|u^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\nabla u^{\nu}\right\|_{L^{2}}^{2} . \tag{4}
\end{equation*}
$$

Rewriting in terms of vorticity yields

$$
\begin{equation*}
\frac{d}{d t}\left\|u^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \tag{5}
\end{equation*}
$$

Integrating in time and using the estimate for vorticity we get

$$
\begin{aligned}
& 0 \geq\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2} \geq-2 \nu \int_{0}^{t}\left(\left\|\omega_{0}^{\nu}\right\|_{L^{2}}^{-\frac{2 p}{(2-p)}}+\frac{2 \nu p C_{0} s}{2-p}\right)^{-\frac{2-p}{p}} d s \\
& =-\frac{2-p}{2 C_{0}(p-1)}\left[\left(\left\|\omega_{0}^{\nu}\right\|_{L^{2}}^{-\frac{2 p}{(2-p)}}+\frac{2 \nu p C_{0}}{2-p} t\right)^{\frac{2(p-1)}{p}}-\left\|\omega_{0}^{\nu}\right\|_{L^{2}}^{-\frac{2 p}{(2-p)}}\right] .
\end{aligned}
$$

Energy identity for 2D Navier-Stokes:

$$
\begin{equation*}
\frac{d}{d t}\left\|u^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\nabla u^{\nu}\right\|_{L^{2}}^{2} . \tag{4}
\end{equation*}
$$

Rewriting in terms of vorticity yields

$$
\begin{equation*}
\frac{d}{d t}\left\|u^{\nu}\right\|_{L^{2}}^{2}=-2 \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \tag{5}
\end{equation*}
$$

Integrating in time and using the estimate for vorticity we get

$$
\begin{aligned}
0 & \geq\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2} \geq-2 \nu \int_{0}^{t}\left(\left\|\omega_{0}^{\nu}\right\|_{L^{2}}^{-\frac{2 p}{(2-p)}}+\frac{2 \nu p C_{0} s}{2-p}\right)^{-\frac{2-p}{p}} d s \\
& =-\frac{2-p}{2 C_{0}(p-1)}\left[\left(\left\|\omega_{0}^{\nu}\right\|_{L^{2}}^{-\frac{2 p}{(2-p)}}+\frac{2 \nu p C_{0}}{2-p} t\right)^{\frac{2(p-1)}{p}}-\left\|\omega_{0}^{\nu}\right\|_{L^{2}}^{-\frac{2 p}{(2-p)}}\right]
\end{aligned}
$$

Now, $\omega_{0} \notin L^{2}$ and $\left\{\omega_{0}^{\nu}\right\}$ bdd in $L^{p} \Rightarrow\left\|\omega_{0}^{\nu}\right\|_{L^{2}} \rightarrow+\infty$.

Now, $\omega_{0} \notin L^{2}$ and $\left\{\omega_{0}^{\nu}\right\}$ bdd in $L^{p} \Rightarrow\left\|\omega_{0}^{\nu}\right\|_{L^{2}} \rightarrow+\infty$.

Note:

Now, $\omega_{0} \notin L^{2}$ and $\left\{\omega_{0}^{\nu}\right\}$ bdd in $L^{p} \Rightarrow\left\|\omega_{0}^{\nu}\right\|_{L^{2}} \rightarrow+\infty$.
Note: if $\left\|\omega_{0}^{\nu}\right\|_{L^{2}}=+\infty$ then get rate

Now, $\omega_{0} \notin L^{2}$ and $\left\{\omega_{0}^{\nu}\right\}$ bdd in $L^{p} \Rightarrow\left\|\omega_{0}^{\nu}\right\|_{L^{2}} \rightarrow+\infty$.
Note: if $\left\|\omega_{0}^{\nu}\right\|_{L^{2}}=+\infty$ then get rate

$$
0 \geq\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2} \geq-(2 \nu)^{\frac{2(p-1)}{p}}\left(\frac{p C_{0}}{2-p}\right)^{-\frac{2-p}{p}} \frac{p}{2(p-1)} t^{\frac{2(p-1)}{\rho}}
$$

Now, $\omega_{0} \notin L^{2}$ and $\left\{\omega_{0}^{\nu}\right\}$ bdd in $L^{p} \Rightarrow\left\|\omega_{0}^{\nu}\right\|_{L^{2}} \rightarrow+\infty$.
Note: if $\left\|\omega_{0}^{\nu}\right\|_{L^{2}}=+\infty$ then get rate

$$
0 \geq\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2} \geq-(2 \nu)^{\frac{2(p-1)}{p}}\left(\frac{p C_{0}}{2-p}\right)^{-\frac{2-p}{p}} \frac{p}{2(p-1)} t^{\frac{2(p-1)}{p}}
$$

Either way, since $p>1$ the right-hand-side of the inequality vanishes as $\nu \rightarrow 0$.

Now, $\omega_{0} \notin L^{2}$ and $\left\{\omega_{0}^{\nu}\right\}$ bdd in $L^{p} \Rightarrow\left\|\omega_{0}^{\nu}\right\|_{L^{2}} \rightarrow+\infty$.
Note: if $\left\|\omega_{0}^{\nu}\right\|_{L^{2}}=+\infty$ then get rate

$$
0 \geq\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2} \geq-(2 \nu)^{\frac{2(p-1)}{p}}\left(\frac{p C_{0}}{2-p}\right)^{-\frac{2-p}{p}} \frac{p}{2(p-1)} t^{\frac{2(p-1)}{\rho}}
$$

Either way, since $p>1$ the right-hand-side of the inequality vanishes as $\nu \rightarrow 0$. Therefore:

Now, $\omega_{0} \notin L^{2}$ and $\left\{\omega_{0}^{\nu}\right\}$ bdd in $L^{p} \Rightarrow\left\|\omega_{0}^{\nu}\right\|_{L^{2}} \rightarrow+\infty$.
Note: if $\left\|\omega_{0}^{\nu}\right\|_{L^{2}}=+\infty$ then get rate

$$
0 \geq\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2} \geq-(2 \nu)^{\frac{2(p-1)}{p}}\left(\frac{p C_{0}}{2-p}\right)^{-\frac{2-p}{p}} \frac{p}{2(p-1)} t^{\frac{2(p-1)}{\rho}}
$$

Either way, since $p>1$ the right-hand-side of the inequality vanishes as $\nu \rightarrow 0$. Therefore:

$$
\lim _{\nu \rightarrow 0}\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2}=0
$$

Now, $\omega_{0} \notin L^{2}$ and $\left\{\omega_{0}^{\nu}\right\}$ bdd in $L^{p} \Rightarrow\left\|\omega_{0}^{\nu}\right\|_{L^{2}} \rightarrow+\infty$.
Note: if $\left\|\omega_{0}^{\nu}\right\|_{L^{2}}=+\infty$ then get rate

$$
0 \geq\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2} \geq-(2 \nu)^{\frac{2(p-1)}{p}}\left(\frac{p C_{0}}{2-p}\right)^{-\frac{2-p}{p}} \frac{p}{2(p-1)} t^{\frac{2(p-1)}{\rho}}
$$

Either way, since $p>1$ the right-hand-side of the inequality vanishes as $\nu \rightarrow 0$. Therefore:

$$
\lim _{\nu \rightarrow 0}\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2}=0
$$

DiPerna-Majda 1987, $\omega \in L^{p}, p>1$,

Now, $\omega_{0} \notin L^{2}$ and $\left\{\omega_{0}^{\nu}\right\}$ bdd in $L^{p} \Rightarrow\left\|\omega_{0}^{\nu}\right\|_{L^{2}} \rightarrow+\infty$.
Note: if $\left\|\omega_{0}^{\nu}\right\|_{L^{2}}=+\infty$ then get rate

$$
0 \geq\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2} \geq-(2 \nu)^{\frac{2(p-1)}{p}}\left(\frac{p C_{0}}{2-p}\right)^{-\frac{2-p}{p}} \frac{p}{2(p-1)} t^{\frac{2(p-1)}{\rho}}
$$

Either way, since $p>1$ the right-hand-side of the inequality vanishes as $\nu \rightarrow 0$. Therefore:

$$
\lim _{\nu \rightarrow 0}\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2}=0
$$

DiPerna-Majda 1987, $\omega \in L^{p}, p>1$, non-concentration result:

Now, $\omega_{0} \notin L^{2}$ and $\left\{\omega_{0}^{\nu}\right\}$ bdd in $L^{p} \Rightarrow\left\|\omega_{0}^{\nu}\right\|_{L^{2}} \rightarrow+\infty$.
Note: if $\left\|\omega_{0}^{\nu}\right\|_{L^{2}}=+\infty$ then get rate

$$
0 \geq\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2} \geq-(2 \nu)^{\frac{2(p-1)}{p}}\left(\frac{p C_{0}}{2-p}\right)^{-\frac{2-p}{p}} \frac{p}{2(p-1)} t^{\frac{2(p-1)}{p}}
$$

Either way, since $p>1$ the right-hand-side of the inequality vanishes as $\nu \rightarrow 0$. Therefore:

$$
\lim _{\nu \rightarrow 0}\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2}=0
$$

