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Equations modeling (unforced) incompressible fluid flow:

ut + u · ∇u = −∇p + ν∆u,

div u = 0.

ν = 0: Euler equations, ideal/inviscid
ν > 0: Navier-Stokes equations, viscous
For smooth solutions have

d
dt

1
2

∫
|u|2 = −

∫
u · [(u · ∇)u]−

∫
u · ∇p + ν

∫
u ·∆u

= −1
2

∫
div(|u|2u)−

∫
div(up)− ν

∫
|∇u|2

≡ −ν
∫
|∇u|2.

Smooth inviscid flows (ν = 0) conserve kinetic energy
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Anomalous dissipation is a cornerstone of turbulence theory: inviscid
fluid flows (ν = 0) which do not conserve energy; dissipation rate does
not vanish
Turbulence←→ anomalous dissipation←→ irregular flows

Onsager 1949:

anomalous dissipation may occur in inviscid flow with “less than
1/3 regularity”

inviscid flows with “more than 1/3 regularity” conserve energy

Research developed along two fronts: flexibility × rigidity

Brief history...
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Wild solutions, anomalous dissipation

Scheffer 93, Shnirelman 95 and De Lellis, Szekelyhidi 2009 -
non-uniqueness (compact support in space and time);
time-dependent energy.
Isett 2013; Buckmaster-De Lellis-Isett-Szekelyhidi 2015: C0,1/5−ε,
Buckmaster, De Lellis, Szekelyhidi 2016, L1

t C0,1/3−ε
x . These are all

3D constructions.
Choffrut, 2013, C0,1/10. Construction works in 2D.
Isett 2018: C0,1/3−ε, compact support in time.
Buckmaster-De Lellis-Szekelyhidi-Vicol 2019: C0,1/3−ε +
prescribed energy profile.
Buckmaster-Vicol 2019: ∃ viscous flows with prescribed energy
profile; ∃ inviscid limit with anomalous dissipation. 3D
construction!
Brué-Colombo 2021: nonuniqueness 2D Euler, vorticity in L1,∞.
Convex integration.
Albritton-Brué-Colombo 2021: nonuniqueness Leray-Hopf
solutions. Not convex integration.
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Regularity threshold for conservation of energy

Frisch-Sulem 1975: L∞t H5/6
x ;

Eyink 94: a little more than L3
t C1/3+ε

x ;

Constantin, E, Titi 1994: L3
t B1/3+ε

3,∞ .
State of the art – Cheskidov, Constantin, Friedlander, Shvydkoy
2008: L3

t B1/3
3,c0

, 3D and 2D.
2D result – Duchon, Robert 2000: initial vorticity in Lp, for
p > 3/2 implies conservation of energy.
Extension to p = 3/2 follows from Cheskidov, Constantin,
Friedlander, Shvydkoy.
Involves studying optimal conditions for energy flux to vanish.
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2D flows

2D Euler equations on the torus T2 ≡ [0,2π]2, with initial data
u0 ∈ L2(T2), no forcing:


∂tu + (u · ∇)u = −∇p
div u = 0
u(t = 0) = u0.

Interested in weak solutions for which vorticity ω ≡ curl u is p-th power
integrable,for some p ≥ 1.

Note:
Smooth vorticity transported in 2D, Lp bounds preserved by
evolution
wild solutions: no control on integrability of vorticity
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Definition
Fix T > 0 and u0 ∈ L2(T2) with initial vorticity ω0 = curl u0 ∈ Lp(T2), for
some p ≥ 1. Let u ∈ C(0,T ; L2

weak(T2)) with ω ∈ L∞(0,T ; Lp(T2)). We
say u is a weak solution of the incompressible Euler equations with
initial velocity u0 if

1 for every test vector field Φ ∈ C∞([0,T )× T2) such that
divΦ(t , ·) = 0 the following identity holds true:∫ T

0

∫
T2
∂t Φ · u + u · DΦu dxdt +

∫
T2

Φ(0, ·) · u0 dx = 0.

