Computational real algebraic geometry and applications to robotics

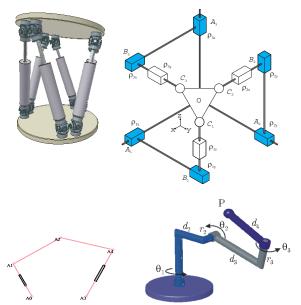
JNCF lecture, part 1

Guillaume Moroz

Inria Nancy - Grand Est

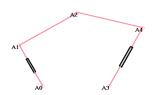
March 1st, 2021

Mechanisms



Modeling

- Joint variables
 - \bullet r_1, r_2
- Pose variables
 - X, Y
- Passive variables
 - θ_1, θ_2

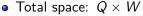


Equations

$$(F) \left\{ \begin{array}{l} \mathbf{x} = \cos(\frac{2\pi}{3})r_1 + \cos(\theta_1) \\ \mathbf{x} = 1 + \cos(\frac{\pi}{3})r_2 + \cos(\theta_2) \\ \mathbf{y} = \sin(\frac{2\pi}{3})r_1 + \sin(\theta_1) \\ \mathbf{y} = 1 + \sin(\frac{\pi}{3})r_2 + \sin(\theta_2) \end{array} \right.$$

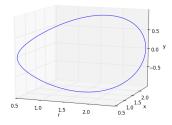
Workspace, Joint space

- Q: joint space
- W: workspace



• solutions of F: $V(F) \subset W \times Q$

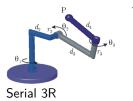
Parallel RPR-R

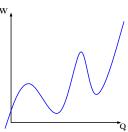


- Canonical projections:
 - $\pi_W:V(F)\to W$
 - $\pi_O: V(F) \to W$

Serial robot

- Glossary:
 - P: prismatic joint
 - R: rotation joint
 - U: Cardan joint
 - S: spherical joint



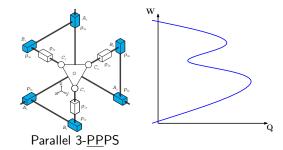


Properties

- Inverse Kinematics (IK) hard
- Forward Kinematics (FK) easy: 1 solutions

Parallel robot

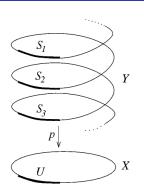
- Glossary:
 - P: prismatic joint
 - R: rotation joint
 - U: Cardan joint
 - S: spherical joint



Properties

- Inverse Kinemaics (IK) easy
- Forward Kinematics (FK) hard: several solutions
- 2 solutions can cross
 - loose of control
 - break

Covering map



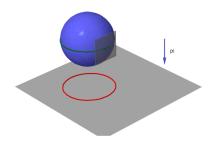
Definition

The continuous map $f: S \rightarrow U$ is a covering map if:

$$f^{-1}(U) = S_1 \cup \cdots \cup S_k$$
 where
$$\begin{cases} S_i \stackrel{f}{\simeq} U \\ S_i \text{ pairwise disjoint.} \end{cases}$$

Critical points

- $V \subset \mathbb{R}^n$ smooth variety of dimension p
- \bullet $\pi:V \to \mathbb{R}^p$ canonical projection



Critical points

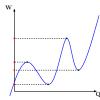
Let T(a) be the linear space tangent to V at point a. The critical points a of V for the projection π satisfy:

$$dim(\pi(T(a))) < p$$

Case of the serial robot

Hypothesis: V(F) smooth, bounded, equidimensional.

- FK: always 1 solution $\Rightarrow \pi_Q : V(F) \to Q$ invertible
- IK: partition W in W_0, W_1, \ldots, W_k s.t.:
 - ullet W_0 are the critical values of π_W
 - W_1, \ldots, W_k are the connected components of $W \backslash W_0$
- Critical points of π_W : serial singularities



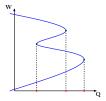
Theorem (covering map and critical values)

For all $1 \le i \le k$, the restriction of π_W to $\pi_W^{-1}(W_i)$ is a covering map above W_i .