DiPerna-Majda 1987, $\omega \in L^{p}, p>1$, non-concentration result:

$$
\lim _{\nu \rightarrow 0}\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}=\|u(t, \cdot)\|_{L^{2}}^{2}
$$

Now, $\omega_{0} \notin L^{2}$ and $\left\{\omega_{0}^{\nu}\right\}$ bdd in $L^{p} \Rightarrow\left\|\omega_{0}^{\nu}\right\|_{L^{2}} \rightarrow+\infty$.
Note: if $\left\|\omega_{0}^{\nu}\right\|_{L^{2}}=+\infty$ then get rate

$$
0 \geq\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2} \geq-(2 \nu)^{\frac{2(p-1)}{p}}\left(\frac{p C_{0}}{2-p}\right)^{-\frac{2-p}{p}} \frac{p}{2(p-1)} t^{\frac{2(p-1)}{p}}
$$

Either way, since $p>1$ the right-hand-side of the inequality vanishes as $\nu \rightarrow 0$. Therefore:

$$
\lim _{\nu \rightarrow 0}\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2}=0
$$

DiPerna-Majda 1987, $\omega \in L^{p}, p>1$, non-concentration result:

$$
\lim _{\nu \rightarrow 0}\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}=\|u(t, \cdot)\|_{L^{2}}^{2}
$$

Strong convergence of initial data,

Now, $\omega_{0} \notin L^{2}$ and $\left\{\omega_{0}^{\nu}\right\}$ bdd in $L^{p} \Rightarrow\left\|\omega_{0}^{\nu}\right\|_{L^{2}} \rightarrow+\infty$.
Note: if $\left\|\omega_{0}^{\nu}\right\|_{L^{2}}=+\infty$ then get rate

$$
0 \geq\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2} \geq-(2 \nu)^{\frac{2(p-1)}{p}}\left(\frac{p C_{0}}{2-p}\right)^{-\frac{2-p}{p}} \frac{p}{2(p-1)} t^{\frac{2(p-1)}{p}}
$$

Either way, since $p>1$ the right-hand-side of the inequality vanishes as $\nu \rightarrow 0$. Therefore:

$$
\lim _{\nu \rightarrow 0}\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2}=0
$$

DiPerna-Majda 1987, $\omega \in L^{p}, p>1$, non-concentration result:

$$
\lim _{\nu \rightarrow 0}\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}=\|u(t, \cdot)\|_{L^{2}}^{2}
$$

Strong convergence of initial data, hypothesis,

Now, $\omega_{0} \notin L^{2}$ and $\left\{\omega_{0}^{\nu}\right\}$ bdd in $L^{p} \Rightarrow\left\|\omega_{0}^{\nu}\right\|_{L^{2}} \rightarrow+\infty$.
Note: if $\left\|\omega_{0}^{\nu}\right\|_{L^{2}}=+\infty$ then get rate

$$
0 \geq\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2} \geq-(2 \nu)^{\frac{2(p-1)}{p}}\left(\frac{p C_{0}}{2-p}\right)^{-\frac{2-p}{p}} \frac{p}{2(p-1)} t^{\frac{2(p-1)}{p}}
$$

Either way, since $p>1$ the right-hand-side of the inequality vanishes as $\nu \rightarrow 0$. Therefore:

$$
\lim _{\nu \rightarrow 0}\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2}=0
$$

DiPerna-Majda 1987, $\omega \in L^{p}, p>1$, non-concentration result:

$$
\lim _{\nu \rightarrow 0}\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}=\|u(t, \cdot)\|_{L^{2}}^{2}
$$

Strong convergence of initial data, hypothesis, not compactness:

Now, $\omega_{0} \notin L^{2}$ and $\left\{\omega_{0}^{\nu}\right\}$ bdd in $L^{p} \Rightarrow\left\|\omega_{0}^{\nu}\right\|_{L^{2}} \rightarrow+\infty$.
Note: if $\left\|\omega_{0}^{\nu}\right\|_{L^{2}}=+\infty$ then get rate

$$
0 \geq\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2} \geq-(2 \nu)^{\frac{2(p-1)}{p}}\left(\frac{p C_{0}}{2-p}\right)^{-\frac{2-p}{p}} \frac{p}{2(p-1)} t^{\frac{2(p-1)}{p}}
$$

Either way, since $p>1$ the right-hand-side of the inequality vanishes as $\nu \rightarrow 0$. Therefore:

$$
\lim _{\nu \rightarrow 0}\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2}=0
$$

DiPerna-Majda 1987, $\omega \in L^{p}, p>1$, non-concentration result:

$$
\lim _{\nu \rightarrow 0}\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}=\|u(t, \cdot)\|_{L^{2}}^{2}
$$

Strong convergence of initial data, hypothesis, not compactness:

$$
\lim _{\nu \rightarrow 0}\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2}=\left\|u_{0}\right\|_{L^{2}}^{2} .
$$

Now, $\omega_{0} \notin L^{2}$ and $\left\{\omega_{0}^{\nu}\right\}$ bdd in $L^{p} \Rightarrow\left\|\omega_{0}^{\nu}\right\|_{L^{2}} \rightarrow+\infty$.
Note: if $\left\|\omega_{0}^{\nu}\right\|_{L^{2}}=+\infty$ then get rate

$$
0 \geq\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2} \geq-(2 \nu)^{\frac{2(p-1)}{p}}\left(\frac{p C_{0}}{2-p}\right)^{-\frac{2-p}{p}} \frac{p}{2(p-1)} t^{\frac{2(p-1)}{p}}
$$

Either way, since $p>1$ the right-hand-side of the inequality vanishes as $\nu \rightarrow 0$. Therefore:

$$
\lim _{\nu \rightarrow 0}\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}-\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2}=0
$$

DiPerna-Majda 1987, $\omega \in L^{p}, p>1$, non-concentration result:

$$
\lim _{\nu \rightarrow 0}\left\|u^{\nu}(t, \cdot)\right\|_{L^{2}}^{2}=\|u(t, \cdot)\|_{L^{2}}^{2}
$$

Strong convergence of initial data, hypothesis, not compactness:

$$
\lim _{\nu \rightarrow 0}\left\|u_{0}^{\nu}\right\|_{L^{2}}^{2}=\left\|u_{0}\right\|_{L^{2}}^{2}
$$

The proof is concluded.

Some observations.

Some observations.

- Recent work by Lanthaler, Mishra, Parés-Pulido 2021:

Some observations.

- Recent work by Lanthaler, Mishra, Parés-Pulido 2021: equivalence between $u^{\nu} \rightarrow u$ strong $L^{r}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right), 1 \leq r<\infty$, and u conservative weak solution.

Some observations.

- Recent work by Lanthaler, Mishra, Parés-Pulido 2021: equivalence between $u^{\nu} \rightarrow u$ strong $L^{r}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right), 1 \leq r<\infty$, and u conservative weak solution. Provides immediate proof if $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right), p>1$ since then $u^{\nu} \rightarrow u$ strong $L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)-$

Some observations.

- Recent work by Lanthaler, Mishra, Parés-Pulido 2021: equivalence between $u^{\nu} \rightarrow u$ strong $L^{r}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right), 1 \leq r<\infty$, and u conservative weak solution. Provides immediate proof if $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right), p>1$ since then $u^{\nu} \rightarrow u$ strong $L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)-$ no concentrations -

Some observations.

- Recent work by Lanthaler, Mishra, Parés-Pulido 2021: equivalence between $u^{\nu} \rightarrow u$ strong $L^{r}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right), 1 \leq r<\infty$, and u conservative weak solution. Provides immediate proof if $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right), p>1$ since then $u^{\nu} \rightarrow u$ strong $L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)-$ no concentrations - but without rate $(\nu t)^{2(p-1) / p}$.

Some observations.

- Recent work by Lanthaler, Mishra, Parés-Pulido 2021: equivalence between $u^{\nu} \rightarrow u$ strong $L^{r}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right), 1 \leq r<\infty$, and u conservative weak solution. Provides immediate proof if $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right), p>1$ since then $u^{\nu} \rightarrow u$ strong $L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)-$ no concentrations - but without rate $(\nu t)^{2(p-1) / p}$.
- Can extend to $\omega_{0} \in X$ for any X rearrangement invariant and compactly imbedded in $H^{-1}\left(\mathbb{T}^{2}\right)$.

Some observations.

- Recent work by Lanthaler, Mishra, Parés-Pulido 2021: equivalence between $u^{\nu} \rightarrow u$ strong $L^{r}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right), 1 \leq r<\infty$, and u conservative weak solution. Provides immediate proof if $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right), p>1$ since then $u^{\nu} \rightarrow u$ strong $L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)-$ no concentrations - but without rate $(\nu t)^{2(p-1) / p}$.
- Can extend to $\omega_{0} \in X$ for any X rearrangement invariant and compactly imbedded in $H^{-1}\left(\mathbb{T}^{2}\right)$. For instance $L(\log L)^{\alpha}, \alpha>1 / 2$; $L^{(1, p)}, 1 \leq p<2$.

