Computational real algebraic geometry and applications to robotics
 JNCF lecture, part 2

Guillaume Moroz
Inria Nancy - Grand Est

March $4^{\text {th }}, 2021$

Solving systems

(1) With initial point

- Newton
(2) Without initial point
- Symbolic approaches
- Numerical approaches

Newton

$$
f(x)=0
$$

$$
\begin{aligned}
x_{0} & =\text { initial point } \\
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
\end{aligned}
$$

Good for path tracking

Newton

$$
f(x)=0
$$

$$
\begin{aligned}
x_{0} & =\text { initial point } \\
x_{n+1} & =x_{n}-\operatorname{Df}\left(x_{n}\right)^{-1} f\left(x_{n}\right)
\end{aligned}
$$

Good for path tracking

Reliable Newton with Kantorovich

$$
\begin{aligned}
& K\left(f, x_{0}\right)=\sup _{x}\left\|D f\left(x_{0}\right)^{-1} D^{2} f(x)\right\| \\
& \beta\left(f, x_{0}\right)=\left\|D f\left(x_{0}\right)^{-1} f\left(x_{0}\right)\right\|
\end{aligned}
$$

Theorem (Kantorovich)

$$
\text { If } \beta\left(f, x_{0}\right) K\left(f, x_{0}\right) \leqslant 1 / 2
$$

then f has a unique solution in $B\left(x_{0}, 2 \beta\left(f, x_{0}\right)\right)$.

Reliable Newton with Smale

$$
\begin{aligned}
& \gamma\left(f, x_{0}\right)=\sup _{k \geqslant 2}\left\|D f\left(x_{0}\right)^{-1} \frac{D^{k} f\left(x_{0}\right)}{k!}\right\|^{\frac{1}{k-1}} \\
& \beta\left(f, x_{0}\right)=\left\|D f\left(x_{0}\right)^{-1} f\left(x_{0}\right)\right\|
\end{aligned}
$$

Theorem (Smale)

$$
\begin{gathered}
\text { If } \beta\left(f, x_{0}\right) \gamma\left(f, x_{0}\right) \leqslant 3-2 \sqrt{2} \\
\text { then } f \text { has a unique solution in } B\left(x_{0}, \frac{1-\sqrt{2} / 2}{\gamma\left(f, x_{0}\right)}\right) .
\end{gathered}
$$

Reliable interval Newton

B a box interval containing p

1 variable
$N(x)=p-\left(\frac{f(x)-f(p)}{x-p}\right)^{-1} f(p)$
$N(B) \subset B \Rightarrow N$ has a fix point in B
$\Rightarrow f$ has a solution in B

2 variables or more
$N(B)=p-\square J(B)^{-1}\binom{f(p)}{g(p)}$
$N(B) \subset B \Rightarrow f=g=0$ has a solution in B
$N(B)=p-\square J(B)^{-1}\binom{f(p)}{g(p)}$
$N(B) \subset B \Rightarrow f=g=0$ has a solution in B

Interval operations

$$
\begin{aligned}
& {[a, b] \oplus[c, d]=[a+c, b+d]} \\
& {[a, b] \otimes[c, d]=[\min (a c, a d, b c, b d), \max (a c, a d, b c, b d)]}
\end{aligned}
$$

Further reading

[^0]Peter Bürgisser
Felipe Cucker

Condition

The Geometry of Numerical Algorithms

Introduction to

INTERVAL ANALYSIS

Ramon E. Moore R. Baker Kearfott Michael J. Cloud

NHERTVAT MFHIODSFOR SySTHMSOF FOUA110NS

NUMERICAL RECIPES
The Art of sicientific Computing third EDition
wiliam H. Press Saut A. Teukrisky William T. Vetterling
Brian P. Flannury Brian P. Flannery

Further computing

Computer Algebra Systems

- Maple
- Mathematica
- Mathemagix (mmx)
- Matlab
- SageMath
- Xcas
- ...
- Boost (C++)
- MPSolve (C) [Bini, Fiorentino, Robol]
- GNU Scientific Library (C)
- Roots, Optim, NLsolve (Julia)
- Scipy (Python)

Interval and ball arithmetic Libraries

- Arb (C, Python) [Johansson]
- GAOL (C++) [Goualard]
- Intlab (Octave/Matlab) [Rump]
- mpfi (C) [Revol]
- numerix (mmx, C++) [van der Hoeven]
- IntervalArithmetic (Julia) [Benet,Sanders]

