Bornes inférieures de complexité I Cours aux Journées ALÉA 2020

Cyril Nicaud

LIGM - Univ Gustave Eiffel & CNRS

Mars 2020

Philippe Flajolet ... 10 ans déjà

Avant propos

- ► C'est un cours d'algorithmique, on s'attardera plus sur les idées et les techniques de preuves que sur le formalisme mathématique
- ▶ Je ne suis pas un spécialiste du sujet (je l'enseigne au niveau M1, mais on va aller plus loin)
- ▶ Le cours est organisé ... comme un cours, en prenant son temps
- ➤ Il y a assez peu de ressources sur le sujet (hors articles de recherche). On se réfèrera à
 - ► La page de Jeff Erickson avec ses notes de cours sur les bornes inférieures par comptage et sur les arguments d'adversaire : http://web.engr.illinois.edu/~jeffe/teaching/algorithms/notes/
 - Le livre "Randomized Algorithms" de R. Motwani & P. Raghavan, pour les bornes inférieures d'algorithmes probabilistes

C'est parti!

Complexité d'un algorithme (principe)

Buts: estimation de performances / comparaison d'algorithmes

```
def search(x,T):
   for y in T:
    if x == y:
      return True
   return False
```

- ▶ E_n les entrées de taille n, et $E = \bigcup_n E_n$
- ► *C*(*e*) le nombre d'instructions effectuées pour l'entrée *e*
- ightharpoonup C est une application de E dans \mathbb{N}

Comment estimer / comparer deux applications de $E \longrightarrow \mathbb{N}$?

- ► On agrège l'information à taille *n* fixée
- ► $C_n = \max\{C(e) : e \in E_n\}$ (pire cas) ou $C_n = \mathbb{E}_{E_n}[C]$ (cas moyen)

Comment estimer / comparer deux suites de $\mathbb{N} \longrightarrow \mathbb{N}$?

- On les estime asymptotiquement
- ▶ On utilise les notations \mathcal{O} , Ω et Θ

```
u_n = \mathcal{O}(v_n) quand il existe c > 0 tq u_n \le cv_n à partir d'un certain rang u_n = \Omega(v_n) quand il existe c > 0 tq u_n \ge cv_n à partir d'un certain rang u_n = \Theta(v_n) quand u_n = \mathcal{O}(v_n) et u_n = \Omega(v_n)
```

Complexité d'un algorithme (exemples)

```
def search(x,T):
  for y in T:
    if x == y:
      return True
  return False
```

```
▶ Pire cas : \Theta(n)
```

▶ Cas moyen : $\Theta(n)$

```
def qsort(x,T):
   if len(T) <= 1: return T
   G = [x in T[1:] if x<T[0]]
   D = [x in T[1:] if x>=T[0]]
   return qsort(G)+[T[0]]+qsort(D)
```

```
▶ Pire cas : \Theta(n^2)
```

► Cas moyen : $\Theta(n \log n)$

```
def mergesort(x,T):
   if len(T) <= 1: return T
   G = mergesort(T[:n//2])
   D = mergesort(T[n//2:])
   return merge(G,D)</pre>
```

```
▶ Pire cas : \Theta(n \log n)
```

► Cas moyen : $\Theta(n \log n)$

Complexité d'un problème (définition)

"Definition": un problème est une tâche à effectuer par ordinateur (une application de E dans un ensemble F).

Exemples : trier un tableau (SORT), tester s'il y a trois éléments x, y, z dans T tels que x + y + z = 0 (3SUM)

Un même problème peut être résolu par plusieurs algorithmes.

Définition (complexité d'un problème)

Un problème Π est de complexité $\mathcal{O}(u_n)$ quand il existe un algorithme de complexité $\mathcal{O}(u_n)$ qui résout Π .

Un problème Π est de complexité $\Omega(u_n)$ quand tout algorithme qui résout Π est de complexité $\Omega(u_n)$: on dit alors que $\Omega(u_n)$ est une borne inférieure de complexité pour Π .

Le problème **SORT** est de complexité $\mathcal{O}(n \log n)$, car il est résolu par l'algorithme **mergesort** qui est en $\mathcal{O}(n \log n)$ (pire cas).