2 For almost every t ∈ (0,T ), div u(t , ·) = 0, in the sense of
distributions.

Existence of such weak solutions is known (DiPerna, Majda 87;
Vecchi, Wu 93), but uniqueness is open...except for L∞...and nearby.
We call a weak solution conservative if the L2-norm of velocity is
constant in time.
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Baseline result

Theorem
Fix T > 0 and let u ∈ C(0,T ; L2

weak(T2)) be a weak solution with
ω ≡ curl u ∈ L∞(0,T ; L3/2(T2)). Then u is conservative. Moreover,
the following local energy balance law holds in the sense of
distributions:

∂t

(
|u|2

2

)
+ div

[
u
(
|u|2

2
+ p

)]
= 0. (1)

This result is contained in Cheskidov et alli 2008, since
L∞t W 1,3/2

x ⊆ L3
t B1/3

3,c0
we outline an elementary proof.
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Idea of the proof of the Theorem

Let ζε = ζε(x) be C∞(T2)-mollifier.

Take convolution of Euler with ζε;
let uε = ζε ∗ u, pε = ζε ∗ p. Then:

∂tuε + (uε · ∇)uε = −∇pε +Rε, (2)

with
Rε ≡ (uε · ∇)uε − ζε ∗ [(u · ∇)u].

Multiply the equation by uε:

∂t

(
|uε|2

2

)
+ div

[
uε
(
|uε|2

2
+ pε

)]
= uε · Rε. (3)
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As ε→ 0, we have:

(A) ∂t

(
|uε|2

2

)
→ ∂t

(
|u|2

2

)
in the sense of distributions;

(B) div
[
uε
(
|uε|2

2 + pε
)]
→ div

[
u
(
|u|2

2 + p
)]

in the sense of
distributions;

(C) uε · Rε → 0 strongly in L∞(0,T ; L1(T2)).

(A) and (B) are subcritical for ω ∈ L3/2. In fact, they require ω ∈ L6/5. It
is the convergence of the energy flux term, which is (C), that requires
ω ∈ L3/2. (Good behavior of the energy flux term is the key point in all
results along these lines.)

The proof of (C) uses convergence of mollifications together with the
Sobolev imbedding: ω ∈ L3/2 =⇒ uε bounded in L∞(0,T ; L6(T2)).

Key fact: u · (u · ∇)u ∈ L1; ‖u · [(u · ∇)u]‖ . ‖u‖3
W 1, 3

2
.
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p = 3
2 is optimal

Theorem (Cheskidov, Lopes Filho, N-L, Shvydkoy; 2016)

There exists a divergence free vector field u ∈ B1/3
3,∞ ∩W 1,p(T2), for

any 1 ≤ p < 3/2, such that lim supq→∞Πq[u] 6= 0, with

Πq[u] =

∫
T2

Sq[u] · Sq[(u · ∇)u] dx

Above Sq Littlewood-Paley truncation:

Sq[f ] = f̂(0,0) +
∑

p≤q−1

∆pf =
∑
α∈Z2

χ(λ−1
q α)̂f (α)e2πiα·x .

Note Sq is a convolution with a mollifier.
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Note.

The div-free vector field u in B1/3
3,∞ ∩W 1,p(T2), 1 ≤ p < 3/2, not

a dynamical example; not solution of Euler

QUESTION: Is there an Euler (weak) solution, in 2D, with some control
on (integrability of) vorticity, which is not conservative?

Kraichnan 2D turbulence theory: forward enstrophy cascade→
regularizing effect in 2D

Suggests exists dynamical mechanism preventing anomalous
dissipation in 2D even for supercritical (less than 1/3 regular) flows
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Vanishing viscosity solutions

Definition

Let u ∈ C(0,T ; L2(T2)). We say that u is a physically realizable weak
solution of the incompressible 2D Euler equations with initial velocity
u0 ∈ L2(T2) if the following conditions hold.

1 u is a weak solution of the Euler equations;
2 there exists a family of solutions of the incompressible 2D

Navier-Stokes equations with viscosity ν > 0, {uν}, such that, as
ν → 0,

uν ⇀ u weakly∗ in L∞(0,T ; L2(T2));
uν(0, ·) ≡ uν

0 → u0 strongly in L2(T2).