Univariate Representation

Reduce problem to univariate polynomial

$$
\begin{aligned}
p(x) & =0 \\
y & =q(x)
\end{aligned}
$$

Resultant definition

Given two polynomials in $\mathbb{C}[y]$:

- $P=p_{0} y^{d}+\cdots+p_{d}$ with roots $\sigma_{1}, \ldots, \sigma_{d}$
- $Q=q_{0} y^{d}+\cdots+q_{d}$ with roots $\tau_{1}, \ldots, \tau_{d}$

Definition: Resultant

$$
\begin{aligned}
\operatorname{Res}(P, Q) & =p_{0}^{d} q_{0}^{d} \prod_{i, j}\left(\sigma_{i}-\tau_{j}\right) \\
& =p_{0}^{d} \frac{Q}{} \quad\left(\sigma_{1}\right) \cdots \square\left(\sigma_{d}\right) \\
& =(-1)^{d^{2}} q_{0}^{d} \frac{P}{} \frac{P}{}\left(\tau_{1}\right) \cdots \square P
\end{aligned}
$$

Resultant definition

Bezout

$$
\begin{array}{cccl}
\varphi: \mathbb{C}[y]_{d-1} & \times & \mathbb{C}[y]_{d-1} & \rightarrow \mathbb{C}[y]_{2 d-1} \\
U & , & \mapsto U P+V Q \\
\varphi(U, V)=1 & \Leftrightarrow \operatorname{gcd}(P, Q)=1 \\
& \Leftrightarrow \varphi \text { invertible }
\end{array}
$$

- Resultant r is the determinant of the Sylvester Matrix
- $r \in\langle P, Q\rangle=I$

Definition: Sylvester matrix

$$
\begin{array}{cccccccccc}
1 & 2 & \cdots & & & d+1 & d+2 & d+3 & \cdots & \\
\left(\begin{array}{cccccccc}
p_{0} & & & & & q_{0} & & \\
p_{1} & p_{0} & & & & q_{1} & q_{0} & \\
p_{2} & p_{1} & p_{0} & & & q_{2} & q_{1} & q_{0} \\
p_{3} & p_{2} & p_{1} & p_{0} & & q_{3} & q_{2} & q_{1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & q_{0} & \\
& \vdots & & & \vdots & \vdots & \ddots
\end{array}\right)
\end{array}
$$

Bivariate case

Given two polynomials in $\mathbb{C}[x, y]$ of degree d in x and y :

- $P=p_{0}(x) y^{d}+\cdots+p_{d}(x)$
- $Q=q_{0}(x) y^{d}+\cdots+q_{d}(x)$
- $\operatorname{Res}(P, Q)$ is a polynomial in x
- $O\left(n^{3-1 / \omega+\varepsilon}\right)$ arithmetic operations
[Villard 2018]
- $O\left(n^{2+\varepsilon}\right)$ randomized in a finite field [van der Hoeven, Lecerf 2019]

$$
\operatorname{Res}_{d}(P(x, y), Q(x, y))(\alpha)=\operatorname{Res}_{d}(P(\alpha, y), Q(\alpha, y))
$$

First subresultant definition

Given two polynomials in $\mathbb{C}[y]$:

- $P=p_{0} y^{d}+\cdots+p_{d}$ with roots $\sigma_{1}, \ldots, \sigma_{d}$
- $Q=q_{0} y^{d}+\cdots+q_{d}$ with roots $\tau_{1}, \ldots, \tau_{d}$

Properties

- Sres $_{1}=s_{1} y+s_{0}$ has degree at most 1
- Sres $_{1} \in\langle\mathrm{P}, \mathrm{Q}\rangle=1$

Definition: first subresultant

$$
\begin{aligned}
\operatorname{Sres}_{1}(P, Q)=p_{0}^{d-1} \quad & \left(y-\sigma_{1}\right) \prod_{j \neq 1} \xlongequal[\sigma_{j}-\sigma_{1}]{ }\left(\sigma_{j}\right) \\
& +\cdots+ \\
& \left(y-\sigma_{d}\right) \prod_{j \neq d} \frac{Q}{\sigma_{j}-\sigma_{d}}\left(\sigma_{j}\right) \\
&
\end{aligned}
$$