Some observations.

- Recent work by Lanthaler, Mishra, Parés-Pulido 2021: equivalence between $u^{\nu} \rightarrow u$ strong $L^{r}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right), 1 \leq r<\infty$, and u conservative weak solution. Provides immediate proof if $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right), p>1$ since then $u^{\nu} \rightarrow u$ strong $L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)-$ no concentrations - but without rate $(\nu t)^{2(p-1) / p}$.
- Can extend to $\omega_{0} \in X$ for any X rearrangement invariant and compactly imbedded in $H^{-1}\left(\mathbb{T}^{2}\right)$. For instance $L(\log L)^{\alpha}, \alpha>1 / 2$; $L^{(1, p)}, 1 \leq p<2$. In all these cases have $u^{\nu} \rightarrow u$ strong $L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$.

Some observations.

- Recent work by Lanthaler, Mishra, Parés-Pulido 2021: equivalence between $u^{\nu} \rightarrow u$ strong $L^{r}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right), 1 \leq r<\infty$, and u conservative weak solution. Provides immediate proof if $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right), p>1$ since then $u^{\nu} \rightarrow u$ strong $L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)-$ no concentrations - but without rate $(\nu t)^{2(p-1) / p}$.
- Can extend to $\omega_{0} \in X$ for any X rearrangement invariant and compactly imbedded in $H^{-1}\left(\mathbb{T}^{2}\right)$. For instance $L(\log L)^{\alpha}, \alpha>1 / 2$; $L^{(1, p)}, 1 \leq p<2$. In all these cases have $u^{\nu} \rightarrow u$ strong $L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$.
- No tools to deal with $\omega_{0} \in L^{1}\left(\mathbb{T}^{2}\right)$.

Some observations.

- Recent work by Lanthaler, Mishra, Parés-Pulido 2021: equivalence between $u^{\nu} \rightarrow u$ strong $L^{r}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right), 1 \leq r<\infty$, and u conservative weak solution. Provides immediate proof if $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right), p>1$ since then $u^{\nu} \rightarrow u$ strong $L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)-$ no concentrations - but without rate $(\nu t)^{2(p-1) / p}$.
- Can extend to $\omega_{0} \in X$ for any X rearrangement invariant and compactly imbedded in $H^{-1}\left(\mathbb{T}^{2}\right)$. For instance $L(\log L)^{\alpha}, \alpha>1 / 2$; $L^{(1, p)}, 1 \leq p<2$. In all these cases have $u^{\nu} \rightarrow u$ strong $L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$.
- No tools to deal with $\omega_{0} \in L^{1}\left(\mathbb{T}^{2}\right)$.
- Lanthaler et alli analysis relies on L^{2}-based structure function for u;

Some observations.

- Recent work by Lanthaler, Mishra, Parés-Pulido 2021: equivalence between $u^{\nu} \rightarrow u$ strong $L^{r}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right), 1 \leq r<\infty$, and u conservative weak solution. Provides immediate proof if $\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right), p>1$ since then $u^{\nu} \rightarrow u$ strong $L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)-$ no concentrations - but without rate $(\nu t)^{2(p-1) / p}$.
- Can extend to $\omega_{0} \in X$ for any X rearrangement invariant and compactly imbedded in $H^{-1}\left(\mathbb{T}^{2}\right)$. For instance $L(\log L)^{\alpha}, \alpha>1 / 2$; $L^{(1, p)}, 1 \leq p<2$. In all these cases have $u^{\nu} \rightarrow u$ strong $L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$.
- No tools to deal with $\omega_{0} \in L^{1}\left(\mathbb{T}^{2}\right)$.
- Lanthaler et alli analysis relies on L^{2}-based structure function for u; play the role of vorticity estimates.

Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

$$
\begin{gathered}
u_{t}+u \cdot \nabla u=-\nabla p+\nu \Delta u+F \\
\operatorname{div} u=0
\end{gathered}
$$

Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

$$
\begin{gathered}
u_{t}+u \cdot \nabla u=-\nabla p+\nu \Delta u+F \\
\operatorname{div} u=0
\end{gathered}
$$

Energy balance for smooth solutions:

Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

$$
\begin{gathered}
u_{t}+u \cdot \nabla u=-\nabla p+\nu \Delta u+F \\
\operatorname{div} u=0
\end{gathered}
$$

Energy balance for smooth solutions:

$$
\frac{d}{d t} \frac{1}{2} \int|u|^{2}=-\nu \int|\nabla u|^{2}+\int F \cdot u
$$

Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

$$
\begin{gathered}
u_{t}+u \cdot \nabla u=-\nabla p+\nu \Delta u+F \\
\operatorname{div} u=0
\end{gathered}
$$

Energy balance for smooth solutions:

$$
\frac{d}{d t} \frac{1}{2} \int|u|^{2}=-\nu \int|\nabla u|^{2}+\int F \cdot u
$$

Seek regularity conditions on F which lead to energy balanced weak solutions of Euler

Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

$$
\begin{gathered}
u_{t}+u \cdot \nabla u=-\nabla p+\nu \Delta u+F \\
\operatorname{div} u=0
\end{gathered}
$$

Energy balance for smooth solutions:

$$
\frac{d}{d t} \frac{1}{2} \int|u|^{2}=-\nu \int|\nabla u|^{2}+\int F \cdot u
$$

Seek regularity conditions on F which lead to energy balanced weak solutions of Euler $(\nu=0)$

Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

$$
\begin{gathered}
u_{t}+u \cdot \nabla u=-\nabla p+\nu \Delta u+F \\
\operatorname{div} u=0
\end{gathered}
$$

Energy balance for smooth solutions:

$$
\frac{d}{d t} \frac{1}{2} \int|u|^{2}=-\nu \int|\nabla u|^{2}+\int F \cdot u
$$

Seek regularity conditions on F which lead to energy balanced weak solutions of Euler ($\nu=0$)

Why?

Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

$$
\begin{gathered}
u_{t}+u \cdot \nabla u=-\nabla p+\nu \Delta u+F \\
\operatorname{div} u=0
\end{gathered}
$$

Energy balance for smooth solutions:

$$
\frac{d}{d t} \frac{1}{2} \int|u|^{2}=-\nu \int|\nabla u|^{2}+\int F \cdot u
$$

Seek regularity conditions on F which lead to energy balanced weak solutions of Euler ($\nu=0$)

Why? Low-regularity flows natural context for turbulence,

Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

$$
\begin{gathered}
u_{t}+u \cdot \nabla u=-\nabla p+\nu \Delta u+F \\
\operatorname{div} u=0
\end{gathered}
$$

Energy balance for smooth solutions:

$$
\frac{d}{d t} \frac{1}{2} \int|u|^{2}=-\nu \int|\nabla u|^{2}+\int F \cdot u
$$

Seek regularity conditions on F which lead to energy balanced weak solutions of Euler ($\nu=0$)

Why? Low-regularity flows natural context for turbulence, forcing one of the preferred mechanisms to generate small scales.

Physically realizable weak solutions:

Physically realizable weak solutions: $F^{\nu} \rightharpoonup F$ weakly $L^{1}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$

Physically realizable weak solutions: $F^{\nu} \rightharpoonup F$ weakly $L^{1}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$

Theorem (Lopes Filho, N-L; 2021)

Physically realizable weak solutions: $F^{\nu} \rightharpoonup F$ weakly $L^{1}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$

Theorem (Lopes Filho, N-L; 2021)

Let $u \in C\left([0, T) ; L^{2}\left(\mathbb{T}^{2}\right)\right)$ be a physically realizable weak solution of the incompressible 2D Euler equations with external forcing $F \in L^{1}\left((0, T) ; L^{2}\left(\mathbb{T}^{2}\right)\right)$.

Physically realizable weak solutions: $F^{\nu} \rightharpoonup F$ weakly $L^{1}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$

Theorem (Lopes Filho, N-L; 2021)

Let $u \in C\left([0, T) ; L^{2}\left(\mathbb{T}^{2}\right)\right)$ be a physically realizable weak solution of the incompressible 2D Euler equations with external forcing $F \in L^{1}\left((0, T) ; L^{2}\left(\mathbb{T}^{2}\right)\right)$. Consider a physical realization of $u,\left\{u^{\nu}\right\}$, solutions of 2D ν-Navier-Stokes equations with forcing F^{ν}.

