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Hyperbolic Polynomials

Definition: A homogeneous polynomial h ∈ R [x1, . . . , xn] is called hyperbolic with respect
to e ∈ Rn if h(e) 6= 0 and for all v ∈ Rn, h(et − v) in R [t] has only real roots.

The hyperbolicity cone of h at e is

Ch(e) = {v ∈ Rn : h(et − v) = 0 =⇒ t ∈ R≥0} .
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Hyperbolic Polynomials

h(et − v) = h(e1t − v1, . . . , ent − vn)

Ch(e) =
{

v ∈ Rn : h(et − v) = 0 =⇒ t ∈ R≥0
}

h = x1x2x3, e = (1, 1, 1)

h = (t − v1)(t − v2)(t − v3)

h = det(X), X =
(

x1 x2
x2 x3

)
, e = I

det
(

v1 − t v2
v2 v3 − t

)

Ch(e) =
{

v ∈ R3 :
(

v1 v2
v2 v3

)
� 0
}

Cone of PSD 2× 2 matrices

Ch(e) = R3
≥0
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Determinantal Representability

Definition: A homogeneous polynomial f ∈ R[x1, · · · , xn] is said to have a determinantal
representation if there are PSD matrices A1, . . . ,An such that

f = λ det(x1A1 + · · ·+ xnAn)

for some λ ∈ R.

f is called weakly determinantal if ∃N ∈ N such that
f N has a determinantal representation

f is weakly
determinantal =⇒6 =⇒

f is hyperbolic
with respect to all e ∈ Rn

>0

Counter example: The basis generating polynomial of the Vamós matroid
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Spectrahedral Cones

Definition: A convex cone C is called spectrahedral if

C = {v ∈ Rn : A(v) = v1A1 + . . .+ vnAn � 0}

where A1, . . . ,An are real symmetric d × d matrices.

• Spectrahedral cones are hyperbolicity cones. (consider h = det(A1x1 + · · ·+ Anxn)).

Note: For the rest of the talk “hyperbolic” refers to hyperbolic with respect to every
point in the positive orthant.
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Spectrahedral Representability

Question: Given a homogeneous polynomial h ∈ R[x1, . . . , xn] that is hyperbolic. When
is Ch(e) spectrahedral?

h has a determinantal representation =⇒ Ch is spectrahedral.

Theorem(Helton-Vinnikov, 2007) Let h ∈ R[x1 · · · , xn] be hyperbolic. The hyperbolicity
cone Ch is spectrahedral if and only if there exists a hyperbolic polynomial g with
Ch ⊂ Cg such that h · g has a determinantal representation.

Ch·g = Ch ∩ Cg

Question: Are all hyperbolicity cones spectrahedral?
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Generalized Lax Conjecture

Conjecture: Every hyperbolicity cone is spectrahedral.
Every hyperbolic program can be written as a semi-definite program.

• The conjecture is true for at most 3 variables (Helton-Vinnikov, 2007).

• The conjecture is true for elementary symmetric polynomials (Brändén, 2014).

• The conjecture is true for quadratic polynomials (Netzer-Thom, 2012).

• The conjecture is true for matching polynomials of simple graphs. (Amini, 2019).

Büşra Sert (TU Dresden) An Algorithm for Testing the HPP of Matroids 03.03.2022 8 / 21



Generalized Lax Conjecture

Conjecture: Every hyperbolicity cone is spectrahedral.
Every hyperbolic program can be written as a semi-definite program.

• The conjecture is true for at most 3 variables (Helton-Vinnikov, 2007).

• The conjecture is true for elementary symmetric polynomials (Brändén, 2014).

• The conjecture is true for quadratic polynomials (Netzer-Thom, 2012).

• The conjecture is true for matching polynomials of simple graphs. (Amini, 2019).

Büşra Sert (TU Dresden) An Algorithm for Testing the HPP of Matroids 03.03.2022 8 / 21



Generalized Lax Conjecture

Conjecture: Every hyperbolicity cone is spectrahedral.
Every hyperbolic program can be written as a semi-definite program.

• The conjecture is true for at most 3 variables (Helton-Vinnikov, 2007).

• The conjecture is true for elementary symmetric polynomials (Brändén, 2014).

