Computational real algebraic geometry and applications to robotics

JNCF lecture, part 1

Guillaume Moroz
Inria Nancy - Grand Est

March $1^{\text {st }}, 2021$

Mechanisms

Modeling

- Joint variables

Parallel PR-PRR

- r_{1}, r_{2}
- Pose variables
- x, y
- Passive variables
- θ_{1}, θ_{2}

- Equations

$$
(F)\left\{\begin{array}{l}
x=\cos \left(\frac{2 \pi}{3}\right) r_{1}+\cos \left(\theta_{1}\right) \\
x=1+\cos \left(\frac{\pi}{3}\right) r_{2}+\cos \left(\theta_{2}\right) \\
y=\sin \left(\frac{2 \pi}{3}\right) r_{1}+\sin \left(\theta_{1}\right) \\
y=1+\sin \left(\frac{\pi}{3}\right) r_{2}+\sin \left(\theta_{2}\right)
\end{array}\right.
$$

Workspace, Joint space

- Q : joint space
- W: workspace

Parallel RPR-R

- Total space: $Q \times W$
- solutions of $\mathrm{F}: V(F) \subset W \times Q$

- Canonical projections:
- $\pi_{W}: V(F) \rightarrow W$
- $\pi_{Q}: V(F) \rightarrow W$

Serial robot

- Glossary:
- P: prismatic joint
- R: rotation joint
- U: Cardan joint
- S: spherical joint

Serial 3R

Properties

- Inverse Kinematics (IK) hard
- Forward Kinematics (FK) easy: 1 solutions

Parallel robot

- Glossary:
- P: prismatic joint
- R: rotation joint
- U: Cardan joint
- S: spherical joint

Parallel 3-PPPS

Properties

- Inverse Kinemaics (IK) easy
- Forward Kinematics (FK) hard: several solutions
- 2 solutions can cross
- loose of control
- break

Covering map

Definition

The continuous map $f: S \rightarrow U$ is a covering map if:

$$
f^{-1}(U)=S_{1} \cup \cdots \cup S_{k} \text { where }\left\{\begin{array}{l}
S_{i} \stackrel{f}{\simeq} U \\
S_{i} \text { pairwise disjoint. }
\end{array}\right.
$$

Critical points

- $V \subset \mathbb{R}^{n}$ smooth variety of dimension p
- $\pi: V \rightarrow \mathbb{R}^{p}$ canonical projection

Critical points

Let $T(a)$ be the linear space tangent to V at point a. The critical points a of V for the projection π satisfy:

$$
\operatorname{dim}(\pi(T(a)))<p
$$

Case of the serial robot

Hypothesis: $V(F)$ smooth, bounded, equidimensional.

- FK: always 1 solution $\Rightarrow \pi_{Q}: V(F) \rightarrow Q$ invertible
- IK: partition W in $W_{0}, W_{1}, \ldots, W_{k}$ s.t.:
- W_{0} are the critical values of π_{W}
- W_{1}, \ldots, W_{k} are the connected components of $W \backslash W_{0}$
- Critical points of π_{W} : serial singularities

Theorem (covering map and critical values)

For all $1 \leqslant i \leqslant k$, the restriction of π_{W} to $\pi_{W}^{-1}\left(W_{i}\right)$ is a covering map above W_{i}.

Case of parallel robot

Hypothesis: $V(F)$ smooth, bounded, equidimensional.

- IK: always 1 solution $\Rightarrow \pi_{W}: V(F) \rightarrow W$ invertible
- FK: partition Q in $Q_{0}, Q_{1}, \ldots, Q_{k}$ s.t.:
- Q_{0} are the critical values of π_{Q}
- Q_{1}, \ldots, Q_{k} are the connected components of $Q \backslash Q_{0}$
- Critical points of π_{Q} : parallel singularities

Theorem (covering map and critical values)

For all $1 \leqslant i \leqslant k$, the restriction of π_{Q} to $\pi_{Q}^{-1}\left(Q_{i}\right)$ is a covering map above Q_{i}.