Case of parallel robot

Hypothesis: V(F) smooth, bounded, equidimensional.

- IK: always 1 solution $\Rightarrow \pi_W : V(F) \to W$ invertible
- FK: partition Q in Q_0, Q_1, \ldots, Q_k s.t.:
 - ullet Q_0 are the critical values of π_Q
 - ullet Q_1,\ldots,Q_k are the connected components of $Qackslash Q_0$
- Critical points of π_Q : parallel singularities



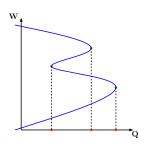
Theorem (covering map and critical values)

For all $1 \le i \le k$, the restriction of π_Q to $\pi_Q^{-1}(Q_i)$ is a covering map above Q_i .

Properties

Case of parallel robots

- FK: $F_q(x) = 0$, system parametrized by q
- For fixed q, finitely many solutions (0-dimensional)
- π_Q is not a covering map near q
 - ⇒ two sheets of solutions cross
 - $\Rightarrow F_q(x) = 0$ has singular solutions



• Remark: V(F)

- not bounded: take asymptotes into account
- not smooth: take singularities into account

Computation

Hypothesis: V(F) smooth, bounded, equidimensional.

$$\underbrace{\frac{\partial F}{\partial q}}_{A} dq + \underbrace{\frac{\partial F}{\partial x}}_{B} dx = 0$$

Serial singularities

$$(S_s): F = 0, det(A) = 0$$

- W_0 , critical values of π_W : projection on x_i of solutions of (S_s)
- W_1, \ldots, W_k , complement of critical values

Computation

Hypothesis: V(F) smooth, bounded, equidimensional.

$$\underbrace{\frac{\partial F}{\partial q}}_{A} dq + \underbrace{\frac{\partial F}{\partial x}}_{B} dx = 0$$

Parallel singularities

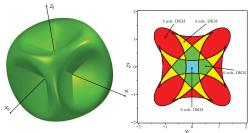
$$(S_p): F=0, det(B)=0$$

- Q_0 , critical values of π_Q : projection on q_i of solutions of (S_p)
- Q_1, \ldots, Q_k , complement of critical values

Example

- 3-PPPS:
 - Parallel
 - Joint variables: $x_1, y_1, y_2, z_2, x_3, z_3$
 - Pose variables: $p_x, p_y, p_z, \varphi, \theta, \sigma$

ullet Critical values of π_Q , and partition of Q

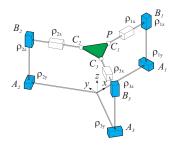


Design challenges

- $E \subset W$ given shape
 - Design a parallel robot without singularities in E

$$\pi_W$$
(critical points of π_Q) $\cap E = \emptyset$

- Maximise the volume of E (lecture P. Lairez)
- → design variables



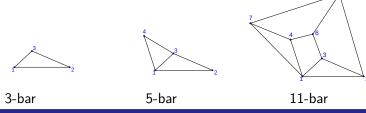
Demo

Demo

Modeling equations

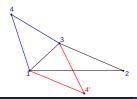
- Linkages
- Rotations 3D
- Singularities

Planar Rigid Linkage: Laman Graph



Constraints

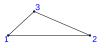
- Fixed length bars: cij
- Free revolute joints
- Zero degree of freedom



- Several assembly modes
- Number depends on c_{ij}
- Max number of assembly modes?