Physically realizable weak solutions: $F^{\nu} \rightharpoonup F$ weakly $L^{1}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$

Theorem (Lopes Filho, N-L; 2021)

Let $u \in C\left([0, T) ; L^{2}\left(\mathbb{T}^{2}\right)\right)$ be a physically realizable weak solution of the incompressible 2D Euler equations with external forcing $F \in L^{1}\left((0, T) ; L^{2}\left(\mathbb{T}^{2}\right)\right)$. Consider a physical realization of $u,\left\{u^{\nu}\right\}$, solutions of $2 D \nu$-Navier-Stokes equations with forcing F^{ν}. Suppose, for some $p>1$:

Physically realizable weak solutions: $F^{\nu} \rightharpoonup F$ weakly $L^{1}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$

Theorem (Lopes Filho, N-L; 2021)

Let $u \in C\left([0, T) ; L^{2}\left(\mathbb{T}^{2}\right)\right)$ be a physically realizable weak solution of the incompressible 2D Euler equations with external forcing $F \in L^{1}\left((0, T) ; L^{2}\left(\mathbb{T}^{2}\right)\right)$. Consider a physical realization of $u,\left\{u^{\nu}\right\}$, solutions of $2 D \nu$-Navier-Stokes equations with forcing F^{ν}. Suppose, for some $p>1$:
(i) curl $u_{0}=\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$;

Physically realizable weak solutions: $F^{\nu} \rightharpoonup F$ weakly $L^{1}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$

Theorem (Lopes Filho, N-L; 2021)

Let $u \in C\left([0, T) ; L^{2}\left(\mathbb{T}^{2}\right)\right)$ be a physically realizable weak solution of the incompressible 2D Euler equations with external forcing $F \in L^{1}\left((0, T) ; L^{2}\left(\mathbb{T}^{2}\right)\right)$. Consider a physical realization of $u,\left\{u^{\nu}\right\}$, solutions of $2 D \nu$-Navier-Stokes equations with forcing F^{ν}. Suppose, for some $p>1$:
(i) curl $u_{0}=\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$;
(ii) curl $u_{0}^{\nu} \equiv \omega_{0}^{\nu} \rightarrow \omega_{0}$ strongly in $L^{p}\left(\mathbb{T}^{2}\right)$;

Physically realizable weak solutions: $F^{\nu} \rightharpoonup F$ weakly $L^{1}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$

Theorem (Lopes Filho, N-L; 2021)

Let $u \in C\left([0, T) ; L^{2}\left(\mathbb{T}^{2}\right)\right)$ be a physically realizable weak solution of the incompressible 2D Euler equations with external forcing $F \in L^{1}\left((0, T) ; L^{2}\left(\mathbb{T}^{2}\right)\right)$. Consider a physical realization of $u,\left\{u^{\nu}\right\}$, solutions of $2 D \nu$-Navier-Stokes equations with forcing F^{ν}. Suppose, for some $p>1$:
(i) curl $u_{0}=\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$;
(ii) curl $u_{0}^{\nu} \equiv \omega_{0}^{\nu} \rightarrow \omega_{0}$ strongly in $L^{p}\left(\mathbb{T}^{2}\right)$;
(iii) $g^{\nu} \equiv$ curl F^{ν} bounded in $L^{1}\left((0, T) ; L^{p}\left(\mathbb{T}^{2}\right)\right) \cap L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$.

Physically realizable weak solutions: $F^{\nu} \rightharpoonup F$ weakly $L^{1}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$

Theorem (Lopes Filho, N-L; 2021)

Let $u \in C\left([0, T) ; L^{2}\left(\mathbb{T}^{2}\right)\right)$ be a physically realizable weak solution of the incompressible 2D Euler equations with external forcing $F \in L^{1}\left((0, T) ; L^{2}\left(\mathbb{T}^{2}\right)\right)$. Consider a physical realization of $u,\left\{u^{\nu}\right\}$, solutions of $2 D \nu$-Navier-Stokes equations with forcing F^{ν}. Suppose, for some $p>1$:
(i) curl $u_{0}=\omega_{0} \in L^{p}\left(\mathbb{T}^{2}\right)$;
(ii) curl $u_{0}^{\nu} \equiv \omega_{0}^{\nu} \rightarrow \omega_{0}$ strongly in $L^{p}\left(\mathbb{T}^{2}\right)$;
(iii) $g^{\nu} \equiv$ curl F^{ν} bounded in $L^{1}\left((0, T) ; L^{p}\left(\mathbb{T}^{2}\right)\right) \cap L^{\infty}\left(0, T ; L^{2}\left(\mathbb{T}^{2}\right)\right)$.

Then u is energy balanced.

Proof: Suppose $\omega_{0} \notin L^{2}$.

Proof: Suppose $\omega_{0} \notin L^{2}$. Start from vorticity equation

Proof: Suppose $\omega_{0} \notin L^{2}$. Start from vorticity equation

$$
\partial_{t} \omega^{\nu}+u^{\nu} \cdot \nabla \omega^{\nu}=\nu \Delta \omega^{\nu}+g^{\nu}
$$

Proof: Suppose $\omega_{0} \notin L^{2}$. Start from vorticity equation

$$
\partial_{t} \omega^{\nu}+u^{\nu} \cdot \nabla \omega^{\nu}=\nu \Delta \omega^{\nu}+g^{\nu}
$$

As before,

Proof: Suppose $\omega_{0} \notin L^{2}$. Start from vorticity equation

$$
\partial_{t} \omega^{\nu}+u^{\nu} \cdot \nabla \omega^{\nu}=\nu \Delta \omega^{\nu}+g^{\nu}
$$

As before, but incorporating forcing term, we have the energy estimate

Proof: Suppose $\omega_{0} \notin L^{2}$. Start from vorticity equation

$$
\partial_{t} \omega^{\nu}+u^{\nu} \cdot \nabla \omega^{\nu}=\nu \Delta \omega^{\nu}+g^{\nu}
$$

As before, but incorporating forcing term, we have the energy estimate

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \leq-C\left(\left\|\omega_{0}\right\|_{L^{p}},\left\|g^{\nu}\right\|_{L 1\left(L^{p}\right)}\right) \nu\left\|\omega^{\nu}\right\|_{L^{2}}^{\frac{4}{2-p}}+\left\|g^{\nu}\right\|_{L^{\infty}\left(L^{2}\right)}\left\|\omega^{\nu}\right\|_{L^{2}}
$$

Proof: Suppose $\omega_{0} \notin L^{2}$. Start from vorticity equation

$$
\partial_{t} \omega^{\nu}+u^{\nu} \cdot \nabla \omega^{\nu}=\nu \Delta \omega^{\nu}+g^{\nu} .
$$

As before, but incorporating forcing term, we have the energy estimate

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \leq-A \nu\left(\left\|\omega^{\nu}\right\|_{L^{2}}^{2}\right)^{\frac{2}{2-p}}+B\left(\left\|\omega^{\nu}\right\|_{L^{2}}^{2}\right)^{\frac{1}{2}}
$$

Proof: Suppose $\omega_{0} \notin L^{2}$. Start from vorticity equation

$$
\partial_{t} \omega^{\nu}+u^{\nu} \cdot \nabla \omega^{\nu}=\nu \Delta \omega^{\nu}+g^{\nu}
$$

As before, but incorporating forcing term, we have the energy estimate

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \leq-A \nu\left(\left\|\omega^{\nu}\right\|_{L^{2}}^{2}\right)^{\frac{2}{2-p}}+B\left(\left\|\omega^{\nu}\right\|_{L^{2}}^{2}\right)^{\frac{1}{2}}
$$

The key result, from which the Theorem follows:

Proof: Suppose $\omega_{0} \notin L^{2}$. Start from vorticity equation

$$
\partial_{t} \omega^{\nu}+u^{\nu} \cdot \nabla \omega^{\nu}=\nu \Delta \omega^{\nu}+g^{\nu}
$$

As before, but incorporating forcing term, we have the energy estimate

$$
\frac{d}{d t}\left\|\omega^{\nu}\right\|_{L^{2}}^{2} \leq-A \nu\left(\left\|\omega^{\nu}\right\|_{L^{2}}^{2}\right)^{\frac{2}{2-p}}+B\left(\left\|\omega^{\nu}\right\|_{L^{2}}^{2}\right)^{\frac{1}{2}}
$$

The key result, from which the Theorem follows:

Proposition

Under the hypotheses of the Theorem,

$$
\lim _{\nu \rightarrow 0^{+}} \nu \int_{0}^{t}\left\|\omega^{\nu}(s, \cdot)\right\|_{L^{2}}^{2} d s \rightarrow 0
$$

Write $z^{\nu}(t)=\left\|\omega^{\nu}(t)\right\|_{L^{2}}^{2}$. The energy estimate became

Write $z^{\nu}(t)=\left\|\omega^{\nu}(t)\right\|_{L^{2}}^{2}$. The energy estimate became

$$
\frac{d z^{\nu}}{d t} \leq-A \nu\left(z^{\nu}\right)^{\frac{2}{2-p}}+B\left(z^{\nu}\right)^{\frac{1}{2}}
$$

Write $z^{\nu}(t)=\left\|\omega^{\nu}(t)\right\|_{L^{2}}^{2}$. The energy estimate became

$$
\frac{d z^{\nu}}{d t} \leq-A \nu\left(z^{\nu}\right)^{\frac{2}{2-p}}+B\left(z^{\nu}\right)^{\frac{1}{2}},
$$

A and B independent of ν.

Write $z^{\nu}(t)=\left\|\omega^{\nu}(t)\right\|_{L^{2}}^{2}$. The energy estimate became

$$
\frac{d z^{\nu}}{d t} \leq-A \nu\left(z^{\nu}\right)^{\frac{2}{2-\rho}}+B\left(z^{\nu}\right)^{\frac{1}{2}},
$$

A and B independent of ν.
Note. Without forcing have $B=0$.