First subresultant definition

$$
\begin{array}{rlrl}
\varphi: \mathbb{C}[y]_{d-2} & \times \mathbb{C}[y]_{d-2} & \rightarrow \mathbb{C}[y]_{2 d-2} \\
U & V & \mapsto U P+V Q
\end{array}
$$

The s_{0} and s_{1} are the determinants of minors of the Sylvester Matrix
Sylvester matrix

$$
\begin{array}{ccccccc}
1 & 2 & \cdots & d+1 & d+2 & d+3 & \cdots \\
\left(\begin{array}{llllll}
p_{0} & & & q_{0} & & \\
p_{1} & p_{0} & & q_{1} & q_{0} & \\
p_{2} & p_{1} & p_{0} & & q_{2} & q_{1} \\
p_{3} & p_{2} & p_{1} & p_{0} & q_{3} & q_{2}
\end{array}\right. & q_{1} & q_{0}
\end{array}
$$

Parametrization of y

$$
\begin{array}{r}
s_{1}(x) y+s_{0}(x)=0 \\
r(x)=0
\end{array}
$$

Three variables and more

$$
f_{1}\left(x_{1}, \cdots, x_{n}\right)=\cdots=f_{n}\left(x_{1}, \cdots, x_{n}\right)=0
$$

Problem

$$
\text { Find } p\left(x_{1}\right)=q_{1} f_{1}+\cdots+q_{n} f_{n}
$$

Matrix of $1, x_{1}, \ldots, x_{1}^{D}$ modulo $\left\langle f_{1}, \ldots, f_{n}\right\rangle$

$$
\begin{aligned}
& 1 \quad \cdots \quad x_{1}^{D} \\
& M=\begin{array}{c}
m_{1} \\
\vdots \\
m_{k}
\end{array}(\square) \\
& \Rightarrow \quad v \in \operatorname{Ker}(M) \text { iff } v_{0}+\cdots+v_{D} X^{D} \in\left\langle f_{1}, \ldots, f_{n}\right\rangle
\end{aligned}
$$

Three variables and more

$$
f_{1}\left(x_{1}, \cdots, x_{n}\right)=\cdots=f_{n}\left(x_{1}, \cdots, x_{n}\right)=0
$$

Problem

$$
\text { Find } p\left(x_{1}\right)=q_{1} f_{1}+\cdots+q_{n} f_{n}
$$

Matrix of multiplication by x_{1} modulo $\left\langle f_{1}, \ldots, f_{n}\right\rangle$

$$
\begin{aligned}
\\
\left.M=\begin{array}{ccc}
x_{1} m_{1} & \cdots & x_{1} m_{k} \\
\vdots \\
m_{k} \\
\\
& \\
& \\
& \\
& \\
& \\
& \\
M M\left(x_{1}\right) \in\left\langle f_{1}, \ldots, f_{n}\right\rangle
\end{array}\right)
\end{aligned}
$$

Three variables and more

$$
f_{1}\left(x_{1}, \cdots, x_{n}\right)=\cdots=f_{n}\left(x_{1}, \cdots, x_{n}\right)=0
$$

Problem

Find $p\left(x_{1}\right)=q_{1} f_{1}+\cdots+q_{n} f_{n}$

Matrix of multiplication by x_{1} modulo $f_{1}\left(x_{1}\right)$

$$
\begin{aligned}
M & =\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -c_{0} \\
1 & 0 & \ldots & 0 & -c_{1} \\
0 & 1 & \ldots & 0 & -c_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & -c_{d-1}
\end{array}\right) \\
& \Rightarrow \chi_{M}\left(x_{1}\right)=f_{1}\left(x_{1}\right) \in\left\langle f_{1}\right\rangle
\end{aligned}
$$

Normal form and univariate representation

Normal form

$$
x_{1} m_{i} \bmod \left\langle f_{1}, \ldots, f_{n}\right\rangle
$$

- Euclidean division by Gröbner basis

Groebner Bases computation

- $n>2$ in $\widetilde{O}\left((n d)^{(\omega+1) n}\right)$ operations
[Bardet, Faugère, Salvy 2015]
- $n=2$ in $\widetilde{O}\left(d^{2}\right)$ with terse representation [van der Hoeven, Larrieu 2018]