Properties

Case of parallel robots

- FK: $F_{q}(x)=0$, system parametrized by q
- For fixed q, finitely many solutions (0-dimensional)
- π_{Q} is not a covering map near q
\Rightarrow two sheets of solutions cross
$\Rightarrow F_{q}(x)=0$ has singular solutions

- Remark: $V(F)$
- not bounded: take asymptotes into account
- not smooth: take singularities into account

Computation

Hypothesis: $V(F)$ smooth, bounded, equidimensional.

$$
\underbrace{\frac{\partial F}{\partial q}}_{A} d q+\underbrace{\frac{\partial F}{\partial x}}_{B} d x=0
$$

- Serial singularities

$$
\left(S_{s}\right): F=0, \operatorname{det}(A)=0
$$

- W_{0}, critical values of π_{W} : projection on x_{i} of solutions of $\left(S_{s}\right)$
- W_{1}, \ldots, W_{k}, complement of critical values

Computation

Hypothesis: $V(F)$ smooth, bounded, equidimensional.

$$
\underbrace{\frac{\partial F}{\partial q}}_{A} d q+\underbrace{\frac{\partial F}{\partial x}}_{B} d x=0
$$

- Parallel singularities

$$
\left(S_{p}\right): F=0, \operatorname{det}(B)=0
$$

- Q_{0}, critical values of π_{Q} : projection on q_{i} of solutions of $\left(S_{p}\right)$
- Q_{1}, \ldots, Q_{k}, complement of critical values

Example

- 3-PPPS:
- Parallel
- Joint variables: $x_{1}, y_{1}, y_{2}, z_{2}, x_{3}, z_{3}$
- Pose variables: $p_{x}, p_{y}, p_{z}, \varphi, \theta, \sigma$
- Critical values of π_{Q}, and partition of Q

Design challenges

- $E \subset W$ given shape
- Design a parallel robot without singularities in E

$$
\pi_{W}\left(\text { critical points of } \pi_{Q}\right) \cap E=\varnothing
$$

- Maximise the volume of E (lecture P. Lairez)
- \rightarrow design variables

Demo

Demo

Modeling equations

(1) Linkages
(2) Rotations 3D
(3) Singularities

Planar Rigid Linkage: Laman Graph

3-bar

Constraints

- Fixed length bars: $c_{i j}$
- Free revolute joints
- Zero degree of freedom

- Several assembly modes
- Number depends on $c_{i j}$
- Max number of assembly modes?

Properties of Rigid Linkages

- Construction steps

- 3-bar rigid linkage

Properties of Rigid Linkages

- Construction steps

- 5-bar rigid linkage

Properties of Rigid Linkages

- Construction steps

Henneberg steps: H_{1} and H_{2}

- 7-bar rigid linkage

Properties of Rigid Linkages

- Construction steps

Henneberg steps: H_{1} and H_{2}

- 9-bar rigid linkage

Properties of Rigid Linkages

- Construction steps

- 11-bar rigid linkage

Known properties

Theorem
 A linkage is rigid \Leftrightarrow It can be constructed with H_{1} and H_{2}

Corollary

$$
\# \text { Links }=2 \# \text { Joints }-3
$$

Algebraic Modeling I

- $c_{i j}: 10$ parameters
- $x_{i}, y_{i}: 14$ variables

$$
\left\{\begin{array}{l}
x_{1}=0, y_{1}=0 \\
x_{2}=1, y_{2}=0
\end{array}\right.
$$

$$
\left\{\begin{aligned}
x_{3}^{2}+y_{3}^{2} & =c_{13} \\
\left(x_{3}-1\right)^{2}+y_{3}^{2} & =c_{23} \\
\left(x_{5}-1\right)^{2}+y_{5}^{2} & =c_{25} \\
\left(x_{6}-x_{3}\right)^{2}+\left(y_{6}-y_{3}\right)^{2} & =c_{36}^{2} \\
x_{4}^{2}+y_{4}{ }^{2} & =c_{17} \\
\left(x_{6}-x_{4}\right)^{2}+\left(y_{6}-y_{4}\right)^{2} & =c_{46} \\
\left(x_{5}-x_{6}\right)^{2}+\left(y_{5}-y_{6}\right)^{2} & =c_{56} \\
\left(x_{7}-x_{5}\right)^{2}+\left(y_{7}-y_{5}\right)^{2} & =c_{57} \\
\left(x_{4}-x_{7}\right)^{2}+\left(y_{4}-y_{7}\right)^{2} & =c_{47}
\end{aligned}\right.
$$

Number of solutions

- Mixed Volume: n! Volume(Support) (same support)
1 variable

$$
\begin{gathered}
1-X+3 X^{2}-X^{3}+6 X^{4}-5 X^{5}= \\
0
\end{gathered}=\left\{\begin{array}{l}
1-X^{4} Y^{2}+7 X^{4} Y^{3}-4 X^{3} Y^{4}=0 \\
8+6 X^{4} Y^{2}-5 X^{4} Y^{3}-X^{3} Y^{4}=0
\end{array}\right.
$$