Write $z^{\nu}(t)=\left\|\omega^{\nu}(t)\right\|_{L^{2}}^{2}$. The energy estimate became

$$
\frac{d z^{\nu}}{d t} \leq-A \nu\left(z^{\nu}\right)^{\frac{2}{2-p}}+B\left(z^{\nu}\right)^{\frac{1}{2}},
$$

A and B independent of ν.
Note. Without forcing have $B=0$.
Observe $z^{\nu}(0) \rightarrow+\infty . z^{\nu}(\delta)<\infty$ for all $\delta>0$

Write $z^{\nu}(t)=\left\|\omega^{\nu}(t)\right\|_{L^{2}}^{2}$. The energy estimate became

$$
\frac{d z^{\nu}}{d t} \leq-A \nu\left(z^{\nu}\right)^{\frac{2}{2-p}}+B\left(z^{\nu}\right)^{\frac{1}{2}}
$$

A and B independent of ν.
Note. Without forcing have $B=0$.
Observe $z^{\nu}(0) \rightarrow+\infty . z^{\nu}(\delta)<\infty$ for all $\delta>0$ (parabolic regularity).

Write $z^{\nu}(t)=\left\|\omega^{\nu}(t)\right\|_{L^{2}}^{2}$. The energy estimate became

$$
\frac{d z^{\nu}}{d t} \leq-A \nu\left(z^{\nu}\right)^{\frac{2}{2-p}}+B\left(z^{\nu}\right)^{\frac{1}{2}}
$$

A and B independent of ν.
Note. Without forcing have $B=0$.
Observe $z^{\nu}(0) \rightarrow+\infty . z^{\nu}(\delta)<\infty$ for all $\delta>0$ (parabolic regularity).
Set $\alpha \equiv \frac{2}{2-p}$

Write $z^{\nu}(t)=\left\|\omega^{\nu}(t)\right\|_{L^{2}}^{2}$. The energy estimate became

$$
\frac{d z^{\nu}}{d t} \leq-A \nu\left(z^{\nu}\right)^{\frac{2}{2-p}}+B\left(z^{\nu}\right)^{\frac{1}{2}}
$$

A and B independent of ν.
Note. Without forcing have $B=0$.
Observe $z^{\nu}(0) \rightarrow+\infty . z^{\nu}(\delta)<\infty$ for all $\delta>0$ (parabolic regularity).
Set $\alpha \equiv \frac{2}{2-p}>2$.

Write $z^{\nu}(t)=\left\|\omega^{\nu}(t)\right\|_{L^{2}}^{2}$. The energy estimate became

$$
\frac{d z^{\nu}}{d t} \leq-A \nu\left(z^{\nu}\right)^{\frac{2}{2-p}}+B\left(z^{\nu}\right)^{\frac{1}{2}}
$$

A and B independent of ν.
Note. Without forcing have $B=0$.
Observe $z^{\nu}(0) \rightarrow+\infty . z^{\nu}(\delta)<\infty$ for all $\delta>0$ (parabolic regularity).
Set $\alpha \equiv \frac{2}{2-p}>2$. We divide the proof in several steps.

Write $z^{\nu}(t)=\left\|\omega^{\nu}(t)\right\|_{L^{2}}^{2}$. The energy estimate became

$$
\frac{d z^{\nu}}{d t} \leq-A \nu\left(z^{\nu}\right)^{\frac{2}{2-p}}+B\left(z^{\nu}\right)^{\frac{1}{2}}
$$

A and B independent of ν.
Note. Without forcing have $B=0$.
Observe $z^{\nu}(0) \rightarrow+\infty . z^{\nu}(\delta)<\infty$ for all $\delta>0$ (parabolic regularity).
Set $\alpha \equiv \frac{2}{2-p}>2$. We divide the proof in several steps.
Step 1 Fix $\delta>0$. Let m^{ν} solution of

$$
\left\{\begin{array}{l}
m^{\prime}=-A \nu m^{\alpha}+B \sqrt{m} \\
m(\delta)=z^{\nu}(\delta)
\end{array}\right.
$$

Write $z^{\nu}(t)=\left\|\omega^{\nu}(t)\right\|_{L^{2}}^{2}$. The energy estimate became

$$
\frac{d z^{\nu}}{d t} \leq-A \nu\left(z^{\nu}\right)^{\frac{2}{2-p}}+B\left(z^{\nu}\right)^{\frac{1}{2}},
$$

A and B independent of ν.
Note. Without forcing have $B=0$.
Observe $z^{\nu}(0) \rightarrow+\infty . z^{\nu}(\delta)<\infty$ for all $\delta>0$ (parabolic regularity).
Set $\alpha \equiv \frac{2}{2-p}>2$. We divide the proof in several steps.
Step 1 Fix $\delta>0$. Let m^{ν} solution of

$$
\left\{\begin{array}{l}
m^{\prime}=-A \nu m^{\alpha}+B \sqrt{m} \\
m(\delta)=z^{\nu}(\delta)
\end{array}\right.
$$

Then $0 \leq z^{\nu}(t) \leq m^{\nu}(t)$ all $t \in(\delta, T)$.

Proof of Step 1: $\varphi_{\nu}=\varphi_{\nu}(r) \equiv-A \nu r^{\alpha}+B \sqrt{r}$.

Proof of Step 1: $\varphi_{\nu}=\varphi_{\nu}(r) \equiv-A \nu r^{\alpha}+B \sqrt{r}$. Use φ_{ν} is concave to find

Proof of Step 1: $\varphi_{\nu}=\varphi_{\nu}(r) \equiv-A \nu r^{\alpha}+B \sqrt{r}$. Use φ_{ν} is concave to find

$$
\left(z^{\nu}-m^{\nu}\right)^{\prime} \leq \varphi_{\nu}^{\prime}\left(m^{\nu}\right)\left(z^{\nu}-m^{\nu}\right)
$$

Proof of Step 1: $\varphi_{\nu}=\varphi_{\nu}(r) \equiv-A \nu r^{\alpha}+B \sqrt{r}$. Use φ_{ν} is concave to find

$$
\left(z^{\nu}-m^{\nu}\right)^{\prime} \leq \varphi_{\nu}^{\prime}\left(m^{\nu}\right)\left(z^{\nu}-m^{\nu}\right)
$$

Then use Gronwall.

Proof of Step 1: $\varphi_{\nu}=\varphi_{\nu}(r) \equiv-A \nu r^{\alpha}+B \sqrt{r}$. Use φ_{ν} is concave to find

$$
\left(z^{\nu}-m^{\nu}\right)^{\prime} \leq \varphi_{\nu}^{\prime}\left(m^{\nu}\right)\left(z^{\nu}-m^{\nu}\right)
$$

Then use Gronwall.
What is left is study of family of ODEs for m^{ν}.

Proof of Step 1: $\varphi_{\nu}=\varphi_{\nu}(r) \equiv-A \nu r^{\alpha}+B \sqrt{r}$. Use φ_{ν} is concave to find

$$
\left(z^{\nu}-m^{\nu}\right)^{\prime} \leq \varphi_{\nu}^{\prime}\left(m^{\nu}\right)\left(z^{\nu}-m^{\nu}\right)
$$

Then use Gronwall.
What is left is study of family of ODEs for m^{ν}. Key: equilibrium

$$
R_{\nu}^{*} \equiv\left(\frac{B}{A \nu}\right)^{\frac{2}{2 \alpha-1}}
$$

Proof of Step 1: $\varphi_{\nu}=\varphi_{\nu}(r) \equiv-A \nu r^{\alpha}+B \sqrt{r}$. Use φ_{ν} is concave to find

$$
\left(z^{\nu}-m^{\nu}\right)^{\prime} \leq \varphi_{\nu}^{\prime}\left(m^{\nu}\right)\left(z^{\nu}-m^{\nu}\right)
$$

Then use Gronwall.
What is left is study of family of ODEs for m^{ν}. Key: equilibrium

$$
R_{\nu}^{*} \equiv\left(\frac{B}{A \nu}\right)^{\frac{2}{2 \alpha-1}}
$$

φ_{ν} changes sign across R_{ν}^{*} :

Proof of Step 1: $\varphi_{\nu}=\varphi_{\nu}(r) \equiv-A \nu r^{\alpha}+B \sqrt{r}$. Use φ_{ν} is concave to find

$$
\left(z^{\nu}-m^{\nu}\right)^{\prime} \leq \varphi_{\nu}^{\prime}\left(m^{\nu}\right)\left(z^{\nu}-m^{\nu}\right)
$$

Then use Gronwall.
What is left is study of family of ODEs for m^{ν}. Key: equilibrium

$$
R_{\nu}^{*} \equiv\left(\frac{B}{A \nu}\right)^{\frac{2}{2 \alpha-1}}
$$

φ_{ν} changes sign across $R_{\nu}^{*}:+$ to -

Proof of Step 1: $\varphi_{\nu}=\varphi_{\nu}(r) \equiv-A \nu r^{\alpha}+B \sqrt{r}$. Use φ_{ν} is concave to find

$$
\left(z^{\nu}-m^{\nu}\right)^{\prime} \leq \varphi_{\nu}^{\prime}\left(m^{\nu}\right)\left(z^{\nu}-m^{\nu}\right)
$$

Then use Gronwall.
What is left is study of family of ODEs for m^{ν}. Key: equilibrium

$$
R_{\nu}^{*} \equiv\left(\frac{B}{A \nu}\right)^{\frac{2}{2 \alpha-1}}
$$

φ_{ν} changes sign across $R_{\nu}^{*}:+$ to -

Then, either $m^{\nu}(\delta) \leq R_{\nu}^{*} \Longrightarrow m^{\nu}(t) \leq R_{\nu}^{*}$ thus $z^{\nu}(t) \leq R_{\nu}^{*} \Longrightarrow$ Prop. OK.