Construction steps

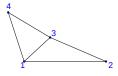
• 3-bar rigid linkage



Construction steps

Henneberg steps: H_1 and H_2

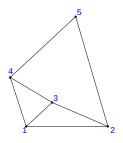
• 5-bar rigid linkage



Construction steps

Henneberg steps: H_1 and H_2

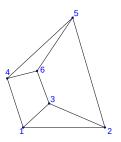
• 7-bar rigid linkage



Construction steps

Henneberg steps: H_1 and H_2

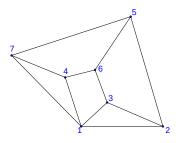
• 9-bar rigid linkage



Construction steps

Henneberg steps: H_1 and H_2

• 11-bar rigid linkage



Known properties

Theorem

A linkage is rigid \Leftrightarrow It can be constructed with H_1 and H_2

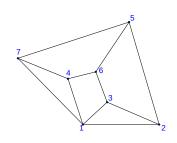
Corollary

$$\#Links = 2\#Joints - 3$$

Algebraic Modeling I

- c_{ii}: 10 parameters
- x_i, y_i : 14 variables

$$\begin{cases} x_1 = 0, y_1 = 0 \\ x_2 = 1, y_2 = 0 \end{cases}$$

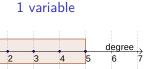


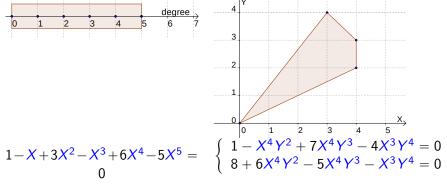
$$\begin{cases} x_3^2 + y_3^2 &= c_{13} \\ (x_3 - 1)^2 + y_3^2 &= c_{23} \\ (x_5 - 1)^2 + y_5^2 &= c_{25} \\ (x_6 - x_3)^2 + (y_6 - y_3)^2 &= c_{36} \\ x_4^2 + y_4^2 &= c_{14} \end{cases}$$

$$\begin{cases} x_3^2 + y_3^2 &= c_{13} \\ (x_3 - 1)^2 + y_3^2 &= c_{23} \\ (x_5 - 1)^2 + y_5^2 &= c_{25} \\ (x_6 - x_3)^2 + (y_6 - y_3)^2 &= c_{36} \\ x_4^2 + y_4^2 &= c_{14} \end{cases} \begin{cases} x_7^2 + y_7^2 &= c_{17} \\ (x_6 - x_4)^2 + (y_6 - y_4)^2 &= c_{46} \\ (x_5 - x_6)^2 + (y_5 - y_6)^2 &= c_{56} \\ (x_7 - x_5)^2 + (y_7 - y_5)^2 &= c_{57} \\ (x_4 - x_7)^2 + (y_4 - y_7)^2 &= c_{47} \end{cases}$$

Number of solutions

Mixed Volume: n! Volume(Support) (same support)





$$1 - X + 3X^2 - X^3 + 6X^4 - 5X^5 = 0$$

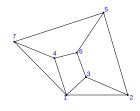
$$\begin{cases} 1 - X^4 Y^2 + 7X^4 Y^3 - 4X^3 Y^4 = 0 \\ 8 + 6X^4 Y^2 - 5X^4 Y^3 - X^3 Y^4 = 0 \end{cases}$$

• Our system: 2¹⁰

Algebraic Modeling II

Cayley-Menger matrix or distance matrix

		v_1	<i>V</i> ₂	<i>V</i> 3	<i>V</i> 4	<i>V</i> 5	<i>v</i> ₆	<i>V</i> 7	
	Γ0	1	1	1	1	1	1	1	٦
v_1	1	0	<i>c</i> ₁₂	<i>c</i> ₁₃	<i>c</i> ₁₄	X ₁₅	<i>X</i> ₁₆	<i>c</i> ₁₇	
<i>v</i> ₂	1	<i>c</i> ₁₂	0	<i>C</i> ₂₃	X ₂₄	<i>C</i> ₂₅	<i>X</i> 26	X27	l
<i>V</i> 3	1	<i>c</i> ₁₃	<i>c</i> ₂₃	0	<i>X</i> 34	<i>X</i> 35	<i>C</i> ₃₆	<i>X</i> 37	-
<i>V</i> 4	1	<i>C</i> ₁₄	X ₂₄	<i>X</i> 34	0	<i>X</i> 45	C ₄₆	C47	١
<i>V</i> ₅	1	<i>X</i> ₁₅	<i>C</i> ₂₅	<i>X</i> 35	<i>X</i> 45	0	<i>C</i> 56	<i>C</i> 57	١
<i>v</i> ₆	1	<i>x</i> ₁₆	<i>X</i> ₂₆		<i>c</i> ₄₆		0	<i>x</i> ₆₇	١
<i>v</i> ₇		<i>c</i> ₁₇	<i>X</i> ₂₇	<i>X</i> 37	C ₄₇	<i>C</i> ₅₇	<i>X</i> 67	0	



Theorem

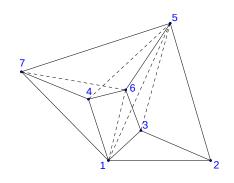
The distance matrix has rank 4.