• The conjecture is true for quadratic polynomials (Netzer-Thom, 2012).

• The conjecture is true for matching polynomials of simple graphs. (Amini, 2019).

Büşra Sert (TU Dresden) An Algorithm for Testing the HPP of Matroids 03.03.2022 8 / 21



Generalized Lax Conjecture

Conjecture: Every hyperbolicity cone is spectrahedral.
Every hyperbolic program can be written as a semi-definite program.

• The conjecture is true for at most 3 variables (Helton-Vinnikov, 2007).

• The conjecture is true for elementary symmetric polynomials (Brändén, 2014).

• The conjecture is true for quadratic polynomials (Netzer-Thom, 2012).

• The conjecture is true for matching polynomials of simple graphs. (Amini, 2019).

Büşra Sert (TU Dresden) An Algorithm for Testing the HPP of Matroids 03.03.2022 8 / 21



Generalized Lax Conjecture

Conjecture: Every hyperbolicity cone is spectrahedral.
Every hyperbolic program can be written as a semi-definite program.

• The conjecture is true for at most 3 variables (Helton-Vinnikov, 2007).

• The conjecture is true for elementary symmetric polynomials (Brändén, 2014).

• The conjecture is true for quadratic polynomials (Netzer-Thom, 2012).

• The conjecture is true for matching polynomials of simple graphs. (Amini, 2019).

Büşra Sert (TU Dresden) An Algorithm for Testing the HPP of Matroids 03.03.2022 8 / 21



C spectrahedral =⇒ C is a hyperbolicity cone for some h.

h has a determinantal representation =⇒ Ch is spectrahedral.

Ch is spectrahedral ⇐⇒ ∃ g hyperbolic with Ch ⊂ Cg such that h · g has a
determinantal representation.

The basis generating polynomial of the Vamos matroid is hyperbolic, but not weakly
determinantal!
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Connection to Matroids

Definition: A matroid M is E = [n] with a collection B of its subsets (bases) satisfying

If B1,B2 ∈ B and x ∈ B1 \ B2,

then ∃y ∈ B2 \ B1 such that (B1 \ {x}) ∪ {y} ∈ B.

The basis generating polynomial of M is hM :=
∑

B∈B

∏
i∈B xi .

E = {1, 2, 3, 4}
B = {{2, 3, 4} , {2, 1, 4} , {1, 3, 4}}
hM = x2x3x4 +x2x1x4 +x1x3x4

hM is homogeneous and multiaffine

( 1 0 1 0
1 1 0 0
0 0 0 1

)1 2 3 4
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Connection to Matroids

Definition: A homogeneous polynomial f ∈ R[x1, · · · , xn] is said to have the half-plane
property if there exists an open half-plane H ⊂ C with 0 ∈ ∂H such that
f (x1, · · · , xn) 6= 0 for x1, · · · , xn ∈ H.

Theorem(Choe et. al., 2004): Support of a homogeneous multiaffine polynomial
f ∈ R[x1, . . . , xn] with the half-plane property is the collection of bases of some matroid
M.

Let M be a matroid with the basis generating polynomial hM ∈ R[x1, . . . , xn].

hM is
weakly determinantal =⇒

hM has
the half-plane
property

⇐⇒ hM is hyperbolic
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Connection to Matroids

Questions:
• Do all matroids M have the half-plane property (i.e., hM is hyperbolic)?

No!

• Which matroids have the half-plane property (and are weakly determinantal)?

Theorem(Choe et. al., 2004): The half-plane property is closed under taking minors and
direct sums of matroids.

Theorem(Kummer and S., 2021): Being weakly determinantal and having a
spectrahedral hyperbolicity cone are closed under taking minors.
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Classification of Matroids

Theorem(Choe et. al., 2004):
• All matroids on at most 6 elements have the half-plane property.

• Matroids that have rank or corank 2 have the half-plane property.

• Fano matroid F7, F−7 , F−−7 ,F−37 ,M(K4) + e, P8,P−8 ,P
−−
8 don’t have the half-plane

property.

• 6th root of unity matroids are weakly determinantal.
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A Criteria for the Half-plane Property

Theorem(Brändén, 2007 - Wagner and Wei, 2009):
Let hM be the basis generating polynomial of a matroid M. The following are equivalent:

• hM has the half-plane property.