- Our system: 2^{10}

Algebraic Modeling II

- Cayley-Menger matrix or distance matrix
$\begin{array}{lllllll}v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7}\end{array}$
v_{1}
v_{2}
v_{3}
v_{4}
v_{5}
v_{6}
$v_{7}$$\quad\left[\begin{array}{cccccccc}0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & c_{12} & c_{13} & c_{14} & x_{15} & x_{16} & c_{17} \\ 1 & c_{12} & 0 & c_{23} & x_{24} & c_{25} & x_{26} & x_{27} \\ 1 & c_{13} & c_{23} & 0 & x_{34} & x_{35} & c_{36} & x_{37} \\ 1 & c_{14} & x_{24} & x_{34} & 0 & x_{45} & c_{46} & c_{47} \\ 1 & x_{15} & c_{25} & x_{35} & x_{45} & 0 & c_{56} & c_{57} \\ 1 & x_{16} & x_{26} & c_{36} & c_{46} & c_{56} & 0 & x_{67} \\ 1 & c_{17} & x_{27} & x_{37} & c_{47} & c_{57} & x_{67} & 0\end{array}\right]$

Theorem

The distance matrix has rank 4.

Corollary

All the 5×5 minors vanish.

Algebraic Modeling II

$$
\left\{\begin{array}{l}
D(0,4,5,6,7)\left(c_{46}, c_{47}, c_{56}, c_{57}, x_{45}, x_{67}\right)=0 \\
D(0,1,4,6,7)\left(c_{14}, c_{17}, c_{46}, c_{47}, x_{16}, x_{67}\right)=0 \\
D(0,1,4,5,7)\left(c_{14}, c_{17}, c_{47}, c_{57}, x_{15}, x_{45}\right)=0 \\
D(0,1,2,3,5)\left(c_{12}, c_{13}, c_{25}, c_{23}, x_{15}, x_{35}\right)=0 \\
D(0,1,3,5,6)\left(c_{13}, c_{36}, c_{56}, x_{15}, x_{16}, x_{35}\right)=0
\end{array}\right.
$$

- Upper bound
- Mixed volume: 56
- Lower Bound?

Sampling

$\Delta \& \&$

Number of assembly modes

Maximal number of assembly modes

bars	3	5	7	9	11	13	15	17
upper	2	4	8	24	56	136	344	880
lower	2	4	8	24	56	136	344	860

- [Bartzosa, Emiris, Legerský, Tsigaridas 2021]
- Started in 2002 with Borcea
- Bartzosa, Borcea, Emiris, Legerský, M., Streinu, Capco, Gallet, Grasegger, Koutschan, Lubbes, Schicho, Tsigaridas, ...

Rotations matrix in 3D

$$
R=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
z_{1} & z_{2} & z_{3}
\end{array}\right)
$$

$$
R^{T} R=1
$$

- Action of R is a rotation by θ around an axe u
- Set of rotation has dim 3

Euler matrix

$$
\begin{gathered}
R_{x}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & \sin (\theta) \\
0 & -\sin (\theta) & \cos (\theta)
\end{array}\right) \\
R_{y}(\varphi)=\left(\begin{array}{ccc}
\cos (\varphi) & 0 & \sin (\varphi) \\
0 & 1 & 0 \\
-\sin (\varphi) & 0 & \cos (\varphi)
\end{array}\right) \\
R_{z}(\psi)=\left(\begin{array}{ccc}
\cos (\psi) & \sin (\psi) & 0 \\
-\sin (\psi) & \cos (\psi) & 0 \\
0 & 0 & 1
\end{array}\right) \\
R=R_{z}(\psi) R_{y}(\varphi) R_{x}(\theta) \text { or } R=R_{z}(\psi) R_{y}(\varphi) R_{z}(\theta)
\end{gathered}
$$