Corollary

All the 5x5 minors vanish.

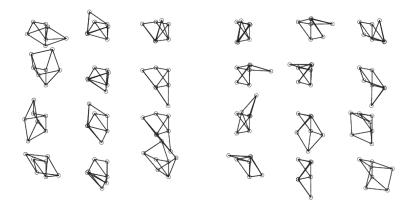
Algebraic Modeling II

$$\begin{array}{lll} \left(\begin{array}{l} D(0,4,5,6,7)(c_{46},c_{47},c_{56},c_{57},x_{45},x_{67}) & = & 0 \\ D(0,1,4,6,7)(c_{14},c_{17},c_{46},c_{47},x_{16},x_{67}) & = & 0 \\ D(0,1,4,5,7)(c_{14},c_{17},c_{47},c_{57},x_{15},x_{45}) & = & 0 \\ D(0,1,2,3,5)(c_{12},c_{13},c_{25},c_{23},x_{15},x_{35}) & = & 0 \\ D(0,1,3,5,6)(c_{13},c_{36},c_{56},x_{15},x_{16},x_{35}) & = & 0 \end{array} \right)$$



- Upper bound
 - Mixed volume: 56
- Lower Bound?

Sampling



Number of assembly modes

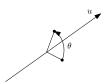
Maximal number of assembly modes

bars	3	5	7	9	11	13	15	17
upper	2	4	8	24	56	136	344	880
lower	2	4	8	24	56	136	344	860

- [Bartzosa, Emiris, Legerský, Tsigaridas 2021]
- Started in 2002 with Borcea
- Bartzosa, Borcea, Emiris, Legerský, M., Streinu, Capco, Gallet, Grasegger, Koutschan, Lubbes, Schicho, Tsigaridas, . . .

Rotations matrix in 3D

$$R = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix}$$



$$R^TR = I$$

- Action of R is a rotation by θ around an axe u
- Set of rotation has dim 3

Euler matrix

$$R_{x}(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & \sin(\theta) \\ 0 & -\sin(\theta) & \cos(\theta) \end{pmatrix}$$

$$R_{y}(\varphi) = \begin{pmatrix} \cos(\varphi) & 0 & \sin(\varphi) \\ 0 & 1 & 0 \\ -\sin(\varphi) & 0 & \cos(\varphi) \end{pmatrix}$$

$$R_{\mathbf{z}}(\psi) = \begin{pmatrix} \cos(\psi) & \sin(\psi) & 0 \\ -\sin(\psi) & \cos(\psi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R = R_z(\psi)R_v(\varphi)R_x(\theta)$$
 or $R = R_z(\psi)R_v(\varphi)R_z(\theta)$

Quaternions matrix

$$q_i^2 + q_j^2 + q_k^2 + q_r^2 = 1$$

$$R = \begin{pmatrix} 1 - 2(q_j^2 + q_k^2) & 2(q_iq_j - q_kq_r) & 2(q_iq_k + q_jq_r) \\ 2(q_iq_j + q_kq_r) & 1 - 2(q_i^2 + q_k^2) & 2(q_jq_k - q_iq_r) \\ 2(q_iq_k - q_jq_r) & 2(q_jq_k + q_iq_r) & 1 - 2(q_i^2 + q_j^2) \end{pmatrix}$$

