An Algorithm for Testing the Half-plane Property of Matroids

Büşra Sert

Joint work with Mario Kummer

Technische Universität Dresden

Journées Nationales de Calcul Formel

03.03.2022

Büşra Sert (TU Dresden)

An Algorithm for Testing the HPP of Matroids

03.03.2022 1 / 21

イロト イヨト イヨト

- **1** Hyperbolic Polynomials and Spectrahedral Cones
- **2** Connection to Matroids
- 3 An Algorithm for the Half-Plane Property of Matroids

イロン イロン イヨン イヨン

Hyperbolic Polynomials

Definition: A homogeneous polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ is called hyperbolic with respect to $e \in \mathbb{R}^n$ if $h(e) \neq 0$ and for all $v \in \mathbb{R}^n$, h(et - v) in $\mathbb{R}[t]$ has only real roots.

イロト イヨト イヨト

Hyperbolic Polynomials

Definition: A homogeneous polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ is called hyperbolic with respect to $e \in \mathbb{R}^n$ if $h(e) \neq 0$ and for all $v \in \mathbb{R}^n$, h(et - v) in $\mathbb{R}[t]$ has only real roots.

The hyperbolicity cone of h at e is

$$C_h(e) = \{ v \in \mathbb{R}^n : h(et - v) = 0 \implies t \in \mathbb{R}_{\geq 0} \}.$$

イロト イヨト イヨト

Hyperbolic Polynomials

Cone of PSD 2 \times 2 matrices

イロト 不得 トイヨト イヨト 二日

An Algorithm for Testing the HPP of Matroids

03.03.2022 4 / 21

Determinantal Representability

Definition: A homogeneous polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is said to have a determinantal representation if there are PSD matrices A_1, \dots, A_n such that

$$f = \lambda \det(x_1 A_1 + \cdots + x_n A_n)$$

for some $\lambda \in \mathbb{R}$.

イロン イボン イヨン イヨン 三日

Determinantal Representability

Definition: A homogeneous polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is said to have a determinantal representation if there are PSD matrices A_1, \dots, A_n such that

$$f = \lambda \det(x_1 A_1 + \cdots + x_n A_n)$$

for some $\lambda \in \mathbb{R}$.

f is called weakly determinantal if $\exists N \in \mathbb{N}$ such that f^N has a determinantal representation

イロト 不得 トイヨト イヨト 二日

Determinantal Representability

Definition: A homogeneous polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is said to have a determinantal representation if there are PSD matrices A_1, \dots, A_n such that

$$f = \lambda \det(x_1A_1 + \cdots + x_nA_n)$$

for some $\lambda \in \mathbb{R}$.

イロト イボト イヨト イヨト

Spectrahedral Cones

Definition: A convex cone C is called spectrahedral if

$$C = \{v \in \mathbb{R}^n : A(v) = v_1A_1 + \ldots + v_nA_n \succeq 0\}$$

where A_1, \ldots, A_n are real symmetric $d \times d$ matrices.

イロン イボン イヨン イヨン 三日

Spectrahedral Cones

Definition: A convex cone C is called spectrahedral if

$$C = \{v \in \mathbb{R}^n : A(v) = v_1 A_1 + \ldots + v_n A_n \succeq 0\}$$

where A_1, \ldots, A_n are real symmetric $d \times d$ matrices.

• Spectrahedral cones are hyperbolicity cones. (consider $h = \det(A_1x_1 + \cdots + A_nx_n)$).

イロン イボン イヨン イヨン 三日

Spectrahedral Cones

Definition: A convex cone C is called spectrahedral if

$$C = \{v \in \mathbb{R}^n : A(v) = v_1 A_1 + \ldots + v_n A_n \succeq 0\}$$

where A_1, \ldots, A_n are real symmetric $d \times d$ matrices.

• Spectrahedral cones are hyperbolicity cones. (consider $h = \det(A_1x_1 + \cdots + A_nx_n)$).

