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Nonlinear algebra in the applications

Polynomial system solving is ubiquitous, as many models in the sciences
and engineering can be described by non-linear polynomials. This includes:

• algebraic statistics,

• algebraic biology,

• chemical reaction networks,

• coding theory,

• computer vision,

• cryptography,

• networks modelling,

• neuroscience,

• robotics,

• string theory,

• topological data analysis via (multivariate) persistent homology.
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Communication over a channel

source −→ encryptor −→ encoder −→
 noise  transmission noise  

−→ decoder −→ decryptor −→ sink

Coding theory aims at correcting errors occurring during data transmission
across a noisy channel. Cryptography aims at ensuring confidentiality over
an insecure channel.

Rank-metric codes are used over networks.

Definition

A rank-metric code is a vector subspace C ⊆ Matk×m(Fq).
The rank distance between A,B ∈ Matk×m(Fq) is

d(A,B) = rank (A− B).
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Rank-metric codes

Definition

A rank-metric code is a vector subspace C ⊆ Matk×m(Fq).
The rank distance between A,B ∈ Matk×m(Fq) is

d(A,B) = rank (A− B).

The minimum distance of C is

dmin(C ) = min{d(A,B) | A,B ∈ C ,A 6= B}.

Example

C =

〈1 0 0
0 1 0
0 0 0

 ,

1 0 0
0 0 0
0 0 1

〉 ⊆ Mat3×3(F2) has dmin(C ) = 2.
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Decoding a rank-metric code

Let C be a rank-metric code. If M ∈ C is sent and N = M + E is
received, then the error E can be corrected if

rank (E ) ≤ dmin(C)−1
2 .

In fact, if that is the case, then

d(M,N) = rank (E ) ≤ dmin(C)−1
2

and if L ∈ C , L 6= M, then

d(L,N) ≥ d(L,M)− d(M,N) ≥ dmin(C)+1
2 .

Hence M is the only element of C s.t. d(M,N) ≤ dmin(C)−1
2 .

Equivalently, M is the unique solution to the

Decoding Problem

Given N ∈ Matk×m(Fq), find M ∈ C which minimizes d(M,N).



Polynomial system solving and applications Gröbner bases Complexity of Gröbner bases computations

Decoding a rank-metric code

Let C be a rank-metric code. If M ∈ C is sent and N = M + E is
received, then the error E can be corrected if

rank (E ) ≤ dmin(C)−1
2 .

In fact, if that is the case, then

d(M,N) = rank (E ) ≤ dmin(C)−1
2

and if L ∈ C , L 6= M, then

d(L,N) ≥ d(L,M)− d(M,N) ≥ dmin(C)+1
2 .

Hence M is the only element of C s.t. d(M,N) ≤ dmin(C)−1
2 .

Equivalently, M is the unique solution to the

Decoding Problem

Given N ∈ Matk×m(Fq), find M ∈ C which minimizes d(M,N).
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The MinRank Problem

Assume that C = 〈M1, . . . ,Mn〉, then the Decoding Problem becomes

Decoding Problem

Given N ∈ Matk×m(Fq), find x1, . . . , xn ∈ Fq which minimize

rank (N −
∑n

i=1 xiMi ).

which, under our assumptions, is equivalent to the

MinRank Problem

Given M1, . . . ,Mn,N ∈ Matk×m(Fq), find x1, . . . , xn ∈ Fq s.t.

rank (N −
∑n

i=1 xiMi ) ≤ dmin(C)−1
2 .

The latter corresponds to a system of polynomial eqn’s in Fq[x1, . . . , xn].
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Matrix completion

and the Netflix Problem

Matrix completion

Fill in the missing entries of a partially observed matrix in such a way that
the matrix has least possible rank

, or rank at most r .

The MinRank Problem is a generalization of matrix completion, where the
unknown entries are linear forms instead of variables. Matrix completion
and the MinRank Problem arise in coding theory, cryptography,
collaborative filtering, systems theory, IoT localization, and many others.