Quaternions matrix

$$
\begin{gathered}
q_{i}^{2}+q_{j}^{2}+q_{k}^{2}+q_{r}^{2}=1 \\
R=\left(\begin{array}{cll}
1-2\left(q_{j}^{2}+q_{k}^{2}\right) & 2\left(q_{i} q_{j}-q_{k} q_{r}\right) & 2\left(q_{i} q_{k}+q_{j} q_{r}\right) \\
2\left(q_{i} q_{j}+q_{k} q_{r}\right) & 1-2\left(q_{i}^{2}+q_{k}^{2}\right) & 2\left(q_{j} q_{k}-q_{i} q_{r}\right) \\
2\left(q_{i} q_{k}-q_{j} q_{r}\right) & 2\left(q_{j} q_{k}+q_{i} q_{r}\right) & 1-2\left(q_{i}^{2}+q_{j}^{2}\right)
\end{array}\right) \\
\text { Rotation of } \begin{array}{ll}
\text { axe: } & \left(q_{i}, q_{j}, q_{k}\right) \\
& \text { angle: } \\
2 \arccos \left(q_{r}\right)
\end{array}
\end{gathered}
$$

Anti-symmetric matrix - Exponential map

In 2D

$$
\theta \Rightarrow\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

In 3D

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
0 & z & -y \\
-z & 0 & x \\
y & -x & 0
\end{array}\right) \\
R=e^{A}
\end{gathered}
$$

$\begin{array}{lll}\text { Rotation of } & \text { axe: } & (x, y, z) \\ & \text { angle: } & \|(x, y, z)\|_{2}\end{array}$

Anti-symmetric matrix - Cayley transform

In 2D

$$
t=\tan \left(\frac{\theta}{2}\right) \Rightarrow\left(\begin{array}{ll}
\frac{1-t^{2}}{1+t^{2}} & \frac{-2 t}{1+t^{2}} \\
\frac{2 t}{1+t^{2}} & \frac{1-t^{2}}{1+t^{2}}
\end{array}\right)
$$

In 3D

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
0 & z & -y \\
-z & 0 & x \\
y & -x & 0
\end{array}\right) \\
& R=(I-A)(I+A)^{-1}
\end{aligned}
$$

Rotation of axe: $\quad(x, y, z)$ angle: $\quad 2 \arctan \left(\|(x, y, z)\|_{2}\right)$

Plücker coordinates

How many lines intersect 4 given lines?

Plücker coordinates

$$
P_{1}=\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right) \quad P_{2}=\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right) \quad M=\left(\begin{array}{cc}
x_{1} & x_{2} \\
y_{1} & y_{2} \\
z_{1} & z_{2} \\
1 & 1
\end{array}\right)
$$

Definition

The Plücker coordinates of the line $\left(P_{1} P_{2}\right)$ are the 6 minors of M

$$
\left(d_{x}, d_{y}, d_{z}, m_{x}, m_{y}, m_{z}\right)=\left(P_{2}-P_{1}, O P_{1} \times O P_{2}\right)
$$

- $(d, m) \in \mathbf{P}_{5}$ is on the Klein quadric

$$
d \cdot m=0
$$

- Lines (d, m) and $\left(d^{\prime}, m^{\prime}\right)$ intersect implies

$$
d \cdot m^{\prime}+m \cdot d^{\prime}=0
$$

Plücker coordinates

$0,1,2$ or infinitely many lines cross the 4 given lines

Singularity modeling

$$
\begin{array}{r}
f_{1}(q, x), \ldots, f_{m}(q, x) \\
B=\begin{array}{c}
\frac{\partial}{\partial x_{1}} \cdots \frac{\partial}{\partial x_{m}} \\
\vdots \\
f_{m}
\end{array}\left(\begin{array}{c}
\frac{\partial f_{i}}{\partial x_{j}}
\end{array}\right)
\end{array}
$$

- $\operatorname{det}(B)$ multi-linear in its columns/rows
- $\operatorname{det}(B)$ of deg 1 in x_{j} leads to a parametrization of the singularities
- Simplifies the analysis of the singularities, as in the 3-RPR [Coste 2012]

Plan parallel robot 3-RPR

- 3 degrees of freedom
- $d_{1}, d_{2}, d_{3}, A_{1}, A_{2}, A_{3}$ fixed
- Joint variables: r_{1}, r_{2}, r_{3}
- Pose variables: $\alpha, B_{1 x}, B_{1 y}$

Demo

Demo

Singularity of parallel manipulator with Plücker vectors

Remark

If the leg-platorm joints are spherical, the rows of the inverse kinematic Jacobian matrix $A^{-1} B$ will involve the Plücker coordinates of lines associated to the legs.
\Rightarrow singularities can be interpreted geometrically

Cuspidal configuration

- Cuspidal point: point of order $\geqslant 3$
- Characterization: A cuspidal robot has at least one cuspidal point

Demo

Demo

Further reading

À suivre

Solving systems

(1) With initial point

- Newton
(2) Without initial point
- Symbolic approaches
- Numerical approaches