Complexité d'un problème (modèle de calcul)

Définition (complexité d'un problème)

Un problème Π est de complexité $\Omega(u_n)$ quand tout algorithme qui résout Π est de complexité $\Omega(u_n)$: on dit alors que $\Omega(u_n)$ est une borne inférieure de complexité pour Π .

```
def search(x,T):
  for y in T:
    if x == y:
        return True
  return False
```

Pour estimer la complexité d'un **algorithme**, il suffit de définir ce que coûtent ses différentes instructions : ici en temps $\mathcal{O}(1)$: aller au y suivant, tester si x == y, ...

Pour les bornes inférieures de complexité d'un **problème** :

- ▶ Il faut dire quelque-chose sur tous les algorithmes!
- ▶ Il faut donc définir **précisément** ce qu'est un algorithme : il faut définir un **modèle d'ordinateur** (machine de Turing, RAM, . . .)

Complexité d'un problème (exemple)

Rappel : SORT est le **problème** de trier un tableau de taille *n*

Exemple de théorème (tri par comparaisons)

Dans le modèle de calcul où l'on peut juste comparer les données d'un tableau, le problème **SORT** est en $\Omega(n \log n)$.

Seul accès aux données : "Est-ce que T[i] < T[j]?"

- © Le résultat ne porte que sur les **tris par compaisons**
- © Pas besoin de spécifier le modèle d'ordinateur précisément
- © Pas besoin de spécifier l'encodage des données
- © L'algorithme mergesort est optimal pour ce modèle

Dans la suite on utilisera ce type de modèles car il est très difficile d'obtenir des résultats non-triviaux dans des modèles généraux : RAM, machines de Turing (pas réaliste pour des pb polynomiaux), . . .

Borne inférieure d'un problème (récapitulatif)

Définition (complexité d'un problème)

Un problème Π est de complexité $\Omega(u_n)$ quand tout algorithme qui résout Π est de complexité $\Omega(u_n)$: on dit alors que $\Omega(u_n)$ est une borne inférieure de complexité pour Π .

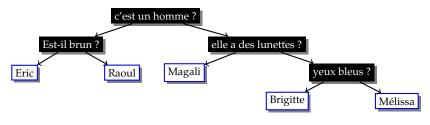
- Ce n'est pas (du tout) une complexité meilleur cas d'un algo
- On doit spécifier un modèle de calcul pour pouvoir dire quelque chose sur tous les algorithmes qui sont solution du problème
- On va s'intéresser à des problèmes polynomiaux : pas à des questions de type NP-difficulté (qui sont aussi des bornes inf.)
- On va utiliser des modèles simples de calcul, et passer du temps à interpréter les résultats obtenus

2. Comptage

Le jeu "Qui est-ce?"

- ▶ Chaque joueur tire au sort une carte personnage
- ▶ Ils posent des **questions oui/non** tour à tour pour identifier le personnage tiré par l'autre joueur

Modèle "arbre de décision"



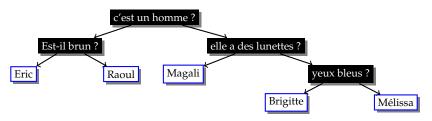
Dans le *modèle* "arbre de décision" (MAD) :

- Pour chaque n, on a un algorithme sous forme d'un arbre de questions oui/non pour identifier la réponse
- Le coût d'une exécution est le **nombre de questions** posées
- La complexité pire cas est la hauteur de l'arbre

Sur l'exemple, la complexité au pire est de 3 (Brigitte et Mélissa).

C'est un modèle simple où sont négligés tous les calculs qui ne sont pas des questions \Rightarrow c'est OK car on cherche des bornes inférieures

La technique par comptage



Tous les algos pour résoudre le problème = tous les arbres de décision

Théorème (argument de comptage)

Dans le **modèle "arbre de décision"**, si tout algorithme qui résout un problème doit produire au moins R_n réponses différentes pour les entrées de taille n alors le problème admet une borne inférieure de complexité en $\log_2 R_n$.

Preuve : un arbre binaire de hauteur h a au plus 2^h feuilles

Le problème SORT (définition)

"Definition:" étant donné un tableau de n nombres, SORT consiste à le ranger par ordre croissant

© dans un MAD, on n'a pas accès directement aux valeurs stockées dans le tableau ⇒ on ne peut pas retourner le tableau trié

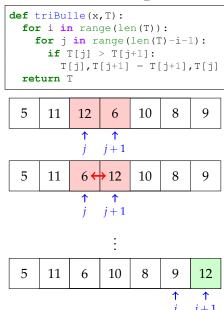
Définition (SORT)

Soit T un tableau de n nombres, le problème SORT consiste à construire une permutation σ de $\{0...n-1\}$ telle que

$$T[\sigma(0)] \le T[\sigma(1)] \le \ldots \le T[\sigma(n-1)]$$

c'est-à-dire de trouver comment permuter les éléments de *T* de sorte qu'ils soient dans l'ordre croissant.