Note: For the rest of the talk "hyperbolic" refers to hyperbolic with respect to every point in the positive orthant.

イロト 不得 トイヨト イヨト 二日

Spectrahedral Representability

Question: Given a homogeneous polynomial $h \in \mathbb{R}[x_1, ..., x_n]$ that is hyperbolic. When is $C_h(e)$ spectrahedral?

h has a determinantal representation $\implies C_h$ is spectrahedral.

Theorem(Helton-Vinnikov, 2007) Let $h \in \mathbb{R}[x_1 \cdots, x_n]$ be hyperbolic. The hyperbolicity cone C_h is spectrahedral if and only if there exists a hyperbolic polynomial g with $C_h \subset C_g$ such that $h \cdot g$ has a determinantal representation.

$$C_{h \cdot g} = C_h \cap C_g$$

イロン イボン イヨン イヨン 三日

Spectrahedral Representability

Question: Given a homogeneous polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ that is hyperbolic. When is $C_h(e)$ spectrahedral?

h has a determinantal representation $\implies C_h$ is spectrahedral.

Theorem(Helton-Vinnikov, 2007) Let $h \in \mathbb{R}[x_1 \cdots, x_n]$ be hyperbolic. The hyperbolicity cone C_h is spectrahedral if and only if there exists a hyperbolic polynomial g with $C_h \subset C_g$ such that $h \cdot g$ has a determinantal representation.

$$C_{h \cdot g} = C_h \cap C_g$$

Question: Are all hyperbolicity cones spectrahedral?

Büşra Sert (TU Dresden)

Conjecture: Every hyperbolicity cone is spectrahedral.

Every hyperbolic program can be written as a semi-definite program.

イロト イヨト イヨト イヨト

Conjecture: Every hyperbolicity cone is spectrahedral.

Every hyperbolic program can be written as a semi-definite program.

• The conjecture is true for at most 3 variables (Helton-Vinnikov, 2007).

イロト イヨト イヨト イヨト

Conjecture: Every hyperbolicity cone is spectrahedral.

Every hyperbolic program can be written as a semi-definite program.

- The conjecture is true for at most 3 variables (Helton-Vinnikov, 2007).
- The conjecture is true for elementary symmetric polynomials (Brändén, 2014).

イロト 不得 トイヨト イヨト

Conjecture: Every hyperbolicity cone is spectrahedral. Every hyperbolic program can be written as a semi-definite program.

- The conjecture is true for at most 3 variables (Helton-Vinnikov, 2007).
- The conjecture is true for elementary symmetric polynomials (Brändén, 2014).
- The conjecture is true for quadratic polynomials (Netzer-Thom, 2012).

イロト イボト イヨト イヨト

Conjecture: Every hyperbolicity cone is spectrahedral. Every hyperbolic program can be written as a semi-definite program.

- The conjecture is true for at most 3 variables (Helton-Vinnikov, 2007).
- The conjecture is true for elementary symmetric polynomials (Brändén, 2014).
- The conjecture is true for quadratic polynomials (Netzer-Thom, 2012).
- The conjecture is true for matching polynomials of simple graphs. (Amini, 2019).

イロト 不得 トイヨト イヨト

C spectrahedral \implies C is a hyperbolicity cone for some h.

h has a determinantal representation $\implies C_h$ is spectrahedral.

 C_h is spectrahedral $\iff \exists g$ hyperbolic with $C_h \subset C_g$ such that $h \cdot g$ has a determinantal representation.

The basis generating polynomial of the Vamos matroid is hyperbolic, but not weakly determinantal!

イロト イヨト イヨト

Definition: A matroid M is E = [n] with a collection \mathcal{B} of its subsets (bases) satisfying If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \setminus B_2$, then $\exists y \in B_2 \setminus B_1$ such that $(B_1 \setminus \{x\}) \cup \{y\} \in \mathcal{B}$.

