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Hydrostatic Euler

The hydrostatic Euler equations (inviscid Primitive equations of
Oceanic and Atmospheric Dynamics) are given by

∂tuh + (uh · ∇)uh + w∂zuh +∇p = 0,
∇ · uh + ∂zw = 0, ∂zp = 0.

∇ is 2-dimensional and w is no longer an independent quantity.
The formally conserved quantity is ∥u∥2

L2 + ∥v∥2
L2 .

Onsager’s conjecture for the Euler equations:
▶ If u(·, t) ∈ C0,θ with θ > 1

3 implies conservation of energy.
▶ If u(·, t) ∈ C0,θ with θ < 1

3 , energy dissipation is possible.
We looked at an analogue of this conjecture for the hydrostatic
Euler equations.
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Previous work I

For the Euler equations:

▶ First half of Onsager conjecture: [Eyink, 1994; Constantin, E, and Titi,
1994; Duchon and Robert, 2000; Cheskidov, Constantin, Friedlander,
and Shvydkoy, 2008; Cheskidov, Lopes Filho, Nussenzveig Lopes,
and Shvydkoy, 2016; Robinson, Rodrigo, and Skipper, 2018; Bardos,
Gwiazda, Świerczewska-Gwiazda, Titi, and Wiedemann, 2019]

▶ Second half of Onsager conjecture: [De Lellis and Székelyhidi, 2009,
2010; Buckmaster, De Lellis, Isett, and Székelyhidi, 2015; Daneri and
Székelyhidi, 2017; Isett, 2018; Buckmaster, De Lellis, Székelyhidi,
and Vicol, 2018]

For the viscous primitive equations:

▶ Derivation: [Richardson, 1922; Lions, Temam, and Wang, 1992]
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Previous work II

▶ Short-time existence: [Guillén-González, Masmoudi, and
Rodrı́guez-Bellido, 2001]

▶ Global existence: [Cao and Titi, 2007; Kobelkov, 2006; Kukavica and
Ziane, 2007; Hieber and Kashiwabara, 2016]

▶ Small-aspect ratio: [Azérad and Guillén, 2001; Bresch,
Guillén González, Masmoudi, and Rodrı́guez Bellido, 2001; Li and
Titi, 2019]

For the inviscid primitive equations:

▶ Ill-posedness in Sobolev spaces: [Renardy, 2009; Han-Kwan and
Nguyen, 2016]

▶ Finite-time singularity: [Wong, 2015; Cao, Ibrahim, Nakanishi, and
Titi, 2015]
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Previous work III

▶ Local well-posedness for analytic data: [Kukavica, Temam, Vicol, and
Ziane, 2011; Gerard-Varet, Masmoudi, and Vicol, 2020]

▶ With rotation: [Ibrahim, Lin, and Titi, 2021; Ghoul, Ibrahim, Lin, and
Titi, 2022]

▶ Nonuniqueness of weak solutions for the inviscid case: [Feireisl,
2016; Chiodaroli and Michálek, 2017]
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Main differences with the Euler equations

The equation for w can be written as

w = −
∫ z

0

(
∂xu + ∂yv

)
dz ′.

▶ Nonlocality
▶ Anisotropy in regularity

Two different notions for weak solutions
▶ Assume that w ∈ L2(L2) and u, v ∈ L∞(L2) (weak solution)
▶ Assume that w ∈ L2(B−s

2,∞) and u, v ∈ L4(Bs+
4,2) for 0 < s < 1

2
(very weak solution)
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Results

Theorem (DB-Markfelder-Titi)

Energy is conserved under any of the following conditions.

▶ If u, v ∈ L4(B1/2+
4,∞ ) and w ∈ L2(L2)

▶ If w ∈ L3(Cβ) and u, v ∈ L3(Cα) with α > 1 − 1
2β

▶ If w ∈ L2(L2) and u and v have Besov regularity Bα
3,∞ vertically

and Bβ
3,∞ horizontally if α > 1

3 , β > 2
3 and β + 2α > 2

▶ For very weak solutions with w ∈ L2(B−s
2,∞), if

u, v ∈ L4(Bs+1/2+
4,∞ )

▶ If u, v ∈ L3(B3/4+
3,∞ ) (with no conditions on w)
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