Univariate Representation

- Multivariate subresultant
- Rational Univariate Representation [Kronecker 1882, Rouillier 1999]
- u-resultant and its derivatives at point $\left(t, a_{1}, \ldots, a_{n}\right)$

$$
\text { u-resultant }=C \prod_{\zeta \mid F(\zeta)=0}\left(u_{0}+u_{1} \zeta_{n}+\cdots+u_{n} \zeta_{n}\right)
$$

- Lexicographical Gröbner bases
- Polynomial parametrization generically, bigger size [Dahan, Schost 2004]

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\text { root of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\frac{\partial f}{\partial y}\left(x, y_{n}(x)\right)}
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\text { root of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\frac{\partial f}{\partial y}\left(x, y_{n}(x)\right)}
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\text { root of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\frac{\partial f}{\partial y}\left(x, y_{n}(x)\right)}
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\text { root of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\frac{\partial f}{\partial y}\left(x, y_{n}(x)\right)}
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\text { root of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\frac{\partial f}{\partial y}\left(x, y_{n}(x)\right)}
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\operatorname{root} \text { of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\partial f}\left(x, y_{n}(x)\right)
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\operatorname{root} \text { of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\partial f}\left(x, y_{n}(x)\right)
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\operatorname{root} \text { of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\partial f}\left(x, y_{n}(x)\right)
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

Theorem (Hensel lifting)

$$
\left\{\begin{array}{ll}
y_{0} & =\operatorname{root} \text { of } f(0, y)=0 \\
y_{n+1}(x) & =y_{n}(x)-\frac{f\left(x, y_{n}(x)\right)}{\partial f}\left(x, y_{n}(x)\right)
\end{array} \bmod x^{2^{n+1}}\right.
$$

Then $y_{n}(x)$ is a root of $f(x, y)=0 \bmod x^{2^{n}}$.

Univariate Representation with Geometric Resolution

$$
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=\cdots=f_{3}\left(x_{1}, x_{2}, x_{3}\right)=0
$$

- RUR of $f_{1}\left(x_{1}, x_{2}, 0\right)$ and $f_{2}\left(x_{1}, x_{2}, 0\right)$

$$
p_{1}\left(x_{1}\right)=0 \quad x_{2}=q_{12}\left(x_{1}\right)
$$

- Lift x_{3} in $f_{1}\left(x_{1}, x_{2}, x_{3}\right)=f_{2}\left(x_{1}, x_{2}, x_{3}\right)=0$

$$
\widetilde{p}_{1}\left(x_{1}, x_{3}\right)=0 \quad x_{2}=\widetilde{q}_{12}\left(x_{1}, x_{3}\right)
$$

- RUR of $\tilde{p}_{11}\left(x_{1}, x_{3}\right)$ and

$$
f_{3}\left(x_{1}, \tilde{q}_{12}\left(x_{1}, x_{3}\right), x_{3}\right)
$$

$$
p_{2}\left(x_{1}\right)=0 \quad x_{2}=q_{22}\left(x_{1}\right) \quad x_{3}=q_{23}\left(x_{1}\right)
$$

$\widetilde{O}\left(d^{3 n}\right)$ operations [Giusti, Lecerf, Salvy 2001]

Further reading

GraduateTerts inMathematics

Gert-Martin Greuel Gerhard Pfister

A Singular Introduction to Commutative Algebra

Algorithmes Efficaces en Calcul Formel

Alin Bostan Frédéric Chyzak Marc Gussi Romain Lebreton Gregoire Lecerf
Bruno Salvy Éric Schost

Further computing

Computer Algebra systems

- Giac/xcas
- Maple
- Magma
- Mathemagix
- Mathematica
- Mcaulay2
- MuPAD
- SageMath
- Singular
- ...

Special purpose libraries/software

- FGb (C)
[Faugère]
- Flint (C) [Hart]
- msolve [Berthomieux, Eder, Safey El Din]
- RS/RS3 (C) [Rouillier]
- borderbasix (mmx, C++) [Trebuchet, Mourrain]
- algebramix (mmx, C++) [van der Hoeven, Lecerf]
- geomsolvex (mmx, C++)
- larrix (mmx, C++)
- ...

Path continuation

Is it possible to arrange 7 infinite cylinders of unit radius such that they are mutually touching?