Proof of Step 1: $\varphi_{\nu}=\varphi_{\nu}(r) \equiv-A \nu r^{\alpha}+B \sqrt{r}$. Use φ_{ν} is concave to find

$$
\left(z^{\nu}-m^{\nu}\right)^{\prime} \leq \varphi_{\nu}^{\prime}\left(m^{\nu}\right)\left(z^{\nu}-m^{\nu}\right)
$$

Then use Gronwall.
What is left is study of family of ODEs for m^{ν}. Key: equilibrium

$$
R_{\nu}^{*} \equiv\left(\frac{B}{A \nu}\right)^{\frac{2}{2 \alpha-1}}
$$

φ_{ν} changes sign across $R_{\nu}^{*}:+$ to -

Then, either $m^{\nu}(\delta) \leq R_{\nu}^{*} \Longrightarrow m^{\nu}(t) \leq R_{\nu}^{*}$ thus $z^{\nu}(t) \leq R_{\nu}^{*} \Longrightarrow$ Prop. OK.

Or $m^{\nu}(\delta)>R_{\nu}^{*} \Longrightarrow m^{\nu}(t)>R_{\nu}^{*}$. Need to consider three cases:

Proof of Step 1: $\varphi_{\nu}=\varphi_{\nu}(r) \equiv-A \nu r^{\alpha}+B \sqrt{r}$. Use φ_{ν} is concave to find

$$
\left(z^{\nu}-m^{\nu}\right)^{\prime} \leq \varphi_{\nu}^{\prime}\left(m^{\nu}\right)\left(z^{\nu}-m^{\nu}\right)
$$

Then use Gronwall.
What is left is study of family of ODEs for m^{ν}. Key: equilibrium

$$
R_{\nu}^{*} \equiv\left(\frac{B}{A \nu}\right)^{\frac{2}{2 \alpha-1}}
$$

φ_{ν} changes sign across R_{ν}^{*} : + to -

Then, either $m^{\nu}(\delta) \leq R_{\nu}^{*} \Longrightarrow m^{\nu}(t) \leq R_{\nu}^{*}$ thus $z^{\nu}(t) \leq R_{\nu}^{*} \Longrightarrow$ Prop. OK.

Or $m^{\nu}(\delta)>R_{\nu}^{*} \Longrightarrow m^{\nu}(t)>R_{\nu}^{*}$. Need to consider three cases:

$$
\limsup _{\nu \rightarrow 0^{+}} \frac{z^{\nu}(0)}{R_{\nu}^{*}}=\left\{\begin{array}{l}
<1 \\
=1 \\
>1
\end{array}\right.
$$

The first two cases lead to

The first two cases lead to $z^{\nu}(t) \leq C R_{\nu}^{*}$

The first two cases lead to $z^{\nu}(t) \leq C R_{\nu}^{*}$ and to the Proposition:

The first two cases lead to $z^{\nu}(t) \leq C R_{\nu}^{*}$ and to the Proposition:

$$
\nu \int_{0}^{t}\left\|\omega^{\nu}(s, \cdot)\right\|_{L^{2}}^{2} d s \leq \nu \int_{0}^{t} R_{\nu}^{*} d s
$$

The first two cases lead to $z^{\nu}(t) \leq C R_{\nu}^{*}$ and to the Proposition:

$$
\begin{aligned}
& \nu \int_{0}^{t}\left\|\omega^{\nu}(s, \cdot)\right\|_{L^{2}}^{2} d s \leq \nu \int_{0}^{t} R_{\nu}^{*} d s \\
& \leq \nu \int_{0}^{t}\left(\frac{B}{A \nu}\right)^{\frac{2}{2 \alpha-1}} d s \equiv C \nu^{1-\frac{2}{2 \alpha-1}}
\end{aligned}
$$

The first two cases lead to $z^{\nu}(t) \leq C R_{\nu}^{*}$ and to the Proposition:

$$
\begin{gathered}
\nu \int_{0}^{t}\left\|\omega^{\nu}(s, \cdot)\right\|_{L^{2}}^{2} d s \leq \nu \int_{0}^{t} R_{\nu}^{*} d s \\
\leq \nu \int_{0}^{t}\left(\frac{B}{A \nu}\right)^{\frac{2}{2 \alpha-1}} d s \equiv C \nu^{1-\frac{2}{2 \alpha-1}} \\
=C \nu^{\frac{2 \alpha-3}{2 \alpha-1}} \rightarrow 0 \text { as } \nu \rightarrow 0
\end{gathered}
$$

The third case needs analysis of

The third case needs analysis of

$$
\Phi_{\nu}=\Phi_{\nu}(r) \equiv-\int_{r}^{\infty} \frac{d \rho}{\varphi_{\nu}(\rho)}, r>R_{\nu}^{*}
$$

The third case needs analysis of

$$
\Phi_{\nu}=\Phi_{\nu}(r) \equiv-\int_{r}^{\infty} \frac{d \rho}{\varphi_{\nu}(\rho)}, r>R_{\nu}^{*}
$$

Step 2:

- Φ_{ν} is strictly decreasing, with inverse Φ_{ν}^{-1};
- $\lim _{r \rightarrow \infty} \Phi_{\nu}(r)=0$;
- $\lim _{r \rightarrow\left(R_{\nu}^{*}\right)^{+}} \Phi_{\nu}(r)=+\infty$.

The third case needs analysis of

$$
\Phi_{\nu}=\Phi_{\nu}(r) \equiv-\int_{r}^{\infty} \frac{d \rho}{\varphi_{\nu}(\rho)}, r>R_{\nu}^{*}
$$

Step 2:

- Φ_{ν} is strictly decreasing, with inverse Φ_{ν}^{-1};
- $\lim _{r \rightarrow \infty} \Phi_{\nu}(r)=0$;
- $\lim _{r \rightarrow\left(R_{\nu}^{*}\right)^{+}} \Phi_{\nu}(r)=+\infty$.

Proof of Step 2: Calculus.

The third case needs analysis of

$$
\Phi_{\nu}=\Phi_{\nu}(r) \equiv-\int_{r}^{\infty} \frac{d \rho}{\varphi_{\nu}(\rho)}, r>R_{\nu}^{*}
$$

Step 2:

- Φ_{ν} is strictly decreasing, with inverse Φ_{ν}^{-1};
- $\lim _{r \rightarrow \infty} \Phi_{\nu}(r)=0$;
- $\lim _{r \rightarrow\left(R_{\nu}^{*}\right)^{+}} \Phi_{\nu}(r)=+\infty$.

Proof of Step 2: Calculus.
Then:

The third case needs analysis of

$$
\Phi_{\nu}=\Phi_{\nu}(r) \equiv-\int_{r}^{\infty} \frac{d \rho}{\varphi_{\nu}(\rho)}, r>R_{\nu}^{*}
$$

Step 2:

- Φ_{ν} is strictly decreasing, with inverse Φ_{ν}^{-1};
- $\lim _{r \rightarrow \infty} \Phi_{\nu}(r)=0$;
- $\lim _{r \rightarrow\left(R_{\nu}^{*}\right)^{+}} \Phi_{\nu}(r)=+\infty$.

Proof of Step 2: Calculus.
Then: Φ_{ν} diffeo and solution m^{ν} given by:

The third case needs analysis of

$$
\Phi_{\nu}=\Phi_{\nu}(r) \equiv-\int_{r}^{\infty} \frac{d \rho}{\varphi_{\nu}(\rho)}, r>R_{\nu}^{*}
$$

Step 2:

- Φ_{ν} is strictly decreasing, with inverse Φ_{ν}^{-1};
- $\lim _{r \rightarrow \infty} \Phi_{\nu}(r)=0$;
- $\lim _{r \rightarrow\left(R_{\nu}^{*}\right)^{+}} \Phi_{\nu}(r)=+\infty$.

Proof of Step 2: Calculus.
Then: Φ_{ν} diffeo and solution m^{ν} given by:

$$
m^{\nu}(t)=\Phi_{\nu}^{-1}\left(t-\delta+\Phi_{\nu}\left(z^{\nu}(\delta)\right)\right)
$$

The third case needs analysis of

$$
\Phi_{\nu}=\Phi_{\nu}(r) \equiv-\int_{r}^{\infty} \frac{d \rho}{\varphi_{\nu}(\rho)}, r>R_{\nu}^{*}
$$

Step 2:

- Φ_{ν} is strictly decreasing, with inverse Φ_{ν}^{-1};
- $\lim _{r \rightarrow \infty} \Phi_{\nu}(r)=0$;
- $\lim _{r \rightarrow\left(R_{\nu}^{*}\right)^{+}} \Phi_{\nu}(r)=+\infty$.