Le problème SORT (tri bulle, présentation)



Le problème SORT (tri bulle, reformulation)

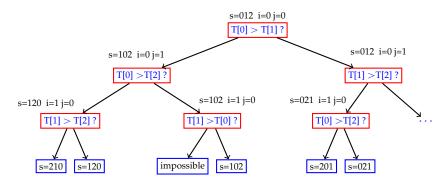
```
def triBulle(T):
   for i in range(len(T)):
     for j in range(len(T)-i-1):
        if T[j] > T[j+1]:
        T[j],T[j+1] = T[j+1],T[j]
     return T
```

Est reformulé pour rentrer dans notre spécification (calculer une permutation qui ordonne les éléments) en :

On ne pose que des questions : "Est-ce que T[i] < T[j]?" \Rightarrow c'est un **tri par comparaisons**, donc dans le cadre MAD

Le tri bulle comme arbre de décision (n = 3)

```
def triBulle(T):
    for i in range(len(T)):
        for j in range(len(T)-i-1):
            if T[j] > T[j+1]:
                 T[j],T[j+1] = T[j+1],T[j]
        return T
```



Borne inférieure pour SORT

Théorème (borne inf. SORT)

Dans le **modèle "arbre de décision"**, **SORT** admet une borne inférieure de complexité en $\Omega(n \log n)$.

Preuve : par comptage, car $\log n! \in \Omega(n \log n)$

Corollaire (borne inf. tris par comparaisons)

Tout **tri par comparaisons** nécessite $\Omega(n \log n)$ comparaisons dans le pire cas.

Attention

Théorème (argument de comptage)

Dans le **modèle "arbre de décision"**, si tout algorithme qui résout un problème doit produire au moins R_n réponses différentes pour les entrées de taille n alors le problème admet une borne inférieure de complexité en $\log_2 R_n$.

Si on considère le problème "Trouver deux indices $i \neq j$ tels que $T[i] \leq T[j]$ ", pour le modèle par comparaisons.

- Le problème admet tous les couples (i, j) comme solutions potentielles
- ▶ Mais un algorithme qui le résout peut ne répondre que (0,1) ou (1,0)
- ▶ La borne inférieure par comptage est $\Omega(1)$!

```
def two_ordered(T):
   if T[0] <= T[1]:
     return (0,1)
   return (1,0)</pre>
```

Borne inférieure pour FIND_SORTED

Définition

Le problème FIND_SORTED consiste à chercher un élément x dans un tableau trié T de taille n. On doit retourner la position d'une occurrence de x si $x \in T$ et False sinon.

Remarque : une dichotomie résout le problème en $\mathcal{O}(\log n)$ comparaisons de x avec des éléments de T.

Théorème (borne inf. FIND_SORTED)

Dans le **modèle "arbre de décision"**, FIND_SORTED admet une borne inférieure de complexité en $\Omega(\log n)$.

Preuve : par comptage, car $\log_2(n+1) \in \Omega(\log n)$

Borne inférieure pour FIND

Définition

Le problème FIND consiste à chercher un élément x dans un tableau T de taille n (non nécessairement trié). On doit retourner la position d'une occurrence de x si $x \in T$ et False sinon.

Remarque: cette fois on ne peut pas faire une dichotomie.

Théorème (borne inf. FIND)

Dans le **modèle "arbre de décision"**, FIND admet une borne inférieure de complexité en $\Omega(\log n)$.

Preuve : par comptage, car $\log_2(n+1) \in \Omega(\log n)$

© La borne inférieure obtenue ne paraît pas très intéressante.

Borne supérieure pour FIND dans MAD

Théorème (borne inf. FIND)

Dans le **modèle "arbre de décision"**, FIND admet une borne inférieure de complexité en $\Omega(\log n)$.