The family {uν} is called a physical realization of u.
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Energy

Theorem (Cheskidov,Lopes Filho, N-L, Shvydkoy; 2016)

Let u ∈ C(0,T ; L2(T2)) be a physically realizable weak solution of the
incompressible 2D Euler equations. Suppose that u0 ∈ L2 is such that
curl u0 ≡ ω0 ∈ Lp(T2), for some p > 1. Suppose that there is a physical
realization {uν} such that {ων0} is bounded in Lp(T2). Then u
conserves energy.

Obs. 1 < p < 3/2 ‘Onsager supercritical’.
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Proof: Assume ω0 ∈ Lp(T2) for some p < 2, and ω0 /∈ L2(T2)
otherwise, the result is trivial. u is physically realizable =⇒ ∃ physical
realization {uν} solutions of Navier-Stokes with {ων0} bounded in Lp.
ων = curl uν . The vorticity equation given by:

∂tω
ν + uν · ∇ων = ν∆ων .

Multiply by ων and integrate on torus:

d
dt
‖ων‖2L2 = −2ν‖∇ων‖2L2 .

Gagliardo-Nirenberg =⇒ for any 1 < p < 2:

‖ων‖L2 ≤ ‖∇ων‖1−
p
2

L2 ‖ων‖
p
2
Lp .

Then

−2ν‖∇ων‖2L2 ≤ −2ν‖ων‖
4

2−p

L2 ‖ων‖
− 2p

2−p
Lp .
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Energy identity for 2D Navier-Stokes:

d
dt
‖uν‖2L2 = −2ν‖∇uν‖2L2 . (4)

Rewriting in terms of vorticity yields

d
dt
‖uν‖2L2 = −2ν‖ων‖2L2 . (5)

Integrating in time and using the estimate for vorticity we get

0 ≥ ‖uν(t , ·)‖2L2 − ‖uν0‖2L2 ≥ −2ν
∫ t

0

(
‖ων0‖

− 2p
(2−p)

L2 +
2νpC0s
2− p

)− 2−p
p

ds

= − 2− p
2C0(p − 1)

(‖ων0‖− 2p
(2−p)

L2 +
2νpC0

2− p
t
) 2(p−1)

p

− ‖ων0‖
− 2p

(2−p)

L2

 .
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d
dt
‖uν‖2L2 = −2ν‖ων‖2L2 . (5)

Integrating in time and using the estimate for vorticity we get

0 ≥ ‖uν(t , ·)‖2L2 − ‖uν0‖2L2 ≥ −2ν
∫ t

0

(
‖ων0‖

− 2p
(2−p)

L2 +
2νpC0s
2− p

)− 2−p
p

ds

= − 2− p
2C0(p − 1)

(‖ων0‖− 2p
(2−p)

L2 +
2νpC0

2− p
t
) 2(p−1)

p

− ‖ων0‖
− 2p

(2−p)

L2

 .
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Now, ω0 /∈ L2 and {ων0} bdd in Lp ⇒ ‖ων0‖L2 → +∞.

Note: if ‖ων0‖L2 = +∞ then get rate

0 ≥ ‖uν(t , ·)‖2L2 − ‖uν0‖2L2 ≥ −(2ν)
2(p−1)

p

(
pC0

2− p

)− 2−p
p p

2(p − 1)
t

2(p−1)
p .

Either way, since p > 1 the right-hand-side of the inequality vanishes
as ν → 0. Therefore:

lim
ν→0
‖uν(t , ·)‖2L2 − ‖uν0‖2L2 = 0.

DiPerna-Majda 1987, ω ∈ Lp, p > 1, non-concentration result:

lim
ν→0
‖uν(t , ·)‖2L2 = ‖u(t , ·)‖2L2 .

Strong convergence of initial data, hypothesis, not compactness:

lim
ν→0
‖uν0‖2L2 = ‖u0‖2L2 .