Path continuation

> - $f(x)=0$
> - $\operatorname{deg} d$

- We know the solutions of $x^{d}-1=0$

$$
(1-t)\left(x^{d}-1\right)+t f(x)=0
$$

- Multivariate case: compute the mixed volume first
- Find 1 solution by following only one path

Polynomial time in $\binom{n+d}{d}$ average [Beltran, Pardo 2009], [Lairez 2017]

- Roots distribution of random polynomials [Edelman, Kostlan 1995]

Path continuation

- We know the solutions of $x^{d}-1=0$

$$
(1-t)\left(x^{d}-1\right)+t f(x)=0
$$

- Multivariate case: compute the mixed volume first
- Find 1 solution by following only one path

Polynomial time in $\binom{n+d}{d}$ average [Beltran, Pardo 2009], [Lairez 2017]

- Roots distribution of random polynomials [Edelman, Kostlan 1995]

Path continuation

2 arrangements of 7 cylinders mutually touching [Bozóki et al. 2015]

- Modeled with 20 equations in 20 variables
- Mixed volume 121098993664
- First real solution after 80000000 paths
- Solution certified with Smale theorem

Subdivision

Test each cell

- 1 solution, guaranteed $\quad \Rightarrow$ keep
- 0 solution, guaranteed $\quad \Rightarrow$ remove
- don't know $\quad \Rightarrow$ subdivide

Complexity analysis: continuous amortization [Burr, Krahmer, Yap, 2009]

Subdivision

Test each cell

- 1 solution, guaranteed $\quad \Rightarrow$ keep
- 0 solution, guaranteed $\quad \Rightarrow$ remove
- don't know $\quad \Rightarrow$ subdivide

Complexity analysis: continuous amortization [Burr, Krahmer, Yap, 2009]

Subdivision

Test each cell

- 1 solution, guaranteed $\quad \Rightarrow$ keep
- 0 solution, guaranteed $\quad \Rightarrow$ remove
- don't know $\quad \Rightarrow$ subdivide

Complexity analysis: continuous amortization [Burr, Krahmer, Yap, 2009]

Subdivision

Test each cell

- 1 solution, guaranteed $\quad \Rightarrow$ keep
- 0 solution, guaranteed $\quad \Rightarrow$ remove
- don't know $\quad \Rightarrow$ subdivide

Complexity analysis: continuous amortization [Burr, Krahmer, Yap, 2009]

Subdivision

Test each cell

- 1 solution, guaranteed $\quad \Rightarrow$ keep
- 0 solution, guaranteed $\quad \Rightarrow$ remove
- don't know $\quad \Rightarrow$ subdivide

Complexity analysis: continuous amortization [Burr, Krahmer, Yap, 2009]

Subdivision

Test each cell

- 1 solution, guaranteed $\quad \Rightarrow$ keep
- 0 solution, guaranteed $\quad \Rightarrow$ remove
- don't know $\quad \Rightarrow$ subdivide

Complexity analysis: continuous amortization [Burr, Krahmer, Yap, 2009]

Subdivision

Test each cell

- 1 solution, guaranteed $\quad \Rightarrow$ keep
- 0 solution, guaranteed $\quad \Rightarrow$ remove
- don't know $\quad \Rightarrow$ subdivide

Complexity analysis: continuous amortization [Burr, Krahmer, Yap, 2009]

Further reading

Peter Bürgisser Felipe Cucker

Condition

The Geometry of Numerical Algorithms

Further computing

Path continuation

- Bertini (C++, Python)
- Hom4PS (C++)
- PHCpack (Ada)
- analyziz (mmx, $\mathrm{C}++$)
[Bates, Amethyst, Hauenstein, Sommese, Wampler] [Tien-Yien Li, Tianran Chen, Tsung-Lin Lee] [Verschelde] [van der Hoeven]

Subdivision multivariate

- ibex $(C++)$
[Chabert]
Subdivision univariate
- Realpaver (C)
[Granvilliers]
- ANewDsc (C) [Kobel,Rouillier,Sagraloff]
- realroot (mmx, C++)
[Mourrain]
- subdivision_solver ($\mathrm{C}++$, Python)
[Imbach]
[M.]
- voxelize ($\mathrm{C}++$)
- Clenshaw (C, Python)
[M.]
- . . .
- Ccluster (C, Julia) [Imbach,Pan, Yap]
- real_roots (sage)
[Witty]
- RS (C)
[Rouillier]
- SLV (C)
[Tsigaridas]