Proof of Step 2: Calculus.
Then: Φ_{ν} diffeo and solution m^{ν} given by:

$$
m^{\nu}(t)=\Phi_{\nu}^{-1}\left(t-\delta+\Phi_{\nu}\left(z^{\nu}(\delta)\right)\right)
$$

Take liminf $\inf _{\delta \rightarrow 0}$ and use $z^{\nu}(t) \leq m^{\nu}(t) \Longrightarrow$

The third case needs analysis of

$$
\Phi_{\nu}=\Phi_{\nu}(r) \equiv-\int_{r}^{\infty} \frac{d \rho}{\varphi_{\nu}(\rho)}, r>R_{\nu}^{*}
$$

Step 2:

- Φ_{ν} is strictly decreasing, with inverse Φ_{ν}^{-1};
- $\lim _{r \rightarrow \infty} \Phi_{\nu}(r)=0$;
- $\lim _{r \rightarrow\left(R_{\nu}^{*}\right)^{+}} \Phi_{\nu}(r)=+\infty$.

Proof of Step 2: Calculus.
Then: Φ_{ν} diffeo and solution m^{ν} given by:

$$
m^{\nu}(t)=\Phi_{\nu}^{-1}\left(t-\delta+\Phi_{\nu}\left(z^{\nu}(\delta)\right)\right)
$$

Take liminf $\inf _{\delta \rightarrow 0}$ and use $z^{\nu}(t) \leq m^{\nu}(t) \Longrightarrow$

$$
z^{\nu}(t) \leq \Phi_{\nu}^{-1}\left(t+\Phi_{\nu}\left(z^{\nu}(0)\right)\right)
$$

Introduce

$$
R_{\nu}^{* *} \equiv\left(\frac{2 B}{A \nu}\right)^{\frac{2}{2 \alpha-1}}
$$

Introduce

$$
R_{\nu}^{* *} \equiv\left(\frac{2 B}{A \nu}\right)^{\frac{2}{2 \alpha-1}} \equiv 2^{\frac{2}{2 \alpha-1}} R_{\nu}^{*}
$$

Introduce

$$
\begin{aligned}
& R_{\nu}^{* *} \equiv\left(\frac{2 B}{A \nu}\right)^{\frac{2}{2 \alpha-1}} \equiv 2^{\frac{2}{2 \alpha-1}} R_{\nu}^{*} \\
& r>R_{\nu}^{* *} \Longrightarrow \varphi_{\nu}(r) \leq-\frac{A \nu}{2} r^{\alpha} .
\end{aligned}
$$

Introduce

$$
\begin{aligned}
& R_{\nu}^{* *} \equiv\left(\frac{2 B}{A \nu}\right)^{\frac{2}{2 \alpha-1}} \equiv 2^{\frac{2}{2 \alpha-1}} R_{\nu}^{*} \\
& r>R_{\nu}^{* *} \Longrightarrow \varphi_{\nu}(r) \leq-\frac{A \nu}{2} r^{\alpha}
\end{aligned}
$$

Step 3:

$$
\nu \int_{0}^{t} z^{\nu}(s) \mathrm{d} s \leq \nu \int_{R_{\nu}^{* *}}^{z^{\nu}(0)} \Phi_{\nu}(y) \mathrm{d} y+\nu t R_{\nu}^{* *}+\nu R_{\nu}^{* *} \Phi_{\nu}\left(z^{\nu}(0)\right)
$$

Proof of Step 3: Use properties from Step 2, plus Calculus.

Introduce

$$
\begin{aligned}
& R_{\nu}^{* *} \equiv\left(\frac{2 B}{A \nu}\right)^{\frac{2}{2 \alpha-1}} \equiv 2^{\frac{2}{2 \alpha-1}} R_{\nu}^{*} \\
& r>R_{\nu}^{* *} \Longrightarrow \varphi_{\nu}(r) \leq-\frac{A \nu}{2} r^{\alpha}
\end{aligned}
$$

Step 3:

$$
\nu \int_{0}^{t} z^{\nu}(s) \mathrm{d} s \leq \nu \int_{R_{\nu}^{* *}}^{z^{\nu}(0)} \Phi_{\nu}(y) \mathrm{d} y+\nu t R_{\nu}^{* *}+\nu R_{\nu}^{* *} \Phi_{\nu}\left(z^{\nu}(0)\right)
$$

Proof of Step 3: Use properties from Step 2, plus Calculus.
This is enough to conclude the proof of the Proposition.

Key points:

Key points:

- Adapted Gronwall using φ_{ν} concave;

Key points:

- Adapted Gronwall using φ_{ν} concave;
- Not just estimates but precise asymptotics wrt ν needed.

Conclusions

- The Onsager scaling is not the last word on inviscid dissipation.

Conclusions

- The Onsager scaling is not the last word on inviscid dissipation. Dynamical mechanism to avoid anomalous dissipation?

Conclusions

- The Onsager scaling is not the last word on inviscid dissipation. Dynamical mechanism to avoid anomalous dissipation? 'Yes' in 2D

Conclusions

- The Onsager scaling is not the last word on inviscid dissipation. Dynamical mechanism to avoid anomalous dissipation? 'Yes' in 2D
- $L^{\infty}\left(W^{1, p}\right), p>1$,

Conclusions

- The Onsager scaling is not the last word on inviscid dissipation. Dynamical mechanism to avoid anomalous dissipation? 'Yes' in 2D
- $L^{\infty}\left(W^{1, p}\right), p>1$, 2D Euler physically realizable solutions conserve energy

Conclusions

- The Onsager scaling is not the last word on inviscid dissipation. Dynamical mechanism to avoid anomalous dissipation? 'Yes' in 2D
- $L^{\infty}\left(W^{1, p}\right), p>1$, 2D Euler physically realizable solutions conserve energy \Longrightarrow not attainable through convex integration/wild solutions.

Conclusions

- The Onsager scaling is not the last word on inviscid dissipation. Dynamical mechanism to avoid anomalous dissipation? 'Yes' in 2D
- $L^{\infty}\left(W^{1, p}\right), p>1$, 2D Euler physically realizable solutions conserve energy \Longrightarrow not attainable through convex integration/wild solutions. Supports selection criteria.

Conclusions

- The Onsager scaling is not the last word on inviscid dissipation. Dynamical mechanism to avoid anomalous dissipation? 'Yes' in 2D
- $L^{\infty}\left(W^{1, p}\right), p>1$, 2D Euler physically realizable solutions conserve energy \Longrightarrow not attainable through convex integration/wild solutions. Supports selection criteria.
- Bardos, Titi, Wiedemann 2012:

Conclusions

- The Onsager scaling is not the last word on inviscid dissipation. Dynamical mechanism to avoid anomalous dissipation? 'Yes' in 2D
- $L^{\infty}\left(W^{1, p}\right), p>1$, 2D Euler physically realizable solutions conserve energy \Longrightarrow not attainable through convex integration/wild solutions. Supports selection criteria.
- Bardos, Titi, Wiedemann 2012: shear flows in 3D.

Conclusions

- The Onsager scaling is not the last word on inviscid dissipation. Dynamical mechanism to avoid anomalous dissipation? 'Yes' in 2D
- $L^{\infty}\left(W^{1, p}\right), p>1$, 2D Euler physically realizable solutions conserve energy \Longrightarrow not attainable through convex integration/wild solutions. Supports selection criteria.
- Bardos, Titi, Wiedemann 2012: shear flows in 3D. Vanishing viscosity selects one weak solution,

Conclusions

- The Onsager scaling is not the last word on inviscid dissipation. Dynamical mechanism to avoid anomalous dissipation? 'Yes' in 2D
- $L^{\infty}\left(W^{1, p}\right), p>1$, 2D Euler physically realizable solutions conserve energy \Longrightarrow not attainable through convex integration/wild solutions. Supports selection criteria.
- Bardos, Titi, Wiedemann 2012: shear flows in 3D. Vanishing viscosity selects one weak solution, among infinite possibilities.

Conclusions

- The Onsager scaling is not the last word on inviscid dissipation. Dynamical mechanism to avoid anomalous dissipation? 'Yes' in 2D
- $L^{\infty}\left(W^{1, p}\right), p>1$, 2D Euler physically realizable solutions conserve energy \Longrightarrow not attainable through convex integration/wild solutions. Supports selection criteria.
- Bardos, Titi, Wiedemann 2012: shear flows in 3D. Vanishing viscosity selects one weak solution, among infinite possibilities.
- Symmetry breaking:

Conclusions

- The Onsager scaling is not the last word on inviscid dissipation. Dynamical mechanism to avoid anomalous dissipation? 'Yes' in 2D
- $L^{\infty}\left(W^{1, p}\right), p>1$, 2D Euler physically realizable solutions conserve energy \Longrightarrow not attainable through convex integration/wild solutions. Supports selection criteria.
- Bardos, Titi, Wiedemann 2012: shear flows in 3D. Vanishing viscosity selects one weak solution, among infinite possibilities.
- Symmetry breaking: also avoided by physically realizable weak solutions.