The basis generating polynomial of M is $h_M := \sum_{B \in \mathcal{B}} \prod_{i \in B} x_i$.

$$\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \qquad \begin{array}{c} E = \{1, 2, 3, 4\} \\ \mathcal{B} = \{\{2, 3, 4\}, \{2, 1, 4\}, \{1, 3, 4\}\} \\ h_M = x_2 x_3 x_4 + x_2 x_1 x_4 + x_1 x_3 x_4 \end{array}$$

03.03.2022 10 / 21

イロン イボン イヨン イヨン 三日

Definition: A matroid M is E = [n] with a collection \mathcal{B} of its subsets (bases) satisfying If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \setminus B_2$, then $\exists y \in B_2 \setminus B_1$ such that $(B_1 \setminus \{x\}) \cup \{y\} \in \mathcal{B}$.

The basis generating polynomial of M is $h_M := \sum_{B \in \mathcal{B}} \prod_{i \in B} x_i$.

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \begin{array}{c} E = \{1, 2, 3, 4\} \\ \mathcal{B} = \{\{2, 3, 4\}, \{2, 1, 4\}, \{1, 3, 4\}\} \\ h_M = x_2 x_3 x_4 + x_2 x_1 x_4 + x_1 x_3 x_4 \end{array}$$

 h_M is homogeneous and multiaffine

イロン イボン イヨン イヨン 三日

Definition: A homogeneous polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is said to have the half-plane property if there exists an open half-plane $\mathcal{H} \subset \mathbb{C}$ with $0 \in \partial \mathcal{H}$ such that $f(x_1, \dots, x_n) \neq 0$ for $x_1, \dots, x_n \in \mathcal{H}$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Definition: A homogeneous polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is said to have the half-plane property if there exists an open half-plane $\mathcal{H} \subset \mathbb{C}$ with $0 \in \partial \mathcal{H}$ such that $f(x_1, \dots, x_n) \neq 0$ for $x_1, \dots, x_n \in \mathcal{H}$.

Theorem (Choe et. al., 2004): Support of a homogeneous multiaffine polynomial $f \in \mathbb{R}[x_1, \ldots, x_n]$ with the half-plane property is the collection of bases of some matroid M.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Definition: A homogeneous polynomial $f \in \mathbb{R}[x_1, \dots, x_n]$ is said to have the half-plane property if there exists an open half-plane $\mathcal{H} \subset \mathbb{C}$ with $0 \in \partial \mathcal{H}$ such that $f(x_1, \dots, x_n) \neq 0$ for $x_1, \dots, x_n \in \mathcal{H}$.

Theorem (Choe et. al., 2004): Support of a homogeneous multiaffine polynomial $f \in \mathbb{R}[x_1, \ldots, x_n]$ with the half-plane property is the collection of bases of some matroid M.

Let *M* be a matroid with the basis generating polynomial $h_M \in \mathbb{R}[x_1, \ldots, x_n]$.

 $\begin{array}{ccc} h_M \text{ is } & & h_M \text{ has } \\ \text{weakly determinantal } & \Longrightarrow & \text{the half-plane} & \longleftrightarrow & h_M \text{ is hyperbolic} \\ \text{property} \end{array}$

	<u> </u>	(
Kucra	Sort		
Dușia	JUL		

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー のの()

Questions:

• Do all matroids M have the half-plane property (i.e., h_M is hyperbolic)?

- 2

イロト イヨト イヨト イヨト

Questions:

• Do all matroids M have the half-plane property (i.e., h_M is hyperbolic)? No!

- 2

イロト イヨト イヨト イヨト

Questions:

- Do all matroids M have the half-plane property (i.e., h_M is hyperbolic)? No!
- Which matroids have the half-plane property (and are weakly determinantal)?