The proof is concluded.
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Some observations.

Recent work by Lanthaler, Mishra, Parés-Pulido 2021:
equivalence between uν → u strong Lr (0,T ; L2(T2)), 1 ≤ r <∞,
and u conservative weak solution. Provides immediate proof if
ω0 ∈ Lp(T2), p > 1 since then uν → u strong L∞(0,T ; L2(T2)) –
no concentrations – but without rate (νt)2(p−1)/p.
Can extend to ω0 ∈ X for any X rearrangement invariant and
compactly imbedded in H−1(T2). For instance L(log L)α, α > 1/2;
L(1,p), 1 ≤ p < 2. In all these cases have uν → u strong
L∞(0,T ; L2(T2)).
No tools to deal with ω0 ∈ L1(T2).
Lanthaler et alli analysis relies on L2-based structure function for
u; play the role of vorticity estimates.
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Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

ut + u · ∇u = −∇p + ν∆u + F ,

div u = 0.

Energy balance for smooth solutions:

d
dt

1
2

∫
|u|2 = −ν

∫
|∇u|2 +

∫
F · u.

Seek regularity conditions on F which lead to energy balanced weak
solutions of Euler (ν = 0)

Why? Low-regularity flows natural context for turbulence, forcing one
of the preferred mechanisms to generate small scales.

Helena J. Nussenzveig Lopes (IM-UFRJ) Energy balance 2D incompressible flow May 12th , 2022 21 / 32



Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

ut + u · ∇u = −∇p + ν∆u + F ,

div u = 0.

Energy balance for smooth solutions:

d
dt

1
2

∫
|u|2 = −ν

∫
|∇u|2 +

∫
F · u.

Seek regularity conditions on F which lead to energy balanced weak
solutions of Euler (ν = 0)

Why? Low-regularity flows natural context for turbulence, forcing one
of the preferred mechanisms to generate small scales.

Helena J. Nussenzveig Lopes (IM-UFRJ) Energy balance 2D incompressible flow May 12th , 2022 21 / 32



Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

ut + u · ∇u = −∇p + ν∆u + F ,

div u = 0.

Energy balance for smooth solutions:

d
dt

1
2

∫
|u|2 = −ν

∫
|∇u|2 +

∫
F · u.

Seek regularity conditions on F which lead to energy balanced weak
solutions of Euler (ν = 0)

Why? Low-regularity flows natural context for turbulence, forcing one
of the preferred mechanisms to generate small scales.

Helena J. Nussenzveig Lopes (IM-UFRJ) Energy balance 2D incompressible flow May 12th , 2022 21 / 32



Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

ut + u · ∇u = −∇p + ν∆u + F ,

div u = 0.

Energy balance for smooth solutions:

d
dt

1
2

∫
|u|2 = −ν

∫
|∇u|2 +

∫
F · u.

Seek regularity conditions on F which lead to energy balanced weak
solutions of Euler (ν = 0)

Why? Low-regularity flows natural context for turbulence, forcing one
of the preferred mechanisms to generate small scales.

Helena J. Nussenzveig Lopes (IM-UFRJ) Energy balance 2D incompressible flow May 12th , 2022 21 / 32



Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

ut + u · ∇u = −∇p + ν∆u + F ,

div u = 0.

Energy balance for smooth solutions:

d
dt

1
2

∫
|u|2 = −ν

∫
|∇u|2 +

∫
F · u.

Seek regularity conditions on F which lead to energy balanced weak
solutions of Euler

(ν = 0)

Why? Low-regularity flows natural context for turbulence, forcing one
of the preferred mechanisms to generate small scales.

Helena J. Nussenzveig Lopes (IM-UFRJ) Energy balance 2D incompressible flow May 12th , 2022 21 / 32



Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

ut + u · ∇u = −∇p + ν∆u + F ,

div u = 0.

Energy balance for smooth solutions:

d
dt

1
2

∫
|u|2 = −ν

∫
|∇u|2 +

∫
F · u.