En fait, dans le modèle MAD, on peut faire une dichotomie!

```
def dichoMAD(T, x):
    d, f = 0, len(T)-1
    while d <= f:
        m = (d+f) // 2
    if T[m] == x: #question MAD
        return m
    if "x est dans T entre les positions d et m-1": #question MAD
        f = m-1
    else:
        d = m+1
    return False</pre>
```

FIND: conclusion

Théorème (borne inf. FIND)

Dans le **modèle "arbre de décision"**, FIND admet une borne inférieure de complexité en $\Omega(\log n)$.

Théorème (borne sup. FIND)

Dans le **modèle "arbre de décision"**, FIND est résolu par un algorithme de complexité en $\mathcal{O}(\log n)$.

Conclusion:

- Le MAD est peu puissant car il n'autorise que les questions oui/non sur les données.
- ► Le MAD est très puissant car il traite ces questions en temps constant.

Technique par comptage : récapitulatif

Théorème (argument de comptage)

Dans le **modèle** "arbre de décision", si tout algorithme qui résout un problème doit produire au moins R_n réponses pour les entrées de taille n alors le problème admet une borne inférieure de complexité en $\log_2 R_n$.

- Cela donne un outil pour obtenir des bornes inférieures
- ▶ On n'échappe pas à une discussion sur le modèle de calcul

Attention : un problème peut être résolu par des algorithmes qui ne retournent pas la même chose : il faut montrer que tout algorithme a au moins R_n réponses différentes.

Remarque: au lieu des questions binaires, on peut autoriser des k-aires, en changeant \log_2 en \log_k .

3. Adversaire

Exemple 1 : le jeu des couleurs

On considère le jeu (pas très fun) suivant :

- ► Alice choisit dans sa tête une couleur parmi {vert, blue, rouge, noir}
- ▶ Bob doit deviner la couleur en utilisant uniquement des questions de la forme : "Est-ce que la couleur est x ?"

Exemple 1: le jeu des couleurs

On considère le jeu (pas très fun) suivant :

- Alice choisit dans sa tête une couleur parmi {vert, blue, rouge, noir}
- ▶ Bob doit deviner la couleur en utilisant uniquement des questions de la forme : "Est-ce que la couleur est *x* ?"

En trichant, mais sans que Bob puisse prouver quelle triche, Alice peut forcer Bob à poser au moins 4 questions avant de répondre oui.

Pour cela elle a une stratégie pour répondre aux questions, qui peut être décrite par l'algorithme :

- ▶ Initialement Alice note secrètement $C = \{vert, blue, rouge, noir\}$
- \blacktriangleright À chaque fois que Bob demande si la couleur est x:
 - ► Si $C = \{x\}$, Alice répond **oui**
 - ► Sinon, Alice répond **non** et enlève x de C (s'il y est)

On enlève au plus un élément par question et Bob ne peut pas prouver qu'Alice triche.

Exemple 2: "Qui est-ce?"

- ► Alice est une prestidigitatrice, elle peut changer sa carte à tout moment sans que Bob ne s'en aperçoive
- ▶ À chaque question de Bob, elle change éventuellement de carte pour que Bob élimine le moins de personnage possible.

Il faudra donc au moins $\log_2 n$ questions à Bob pour finir.

Preuve par adversaire: principe

- ▶ On veut montrer que tout algo nécessite au moins *t* étapes sur une entrée de taille *n* dans un certain modèle de calcul
- On donne les rôles suivants :
 - L'algorithme pose des questions et doit identifier la réponse à donner (il ne connaît l'entrée que par les questions qu'il a posées)
 - L'adversaire répond aux questions en tentant de faire durer le processus le plus longtemps possible
- ▶ On veut établir une stratégie pour l'adversaire telle que :
 - À chaque question, l'adversaire choisit une réponse telle qu'au moins une entrée satisfait ses réponses jusqu'ici (cohérence)
 - ▶ Après t-1 questions, il reste au moins deux entrées dont les résultats par l'algorithme sont différents

Remarque : en théorie il suffit de montrer l'existence d'une telle stratégie. En pratique, on la décrit souvent par un algorithme qui décrit les réponse à donner.

Retour sur FIND

Rappel : FIND consiste à déterminer si *x* est dans le tableau *T*

Modèle : On se place dans le modèle où l'algorithme peut poser comme question "Quelle est la valeur de T[i]?"

Stratégie de l'adversaire : répondre y à chaque fois, avec $y \neq x$

Théorème (FIND par adversaire)

Dans ce modèle, tout algorithme qui résout FIND utilise au moins n questions dans le pire cas.