Drawing reliably the projection of the solution

(1) Isotopy
(2) Projection
(3) Drawing reliably

Drawing hypersurfaces

Definition (isotopy)

A triangulation T is isotope to $V \subset \mathbb{R}^{n}$ if there exists $\varphi:[0,1] \times T \rightarrow \mathbb{R}^{n}$ such that:

- φ is continuous
- $\varphi(0, T)=T$ and $\varphi(1, T)=V$
- $\varphi_{t_{0}}: T \rightarrow \varphi\left(t_{0}, T\right)$ is an homeomorphism

Size of the triangulation [Kerber and Sagraloff 2011]

$$
f\left(x_{1}, \ldots, x_{n}\right) \text { of degree } d
$$

2 variables

Theorem

In the worst case $\Omega\left(d^{2}\right)$ vertices and $O\left(d^{2}\right)$ segments

3 variables

Theorem

In the worst case $\Omega\left(d^{3}\right)$ vertices and $O\left(d^{5}\right)$ triangles
n variables

Theorem

In the worst case $\Omega\left(d^{n}\right)$ vertices and $O\left(d^{3 / 4 \cdot 2^{n}-1}\right)$ simplices

Size of the triangulation [Kerber and Sagraloff 2011]

f of degree d and vertices on the surface

2 variables
Theorem
In the worst case $\Omega\left(d^{\not q^{3} 3}\right)$ vertices and $O\left(d^{\not \chi^{2} 3}\right)$ segments

3 variables

Theorem

In the worst case $\Omega\left(d^{\beta^{6} 4}\right)$ vertices and $O\left(d^{\boxed{5} 7}\right)$ triangles
n variables
Theorem
In the worst case $\Omega\left(d^{n+1}\right)$ vertices and $O\left(d^{3 / 42^{n}-1}\right)$ simplices

In Robotic

V solutions of $f_{1}=\cdots=f_{k}=\operatorname{det}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)=0$ in $\mathbb{R}^{n} \times \mathbb{R}^{k}$
Goal: draw the projection of V in Q

Projection

Definition (Semi-algebraic)

A semi-algebraic set is a set solution of a system of equalities and inequalities.

Theorem (Tarski-Seidenberg)

The projection of a semi-algebraic set is semi-algebraic.

Zariski closure

Definition (Zariski closure)

The Zariski closure of E is the minimal set \bar{E} containing E that is solution of a system of equalities.

Theorem (elimination)

- V solution of $p_{1}(q, x)=\cdots=p_{k+1}(q, x)=0$
- G Gröbner basis of F with respect to the lexdeg ordering with $x>q$
- G_{q} the polynomials in $G \cap \mathbb{Q}[q]$

$$
\Rightarrow \overline{\pi_{Q}(V)}=\text { solutions of } G_{q}
$$

Projective elimination

Theorem

If V_{p} is the projective closure of V in $\mathbb{C}^{n} \times \mathbf{P}_{k}$, then

$$
\overline{\pi_{Q}(V)}=\pi_{Q}\left(V_{p}\right)
$$

Geometry of the elimination

$$
x, y \in \mathbb{R}, z=a+i b \in \mathbb{C}
$$

$$
\left\{\begin{aligned}
0=f_{1}(x, y, a+i b)= & f_{1}(x, y, a)-\frac{b^{2}}{2} f_{1}^{\prime \prime}(x, y, a)+\cdots \\
& +i b\left(f_{1}^{\prime}(x, y, a)-\frac{b^{2}}{6} f_{1}^{\prime \prime \prime}(x, y, a)+\cdots\right) \\
0=f_{2}(x, y, a+i b)= & f_{2}(x, y, a)-\frac{b^{2}}{2} f_{2}^{\prime \prime}(x, y, a)+\cdots \\
& +i b\left(f_{2}^{\prime}(x, y, a)-\frac{b^{2}}{6} f_{2}^{\prime \prime \prime}(x, y, a)+\cdots\right)
\end{aligned}\right.
$$

Case $b=0: 2$ equation in x, y, a
Case $b \neq 0$: 4 equation in x, y, a, b
\Rightarrow possibly isolated points with $x, y \in \mathbb{R}$ and $z \in \mathbb{C} \backslash \mathbb{R}$
In general: $\overline{\pi_{Q}(V)}$ can have stable real components of $\operatorname{dim} n-2$

Geometry of the projection

Figure 1: Local singularities of images of generic maps of surfaces into 3-space
[Guryonov 1997]

There exists a hypersurface $\Delta \subset C^{\infty}\left(M, \mathbb{R}^{3}\right)$ s.t. if $f \in C^{\infty}\left(M, \mathbb{R}^{3}\right) \backslash \Delta$, then the neighborhood of any point of $f(M)$ is one of the 4 above.