Rotation of axe: (q_i, q_i, q_k) angle: $2 \arccos(q_r)$

Anti-symmetric matrix - Exponential map

In 2D

$$\theta \Rightarrow \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

In 3D

$$A = \begin{pmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{pmatrix}$$

$$R = e^A$$

Rotation of axe: (x, y, z)angle: $\|(x, y, z)\|_2$

Anti-symmetric matrix - Cayley transform

In 2D

$$t = \tan\left(\frac{\theta}{2}\right) \Rightarrow \begin{pmatrix} \frac{1-t^2}{1+t^2} & \frac{-2t}{1+t^2}\\ \frac{2t}{1+t^2} & \frac{1-t^2}{1+t^2} \end{pmatrix}$$

In 3D

$$A = \begin{pmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{pmatrix}$$

$$R = (I - A)(I + A)^{-1}$$

Rotation of axe: (x, y, z)

angle: $2 \arctan(\|(x, y, z)\|_2)$

Plücker coordinates

How many lines intersect 4 given lines?

Plücker coordinates

$$P_{1} = \begin{pmatrix} x_{1} \\ y_{1} \\ z_{1} \end{pmatrix} \quad P_{2} = \begin{pmatrix} x_{2} \\ y_{2} \\ z_{2} \end{pmatrix} \quad M = \begin{pmatrix} x_{1} & x_{2} \\ y_{1} & y_{2} \\ z_{1} & z_{2} \\ 1 & 1 \end{pmatrix}$$

Definition

The Plücker coordinates of the line (P_1P_2) are the 6 minors of M

$$(d_x, d_y, d_z, m_x, m_y, m_z) = (P_2 - P_1, OP_1 \times OP_2)$$

• $(d, m) \in \mathbf{P}_5$ is on the Klein quadric

$$d \cdot m = 0$$

• Lines (d, m) and (d', m') intersect implies

$$d \cdot m' + m \cdot d' = 0$$

Guillaume Moroz (Inria Nancy - Grand Est) Real Algebraic Geometry and Robotics

Plücker coordinates

0,1,2 or infinitely many lines cross the 4 given lines

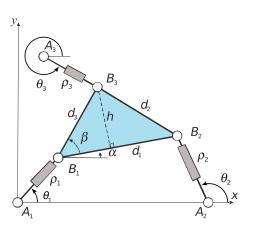
Singularity modeling

$$f_1(q,x),\ldots,f_m(q,x)$$

$$B = \begin{array}{c} \frac{\partial}{\partial x_1} \cdots \frac{\partial}{\partial x_m} \\ \vdots \\ f_m \end{array} \left(\begin{array}{c} \frac{\partial f_i}{\partial x_j} \\ \end{array} \right)$$

- det(B) multi-linear in its columns/rows
- det(B) of deg 1 in x_j leads to a parametrization of the singularities
- Simplifies the analysis of the singularities, as in the 3-RPR [Coste 2012]

Plan parallel robot 3-RPR

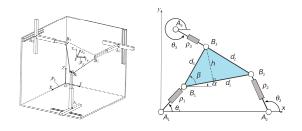


- 3 degrees of freedom
- $d_1, d_2, d_3, A_1, A_2, A_3$ fixed
- Joint variables: r_1, r_2, r_3
- Pose variables: α, B_{1x}, B_{1y}

Demo

Demo

Singularity of parallel manipulator with Plücker vectors



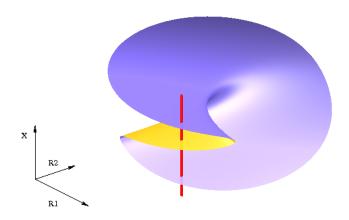
Remark

If the leg-platorm joints are spherical, the rows of the inverse kinematic Jacobian matrix $A^{-1}B$ will involve the Plücker coordinates of lines associated to the legs.

⇒ singularities can be interpreted geometrically

Cuspidal configuration

- Cuspidal point: point of order $\geqslant 3$
- Characterization: A cuspidal robot has at least one cuspidal point



Demo

Demo

Further reading

À suivre

Solving systems

- With initial point
 - Newton
- Without initial point
 - Symbolic approaches
 - Numerical approaches