• For all 1 ≤ i , j ≤ n, the Rayleigh difference

∆ij (hM) := ∂hM

∂xi
(x)∂hM

∂xj
(x)− ∂2hM

∂xi∂xj
(x)hM(x) ≥ 0

for all x ∈ Rn

(We call them SOS-Rayleigh if ∆ij (hM ) is SOS for all i,j).

• All of its proper minors have the half-plane property and for some 1 ≤ i , j ≤ n,
∆ij (hM) ≥ 0 for all x ∈ Rn.
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A Criteria for Being Weakly Determinantal

Theorem(Kummer-Plaumann-Vinzant, 2015):
Let hM be a basis generating polynomial of some matroid M. If hM is weakly
determinantal, then it is SOS-Rayleigh.

hM is
weakly determinantal

hM has
the half-plane property

hM is hyperbolic

=⇒

=⇒ ⇐⇒

hM is SOS-Rayleigh =⇒ ∆ijhM ≥ 0 for all i , j ∈ [n]
⇐
⇒
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An Algorithm for the Half-plane Property

Input: A matroid M on ground set E = [n] with the collection of bases B

all of whose proper minors have the HPP
hM :=

∑
B∈B

∏
i∈B xi

J := {(i , j) : 0 ≤ i , j ≤ n, i 6= j}

For (i , j) in J Do

∆ij := ∂hM
∂xi

(x) ∂hM
∂xj

(x)− ∂2hM
∂xi ∂xj

(x)hM(x)
solveSOS ∆ij

If a PSD Gram matrix G
with entries in Q is found ∆ij is SOS

M has the HPP – Stop

else
Continue

End

SDP that attempts to find
a PSD Gram matrix G
with rational entries s.t.

mT Gm = ∆ij

Use M2 package
“SumsOfSquares”

Go to Julia for
finding negative points

For each (i , j) finds critical points of ∆ij
using “HomotopyContinuation.jl”

and evaluates ∆ij at the critical points

If a negative value is found
M doesn’t have HPP

Else
Undetected
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An Algorithm for SOS-Rayleigh

Input: A matroid M on ground set E = [n] with the collection of bases B

with the HPP
hM :=

∑
B∈B

∏
i∈B xi

J := {(i , j) : 0 ≤ i , j ≤ n, i 6= j}

For (i , j) in J Do

∆ij := ∂hM
∂xi

(x) ∂hM
∂xj

(x)− ∂2hM
∂xi ∂xj

(x)hM(x)
solveSOS ∆ij

If a PSD Gram matrix G
with entries in Q is found ∆ij is SOS

Continue

else Stop Try to produce a
non-SOS certificate

End

SDP that attempts to find
a PD matrix M

with rational entries s.t.
trace(MGi ) = 0

for all matrices Gi that define
the Gram Spectrahedra

Use M2 package
“SumsOfSquares”

M is SOS-Rayleigh

If certified M isn’t SOS-Rayleigh
Else

Undetected
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trace(MGi ) = 0

for all matrices Gi that define
the Gram Spectrahedra

Use M2 package
“SumsOfSquares”

M is SOS-Rayleigh

If certified M isn’t SOS-Rayleigh
Else

Undetected
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Matroids on 8 Elements of Rank 3 or 4

Properties Count
Simple 685

Simple, connected and without the 10 forbidden minors 309
Having the HPP 287
SOS-Rayleigh 256

With the HPP and not SOS-Rayleigh 14
With the HPP and SOS-Rayleigh undetected 17

Without the HPP 22

In particular, they are not weakly determinantal.
Good candidates for seaching for a counter example.
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Matroids on 9 Elements of rank 3

Properties Count
Simple 383

Simple, connected and without the 10 forbidden minors 119
Having the HPP 116

With the HPP and SOS-Rayleigh 106
With the HPP and SOS-Rayleigh undetected 10

Without the HPP 3
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Matroids on 9 Elements of rank 4

Properties Count
Simple 185982

Simple, connected and without the 35 excluded minors 6718
Having the HPP 4125

Candidates for having the HPP 819
Without the HPP 1218
HPP undetected 556
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Merci pour votre attention!
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