< □ > < □ > < □ > < □ > < □ >

Questions:

- Do all matroids M have the half-plane property (i.e., h_M is hyperbolic)? No!
- Which matroids have the half-plane property (and are weakly determinantal)?

Theorem(Choe et. al., 2004): The half-plane property is closed under taking minors and direct sums of matroids.

Theorem(Kummer and S., 2021): Being weakly determinantal and having a spectrahedral hyperbolicity cone are closed under taking minors.

イロト イボト イヨト イヨト

Classification of Matroids

Theorem(Choe et. al., 2004):

- All matroids on at most 6 elements have the half-plane property.
- Matroids that have rank or corank 2 have the half-plane property.
- Fano matroid F_7 , F_7^- , F_7^{--} , F_7^{-3} , $M(K_4) + e$, P_8 , P_8^- , P_8^{--} don't have the half-plane property.
- 6th root of unity matroids are weakly determinantal.

< ロ > < 同 > < 回 > < 回 >

A Criteria for the Half-plane Property

Theorem(Brändén, 2007 - Wagner and Wei, 2009):

Let h_M be the basis generating polynomial of a matroid M. The following are equivalent:

- h_M has the half-plane property.
- For all $1 \le i, j \le n$, the Rayleigh difference

$$\Delta_{ij}(h_M) := \frac{\partial h_M}{\partial x_i}(x) \frac{\partial h_M}{\partial x_j}(x) - \frac{\partial^2 h_M}{\partial x_i \partial x_j}(x) h_M(x) \ge 0$$

for all $x \in \mathbb{R}^n$

(We call them SOS-Rayleigh if $\Delta_{ij}(h_M)$ is SOS for all i,j).

< ロ > < 同 > < 回 > < 回 >

A Criteria for the Half-plane Property

Theorem (Brändén, 2007 - Wagner and Wei, 2009):

Let h_M be the basis generating polynomial of a matroid M. The following are equivalent:

- h_M has the half-plane property.
- For all $1 \le i, j \le n$, the Rayleigh difference

$$\Delta_{ij}(h_M) := \frac{\partial h_M}{\partial x_i}(x) \frac{\partial h_M}{\partial x_j}(x) - \frac{\partial^2 h_M}{\partial x_i \partial x_j}(x) h_M(x) \ge 0$$

for all $x \in \mathbb{R}^n$

(We call them SOS-Rayleigh if $\Delta_{ii}(h_M)$ is SOS for all i,j).

• All of its proper minors have the half-plane property and for some $1 \le i, j \le n$, $\Delta_{ij}(h_M) \ge 0$ for all $x \in \mathbb{R}^n$.

A Criteria for Being Weakly Determinantal

Theorem(Kummer-Plaumann-Vinzant, 2015):

Let h_M be a basis generating polynomial of some matroid M. If h_M is weakly determinantal, then it is SOS-Rayleigh.

< ロ > < 同 > < 回 > < 回 >

Input: A matroid M on ground set E = [n] with the collection of bases B all of whose proper minors have the HPP $h_M := \sum_{B \in \mathcal{B}} \prod_{i \in B} x_i$ $J := \{(i, j) : 0 < i, j < n, i \neq j\}$ Use M2 package For (i, j) in J Do "SumsOfSquares" $\Delta_{ij} := \frac{\partial h_M}{\partial x_i}(x) \frac{\partial h_M}{\partial x_i}(x) - \frac{\partial^2 h_M}{\partial x_i \partial x_i}(x) h_M(x)$ solveSOS Δ_{ii} SDP that attempts to find a PSD Gram matrix G with rational entries s.t. $m^T G m = \Delta_{ii}$