Seek regularity conditions on F which lead to energy balanced weak
solutions of Euler (ν = 0)

Why? Low-regularity flows natural context for turbulence, forcing one
of the preferred mechanisms to generate small scales.

Helena J. Nussenzveig Lopes (IM-UFRJ) Energy balance 2D incompressible flow May 12th , 2022 21 / 32



Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

ut + u · ∇u = −∇p + ν∆u + F ,

div u = 0.

Energy balance for smooth solutions:

d
dt

1
2

∫
|u|2 = −ν

∫
|∇u|2 +

∫
F · u.

Seek regularity conditions on F which lead to energy balanced weak
solutions of Euler (ν = 0)

Why?

Low-regularity flows natural context for turbulence, forcing one
of the preferred mechanisms to generate small scales.

Helena J. Nussenzveig Lopes (IM-UFRJ) Energy balance 2D incompressible flow May 12th , 2022 21 / 32



Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

ut + u · ∇u = −∇p + ν∆u + F ,

div u = 0.

Energy balance for smooth solutions:

d
dt

1
2

∫
|u|2 = −ν

∫
|∇u|2 +

∫
F · u.

Seek regularity conditions on F which lead to energy balanced weak
solutions of Euler (ν = 0)

Why? Low-regularity flows natural context for turbulence,

forcing one
of the preferred mechanisms to generate small scales.

Helena J. Nussenzveig Lopes (IM-UFRJ) Energy balance 2D incompressible flow May 12th , 2022 21 / 32



Forced fluid flow and energy balance

Euler/Navier-Stokes with forcing:

ut + u · ∇u = −∇p + ν∆u + F ,

div u = 0.

Energy balance for smooth solutions:

d
dt

1
2

∫
|u|2 = −ν

∫
|∇u|2 +

∫
F · u.

Seek regularity conditions on F which lead to energy balanced weak
solutions of Euler (ν = 0)

Why? Low-regularity flows natural context for turbulence, forcing one
of the preferred mechanisms to generate small scales.

Helena J. Nussenzveig Lopes (IM-UFRJ) Energy balance 2D incompressible flow May 12th , 2022 21 / 32



Physically realizable weak solutions: F ν ⇀ F weakly L1(0,T ; L2(T2))

Theorem (Lopes Filho, N-L; 2021)

Let u ∈ C([0,T ); L2(T2)) be a physically realizable weak solution of the
incompressible 2D Euler equations with external forcing
F ∈ L1((0,T ); L2(T2)). Consider a physical realization of u, {uν},
solutions of 2D ν-Navier-Stokes equations with forcing F ν . Suppose,
for some p > 1:

(i) curl u0 = ω0 ∈ Lp(T2);
(ii) curl uν0 ≡ ων0 → ω0 strongly in Lp(T2);
(iii) gν ≡ curl F ν bounded in L1((0,T ); Lp(T2)) ∩ L∞(0,T ; L2(T2)).
Then u is energy balanced.
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Proof: Suppose ω0 /∈ L2.

Start from vorticity equation

∂tω
ν + uν · ∇ων = ν∆ων + gν .

As before, but incorporating forcing term, we have the energy estimate
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Proof: Suppose ω0 /∈ L2. Start from vorticity equation

∂tω
ν + uν · ∇ων = ν∆ων + gν .

As before, but incorporating forcing term, we have the energy estimate

d
dt
‖ων‖2L2 ≤ −C(‖ω0‖Lp , ‖gν‖L1(Lp)) ν ‖ων‖

4
2−p

L2 + ‖gν‖L∞(L2)‖ων‖L2 .
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The key result, from which the Theorem follows:

Proposition

Under the hypotheses of the Theorem,

lim
ν→0+

ν

∫ t

0
‖ων(s, ·)‖2L2 ds → 0.
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dzν

dt
≤ −Aν(zν)

2
2−p + B(zν)

1
2 ,

A and B independent of ν.

Note. Without forcing have B = 0.

Observe zν(0)→ +∞. zν(δ) <∞ for all δ > 0 (parabolic regularity).

Set α ≡ 2
2− p

> 2. We divide the proof in several steps.