Conclusions

- The Onsager scaling is not the last word on inviscid dissipation. Dynamical mechanism to avoid anomalous dissipation? 'Yes' in 2D
- $L^{\infty}\left(W^{1, p}\right), p>1$, 2D Euler physically realizable solutions conserve energy \Longrightarrow not attainable through convex integration/wild solutions. Supports selection criteria.
- Bardos, Titi, Wiedemann 2012: shear flows in 3D. Vanishing viscosity selects one weak solution, among infinite possibilities.
- Symmetry breaking: also avoided by physically realizable weak solutions. Bardos, Lopes Filho, Niu, NL, Titi 2013.
- Extension to approximations by vortex blob method,
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{\text {loc }}^{1, p}\right)$, $p>1$
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{\text {loc }}^{1, p}\right)$, $p>1$ and local energy balance $p \geq 6 / 5$.
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{l o c}^{1, p}\right)$, $p>1$ and local energy balance $p \geq 6 / 5$. Ciampa, Crippa, Spirito 2020.
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{l o c}^{1, p}\right)$, $p>1$ and local energy balance $p \geq 6 / 5$. Ciampa, Crippa, Spirito 2020.
- Extension to axisymmetric Euler :
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{l o c}^{1, p}\right)$, $p>1$ and local energy balance $p \geq 6 / 5$. Ciampa, Crippa, Spirito 2020.
- Extension to axisymmetric Euler : Nobili Seis 2022.
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{l o c}^{1, p}\right)$, $p>1$ and local energy balance $p \geq 6 / 5$. Ciampa, Crippa, Spirito 2020.
- Extension to axisymmetric Euler : Nobili Seis 2022. Initial vorticity ω_{0} nonnegative,
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{l o c}^{1, p}\right)$, $p>1$ and local energy balance $p \geq 6 / 5$. Ciampa, Crippa, Spirito 2020.
- Extension to axisymmetric Euler : Nobili Seis 2022. Initial vorticity ω_{0} nonnegative, $|x| \omega_{0}(\cdot)$ integrable,
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{l o c}^{1, p}\right)$, $p>1$ and local energy balance $p \geq 6 / 5$. Ciampa, Crippa, Spirito 2020.
- Extension to axisymmetric Euler : Nobili Seis 2022. Initial vorticity ω_{0} nonnegative, $|x| \omega_{0}(\cdot)$ integrable, $\omega_{0} / r \in L^{p}(r \mathrm{~d} r \mathrm{~d} z), p>3 / 2$.
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{l o c}^{1, p}\right)$, $p>1$ and local energy balance $p \geq 6 / 5$. Ciampa, Crippa, Spirito 2020.
- Extension to axisymmetric Euler : Nobili Seis 2022. Initial vorticity ω_{0} nonnegative, $|x| \omega_{0}(\cdot)$ integrable, $\omega_{0} / r \in L^{p}(r \mathrm{~d} r \mathrm{~d} z), p>3 / 2$.
- Energy conservation in the case $p=1$?
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{l o c}^{1, p}\right)$, $p>1$ and local energy balance $p \geq 6 / 5$. Ciampa, Crippa, Spirito 2020.
- Extension to axisymmetric Euler : Nobili Seis 2022. Initial vorticity ω_{0} nonnegative, $|x| \omega_{0}(\cdot)$ integrable, $\omega_{0} / r \in L^{p}(r \mathrm{~d} r \mathrm{~d} z), p>3 / 2$.
- Energy conservation in the case $p=1$? No tools.
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{l o c}^{1, p}\right)$, $p>1$ and local energy balance $p \geq 6 / 5$. Ciampa, Crippa, Spirito 2020.
- Extension to axisymmetric Euler : Nobili Seis 2022. Initial vorticity ω_{0} nonnegative, $|x| \omega_{0}(\cdot)$ integrable, $\omega_{0} / r \in L^{p}(r \mathrm{~d} r \mathrm{~d} z), p>3 / 2$.
- Energy conservation in the case $p=1$? No tools. There is a discrepancy wrt conservation of L^{p}-norms!
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{l o c}^{1, p}\right)$, $p>1$ and local energy balance $p \geq 6 / 5$. Ciampa, Crippa, Spirito 2020.
- Extension to axisymmetric Euler : Nobili Seis 2022. Initial vorticity ω_{0} nonnegative, $|x| \omega_{0}(\cdot)$ integrable, $\omega_{0} / r \in L^{p}(r \mathrm{~d} r \mathrm{~d} z), p>3 / 2$.
- Energy conservation in the case $p=1$? No tools. There is a discrepancy wrt conservation of L^{p}-norms! Less ambitious:
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{l o c}^{1, p}\right)$, $p>1$ and local energy balance $p \geq 6 / 5$. Ciampa, Crippa, Spirito 2020.
- Extension to axisymmetric Euler : Nobili Seis 2022. Initial vorticity ω_{0} nonnegative, $|x| \omega_{0}(\cdot)$ integrable, $\omega_{0} / r \in L^{p}(r \mathrm{~d} r \mathrm{~d} z), p>3 / 2$.
- Energy conservation in the case $p=1$? No tools. There is a discrepancy wrt conservation of L^{p}-norms! Less ambitious: $p=1$, u physically realizable,
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{l o c}^{1, p}\right)$, $p>1$ and local energy balance $p \geq 6 / 5$. Ciampa, Crippa, Spirito 2020.
- Extension to axisymmetric Euler : Nobili Seis 2022. Initial vorticity ω_{0} nonnegative, $|x| \omega_{0}(\cdot)$ integrable, $\omega_{0} / r \in L^{p}(r \mathrm{~d} r \mathrm{~d} z), p>3 / 2$.
- Energy conservation in the case $p=1$? No tools. There is a discrepancy wrt conservation of L^{p}-norms! Less ambitious: $p=1$, u physically realizable, can u be attainable by convex integration?
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{l o c}^{1, p}\right)$, $p>1$ and local energy balance $p \geq 6 / 5$. Ciampa, Crippa, Spirito 2020.
- Extension to axisymmetric Euler : Nobili Seis 2022. Initial vorticity ω_{0} nonnegative, $|x| \omega_{0}(\cdot)$ integrable, $\omega_{0} / r \in L^{p}(r \mathrm{~d} r \mathrm{~d} z), p>3 / 2$.
- Energy conservation in the case $p=1$? No tools. There is a discrepancy wrt conservation of L^{p}-norms! Less ambitious: $p=1$, u physically realizable, can u be attainable by convex integration? Work in progress.
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{l o c}^{1, p}\right)$, $p>1$ and local energy balance $p \geq 6 / 5$. Ciampa, Crippa, Spirito 2020.
- Extension to axisymmetric Euler : Nobili Seis 2022. Initial vorticity ω_{0} nonnegative, $|x| \omega_{0}(\cdot)$ integrable, $\omega_{0} / r \in L^{p}(r \mathrm{~d} r \mathrm{~d} z), p>3 / 2$.
- Energy conservation in the case $p=1$? No tools. There is a discrepancy wrt conservation of L^{p}-norms! Less ambitious: $p=1$, u physically realizable, can u be attainable by convex integration? Work in progress.
- Lanthaler et al equivalence criterion with forcing?
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{l o c}^{1, p}\right)$, $p>1$ and local energy balance $p \geq 6 / 5$. Ciampa, Crippa, Spirito 2020.
- Extension to axisymmetric Euler : Nobili Seis 2022. Initial vorticity ω_{0} nonnegative, $|x| \omega_{0}(\cdot)$ integrable, $\omega_{0} / r \in L^{p}(r \mathrm{~d} r \mathrm{~d} z), p>3 / 2$.
- Energy conservation in the case $p=1$? No tools. There is a discrepancy wrt conservation of L^{p}-norms! Less ambitious: $p=1$, u physically realizable, can u be attainable by convex integration? Work in progress.
- Lanthaler et al equivalence criterion with forcing? Less regular forcing?
- Extension to approximations by vortex blob method, $L^{\infty}\left(W_{l o c}^{1, p}\right)$, $p>1$ and local energy balance $p \geq 6 / 5$. Ciampa, Crippa, Spirito 2020.
- Extension to axisymmetric Euler : Nobili Seis 2022. Initial vorticity ω_{0} nonnegative, $|x| \omega_{0}(\cdot)$ integrable, $\omega_{0} / r \in L^{p}(r \mathrm{~d} r \mathrm{~d} z), p>3 / 2$.
- Energy conservation in the case $p=1$? No tools. There is a discrepancy wrt conservation of L^{p}-norms! Less ambitious: $p=1$, u physically realizable, can u be attainable by convex integration? Work in progress.
- Lanthaler et al equivalence criterion with forcing? Less regular forcing? Also work in progress.

Thank you!

Thank you!

Merci!