- Classification of generic singularities started with Whitney
- Thom introduced the transversality theorem
- Arnold and others provided numerous classifications

Geometry of the projection

For the projection of critical points, we also have swallowtail singularities

Further reading

Further computing

Quantifier elimination

- Redlog (Reduce)
- RegularChains (Maple)
- Resolve (Mathematica)
- QEPCAD (C)
- Tarski (C++)
- ...

Satisfiability of formula

- RAGLib (Maple)
- RealCertify (Maple)
- RSolver (OCaml)
- TSSOS (Julia)
[Dolzmann, Sturm]
[Moreno Maza et al] [Strzebonski]
[Brown]
[Brown]
- ...
[Safey el Din] [Magron, Safey el Din] [Ratschan] [Lassere, Magron, Wang]

Drawing with symbolic approach

- Topology of curves in $\widetilde{O}\left(d^{6}+\tau d^{5}\right)$ operations [Kobel, Sagraloff, 2015], [Niang Diatta, Diatta, Rouillier, Roy, Sagraloff, submitted 2018]
- Topology of surfaces with $O\left(d^{5}\right)$ simplices
[Berberich, Kerber, Sagraloff 2009]

Marching cubes [Lorensen and Cline 1987]

(1) Evaluate $f(x, y, z)$ of deg d on a grid of size $N=n \times n \times n$
(2) For each cube, compute a triangle of the surface to plot

Complexity: Cost of evaluating f on 1 point with Hörner: $O\left(d^{3}\right)$ Total naive: $O\left(d^{3} n^{3}\right)$
Reuse computation by coordinates: $O\left(d n^{3}\right)$

Subdivision pruning

Interval arithmetic to remove boxes [Snyder 1992, Plantinga-Vegter 2006]

Jacobian

$$
\begin{gathered}
0 \notin \square \operatorname{det}\left(J_{x}(B)\right)=\square \operatorname{det}\left(\begin{array}{c}
\frac{\partial f_{i}}{\partial x_{j}}(B)
\end{array}\right) \\
\Rightarrow \mathrm{V} \text { is globally parametrized by } q \text { in } B
\end{gathered}
$$

Surface tracking

Regular case

- First marching segments
[Dobkin et al. 1990]
- First marching triangles
[Hilton et al. 1996]
- Recent result on marching simplices, topology guaranteed
[Boissonnat, Kachanovich, Wintraecken, 2020]

Singular surfaces

- Use isosingular deflation near singularities
[Bates, Brake, Hauenstein, Sommese, Wampler, 2014]

Further reading

Further computing

Drawing with symbolic approach

- algcurve (Maple)
- isotop (C, Maple)
- EXACUS (C++)

Drawing with subdivision

- axl (C++, mmx)
- ibex (C++)
- Realpaver (C)
- voxelize (C++)

Drawing with marching cube

- JuliaGeometry (Julia)
- scikit-image (C, python)
- MathMod (C++)
- ...
[Christoflorou, Mantzaflaris, Mourrain, Wintz]
[Chabert]

Drawing with continuation
[Kelly]
[Lewiner]
[Taha]

- bertini_real
- CGAL (C++)
- GUDHI (C++)
[Brake et al] [Rineau, Yvinec]
[Kachanovich]
[Deconink, Patterson, van Hoeij] [Peñeranda, Pouget, Lazard, Rouillier] [Melhorn et al]

Merci!

Open problems

- Complexity of gröbner bases in dimension 3 with terse representation?
- What are the actual bounds on the number of simplices in drawings in 3D, in nD ?
- What if we use polynomial pieces of degree k instead of linear pieces?
- Reliable drawing of singular surfaces with prescribed singularities?

[^0]: Guundehren der mathematischen Wissenschatten 349 A Seites of Comperhesosive Stodes ie Matiensmatic