Step 1 Fix δ > 0. Let mν solution of{
m′ = −Aνmα + B

√
m

m(δ) = zν(δ)

Then 0 ≤ zν(t) ≤ mν(t) all t ∈ (δ,T ).
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Proof of Step 1: ϕν = ϕν(r) ≡ −Aνrα + B
√

r . Use ϕν is concave to find

(zν −mν)′ ≤ ϕ′ν(mν) (zν −mν).

Then use Gronwall.

What is left is study of family of ODEs for mν . Key: equilibrium

R∗ν ≡
(

B
Aν

) 2
2α−1

.

ϕν changes sign across R∗ν : + to −

Then, either mν(δ) ≤ R∗ν =⇒ mν(t) ≤ R∗ν thus zν(t) ≤ R∗ν =⇒ Prop. OK.

Or mν(δ) > R∗ν =⇒ mν(t) > R∗ν . Need to consider three cases:

lim sup
ν→0+

zν(0)

R∗ν
=


< 1
= 1
> 1.
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The first two cases lead to zν(t) ≤ C R∗ν and to the Proposition:

ν

∫ t

0
‖ων(s, ·)‖2L2 ds ≤ ν

∫ t

0
R∗ν ds

≤ ν
∫ t

0

(
B
Aν

) 2
2α−1

ds ≡ Cν1− 2
2α−1

= Cν
2α−3
2α−1 → 0 as ν → 0.
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The third case needs analysis of

Φν = Φν(r) ≡ −
∫ ∞

r

dρ
ϕν(ρ)

, r > R∗ν .

Step 2:

Φν is strictly decreasing, with inverse Φ−1
ν ;

limr→∞Φν(r) = 0;
limr→(R∗ν )+ Φν(r) = +∞.

Proof of Step 2: Calculus.

Then: Φν diffeo and solution mν given by:

mν(t) = Φ−1
ν (t − δ + Φν(zν(δ))).

Take lim infδ→0 and use zν(t) ≤ mν(t) =⇒

zν(t) ≤ Φ−1
ν (t + Φν(zν(0))).
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Introduce

R∗∗ν ≡
(

2B
Aν

) 2
2α−1

≡ 2
2

2α−1 R∗ν .

r > R∗∗ν =⇒ ϕν(r) ≤ −Aν
2

rα.

Step 3:

ν

∫ t

0
zν(s) ds ≤ ν

∫ zν(0)

R∗∗ν
Φν(y) dy + νtR∗∗ν + νR∗∗ν Φν(zν(0)).

Proof of Step 3: Use properties from Step 2, plus Calculus.

This is enough to conclude the proof of the Proposition.
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Key points:

Adapted Gronwall using ϕν concave;

Not just estimates but precise asymptotics wrt ν needed.
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Conclusions

The Onsager scaling is not the last word on inviscid dissipation.

Dynamical mechanism to avoid anomalous dissipation? ’Yes’ in
2D

L∞(W 1,p), p > 1, 2D Euler physically realizable solutions
conserve energy =⇒ not attainable through convex
integration/wild solutions. Supports selection criteria.

Bardos, Titi, Wiedemann 2012: shear flows in 3D. Vanishing
viscosity selects one weak solution, among infinite possibilities.

Symmetry breaking: also avoided by physically realizable weak
solutions. Bardos, Lopes Filho, Niu, NL, Titi 2013.
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Extension to approximations by vortex blob method, L∞(W 1,p
loc ),

p > 1 and local energy balance p ≥ 6/5. Ciampa, Crippa, Spirito
2020.

Extension to axisymmetric Euler : Nobili Seis 2022. Initial vorticity
ω0 nonnegative, |x |ω0(·) integrable, ω0/r ∈ Lp(r dr dz), p > 3/2.

Energy conservation in the case p = 1? No tools. There is a
discrepancy wrt conservation of Lp-norms! Less ambitious: p = 1,
u physically realizable, can u be attainable by convex integration?
Work in progress.

Lanthaler et al equivalence criterion with forcing? Less regular
forcing? Also work in progress.
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