Preuve : si l'algorithme a posé n-1 questions, il y a au moins une case dont il n'a pas demandé la valeur. L'adversaire peut encore choisir de placer x ou y dedans.

Calcul du min et du max

Définition

Le problème MIN_MAX consiste à trouver le minimum et le maximum d'un tableau T (ou l'indice d'un minimum et l'indice d'un maximum).

Modèle : On se place dans le modèle **"par comparaisons"** où on peut poser des questions du type **"Est-ce que** T[i] < T[j] **?"**

```
def naive_minmax(T):
    i_min, i_max = 0, 0
    for i in range(len(T)):
        if T[i] < T[i_min]:
            i_min = i
        if T[i] > T[i_max]:
            i_max = i
    return i_min, i_max
```

- ▶ On parcourt les indices du tableau
- ► On compare T[i] avec les minrecords et max-records
- ► On met à jour i_min et i_max, si besoin
- $ightharpoonup \sim 2n$ comparaisons pire cas

Min et Max : algorithme astucieux

- prendre les éléments deux par deux, les comparer entre eux
- comparer le plus petit au min courant
- comparer le plus grand au max courant

```
def minmax_group2(T):
    i_min, i_max = len(T)-1, len(T)-1
    for i in range(0,len(T)-1,2): # de 2 en 2
    if T[i] < T[i+1]:
        a, b = i, i+1
    else:
        a, b = i+1, i
    if T[a] < T[i_min]:
        i_min = a
    if T[b] > T[i_max]:
        i_max = b
    return i_min, i_max
```

Cela fait $\sim \frac{3}{2} n$ comparaisons.

Question: Peut-on faire mieux?

Min et Max : borne inférieure (énoncé)

Rappel : MIN_MAX consiste à le min et le max de *T*

Modèle : accès aux données "par comparaisons", avec des questions du type "**Est-ce que** T[i] < T[j]?"

Théorème (borne inf. MINetMAX)

Dans le modèle "par comparaisons", tout algorithme qui résout le problème MIN_MAX nécessite $\sim \frac{3}{2}n$ comparaisons dans le pire cas.

Remarque: l'algorithme astucieux minmax_group2 est donc optimal

Min et Max: borne inférieure (preuve 1/2)

Alice remplit un tableau de taille n de symboles \pm . Les symboles s'interprètent de la façon suivante :

± peut être le min ou le max
− peut être le min
† peut être le max
ni min ni max

Quand Bob pose une question (une comparaison) Alice donne la réponse qui enlève un minimum de signes (± compte pour deux signes). Si Alice enlève le dernier symbole d'une case, elle y place un nombre compatible avec ses réponses antérieures.

tableau	question	réponse	signes perdus
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T[0] < T[2] ?	oui	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T[2] < T[4] ?	non	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T[0] < T[4] ?	oui	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Min et Max: borne inférieure (preuve 2/2)

Signes perdus:

- \blacktriangleright ± vs ± : deux signes
- \blacktriangleright \pm vs + ou \pm vs : un signe
- ightharpoonup + vs + ou vs : un signe
- rien dans les autres cas

Remarques:

- ► Il y a toujours un signe + et un signe -
- L'algo n'a pas terminé :
 - ▶ s'il y a un symbole ±
 - ► s'il y a 3 signes

Objectif: minimiser d + u avec

d = nombre de questions qui enlèvent deux signes (\pm vs \pm)

u = nombre de questions qui enlèvent un signe

La meilleure stratégie est donc de poser un maximum de questions " \pm vs \pm ", soit $d = \lfloor n/2 \rfloor$, ce qui enlève $2 \lfloor n/2 \rfloor$ signes

Comme il y a 2n signes initialement, il faut encore poser au moins $u = 2n - 2\lfloor n/2 \rfloor - 2$ questions qui enlèvent un signe

Au total cela fait $\lceil \frac{3n}{2} \rceil - 2 \approx \frac{3}{2}n$ questions

Remarque : si on n'avait pas l'algorithme astucieux, on pourrait le trouver à partir de l'analyse ci-dessus.

Conclusion sur les techniques

On a vu deux techniques:

- ▶ Par comptage
- Par adversaire

Qui sont des arguments **assez simples** (parfois astucieux) pour établir des bornes inférieures.

On a vu au passage qu'il est indispensable de préciser le modèle de calcul!

Plus d'exemples pendant la séance d'exercices!