03.03.2022 16 / 21

End

An Algorithm for SOS-Rayleigh

Input: A matroid M on ground set E = [n] with the collection of bases B with the HPP $h_M := \sum_{B \in \mathcal{B}} \prod_{i \in B} x_i$ $J := \{(i, j) : 0 \le i, j \le n, i \ne j\}$ Use M2 package For (i, j) in J Do "SumsOfSquares" $\Delta_{ij} := \frac{\partial h_M}{\partial x_i}(x) \frac{\partial h_M}{\partial x_i}(x) - \frac{\partial^2 h_M}{\partial x_i \partial x_i}(x) h_M(x)$ solveSOS Δ_{ii} If a PSD Gram matrix G with entries in \mathbb{Q} is found Δ_{ii} is SOS Continue Try to produce a non-SOS certificate else → Stop

End

An Algorithm for SOS-Rayleigh

Input: A matroid M on ground set E = [n] with the collection of bases B with the HPP $h_M := \sum_{B \in \mathcal{B}} \prod_{i \in B} x_i$ SDP that attempts to find $J := \{(i, j) : 0 \le i, j \le n, i \ne j\}$ a PD matrix M with rational entries s.t. For (i, j) in J Do $trace(MG_i) = 0$ $\Delta_{ij} := \frac{\partial h_M}{\partial x_i}(x) \frac{\partial h_M}{\partial x_i}(x) - \frac{\partial^2 h_M}{\partial x_i \partial x_i}(x) h_M(x)$ for all matrices G_i that define the Gram Spectrahedra solveSOS Δ_{ii} If a PSD Gram matrix G Δ_{ii} is SOS with entries in \mathbb{Q} is found Continue Try to produce a else → Stop non-SOS certificate

End

< ロ > < 同 > < 回 > < 回 >

An Algorithm for SOS-Rayleigh

Input: A matroid M on ground set E = [n] with the collection of bases B with the HPP $h_M := \sum_{B \in \mathcal{B}} \prod_{i \in B} x_i$ $J := \{(i, j) : 0 < i, j < n, i \neq j\}$ For (i, j) in J Do $\Delta_{ij} := \frac{\partial h_M}{\partial x_i}(x) \frac{\partial h_M}{\partial x_i}(x) - \frac{\partial^2 h_M}{\partial x_i \partial x_i}(x) h_M(x)$ solveSOS Δ_{ii} If a PSD Gram matrix G with entries in \mathbb{Q} is found Δ_{ij} is SOS → Continue Try to produce a non-SOS certificate else → Stop → M isn't SOS-Rayleigh If certified Else > Undetected End → M is SOS-Rayleigh Büsra Sert (TU Dresden) An Algorithm for Testing the HPP of Matroids

Matroids on 8 Elements of Rank 3 or 4

Properties	
Simple	
Simple, connected and without the 10 forbidden minors	309
Having the HPP	287
SOS-Rayleigh	256
With the HPP and not SOS-Rayleigh	14
With the HPP and SOS-Rayleigh undetected	17
Without the HPP	22

- 2

18 / 21

イロト イヨト イヨト イヨト

Matroids on 8 Elements of Rank 3 or 4

Properties	
Simple	
Simple, connected and without the 10 forbidden minors	309
Having the HPP	287
SOS-Rayleigh	
→ With the HPP and not SOS-Rayleigh	14
With the HPP and SOS-Rayleigh undetected	17
Without the HPP	22

In particular, they are not weakly determinantal. Good candidates for seaching for a counter example.

イロン イロン イヨン イヨン

Matroids on 9 Elements of rank 3

Properties	
Simple	
Simple, connected and without the 10 forbidden minors	119
Having the HPP	116
With the HPP and SOS-Rayleigh	106
With the HPP and SOS-Rayleigh undetected	10
Without the HPP	

イロト イヨト イヨト イヨト

Matroids on 9 Elements of rank 4

Properties	
Simple	
Simple, connected and without the 35 excluded minors	6718
Having the HPP	4125
Candidates for having the HPP	
Without the HPP	
HPP undetected	

イロト イヨト イヨト イヨト

Merci pour votre attention!

< □ > < □ > < □ > < □ > < □ >