The Netflix Problem

Given a ratings matrix whose entry (i , j) represents the rating of movie j
by customer i if customer has watched movie j , and is otherwise missing,
fill the remaining entries so that the matrix has low rank.

low rank ! user preferences depend on few factors
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Matrix completion and index coding

Index coding

Find an optimal coding scheme for broadcasting multiple messages to
receivers with different side information.

the corresponding incomplete
matrix is 

1 ∗ ∗ 0
∗ 1 ∗ 0
0 ∗ 1 ∗
∗ 0 0 1


the rank of the completion is the
number of messages to be
broadcasted
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Matrix completion and index coding

Index coding

Find an optimal coding scheme for broadcasting multiple messages to
receivers with different side information.

the corresponding incomplete
matrix is 

1 ∗ ∗ 0
∗ 1 ∗ 0
0 ∗ 1 ∗
∗ 0 0 1


the rank of the completion is the
number of messages to be
broadcasted
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Multivariate cryptography
Fq finite field, q1, . . . , qm ∈ Fq[x1, . . . , xn] usually quadratic

Q : Fn
q −→ Fm

q

α = (α1, . . . , αn) 7−→ (q1(α1, . . . , αn), . . . , qm(α1, . . . , αn))

T : Fm
q −→ Fm

q , S : Fn
q −→ Fn

q random affine linear maps, P := T ◦ Q ◦ S

Private key: Q, S ,T Public key: P = (f1, . . . , fm)

Multivariate cryptosystem: Alice encrypts α ∈ Fn
q to β = P(α) ∈ Fm

q .
Bob knows Q,S ,T , so he can recover α = P−1(β) = S−1 ◦Q−1 ◦T−1(β).

Trapdoor: Construct Q so that Q−1 is efficiently computable.

Multivariate digital signature: In order to sign β ∈ Fm
q , Bob computes

α ∈ Fn
q s.t. P(α) = β.

Security: Eve’s task is finding α s.t. β = P(α), knowing P and β.
She may solve the system f1(x1, . . . , xn) = β1, . . . , fm(x1, . . . , xn) = βm.
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The Multivariate Quadratic Problem and
Gröbner bases

The security of multivariate cryptographic primitives relies on the
computational hardness of solving a system of polynomial equations over a
finite field.

Multivariate Quadratic (MQ) Problem

Compute the solutions of f1 = . . . = fm = 0 over a field, where deg(fi ) = 2.

Assumption

The system has a finite number of solutions over the algebraic closure,
possibly zero.

Over Fq, one can find the solutions by exhaustive search. Gröbner bases
allow us to find the solutions of a system, under the assumption that they
are finitely many. Computing a Gröbner basis has exponential complexity.
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are finitely many. Computing a Gröbner basis has exponential complexity.
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Cryptographic security

Systems coming from multivariate cryptographic schemes and digital signatures
usually...

... consist of equations of small degree, often 2 or 3,

... are defined over small finite fields and contain the field equations,

... have large m and n, m ≥ n.

Systems coming from index calculus on elliptic curves (or on abelian varieties)...

... rarely have a solution,

... have fewer equations in fewer variables of larger degree (e.g. 8 equations of
degree 12 in 6 variables), m ≥ n,

... are defined over large fields, so adding the field equations is not feasible.

The complexity of computing a Gröbner basis of a system gives an upper bound

on the security of the corresponding cryptographic scheme.
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Monomials and term orders

K a field, R = K [x1, . . . , xn]

Definition

A monomial is a product of powers of variables xa := xa1
1 · · · xann ∈ R,

where a ∈ Nn.

E.g., x (3,0,1,2) = x3
1x3x

2
4 ∈ K [x1, x2, x3, x4] is a monomial.

Definition

A term order on R is a total order < on the set of monomials such that:

• if xa < xb, then xa+c < xb+c for any c ∈ Nn (multiplicative)

• 1 ≤ xa for any a ∈ Nn (well-ordering).

Example

If R = K [x ], then we only have one term order 1 < x < x2 < . . .
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Two examples of term orders

Example (Lexicographic order – lex)

xa1
1 · · · xann >lex xb1

1 · · · xbnn if the first nonzero coordinate of
(a1 − b1, . . . , an − bn) is positive.

E.g., x1x3 >lex xd2 for any d , x2
1x

2
2 >lex x1x

2
2x3, and x1x

2
2 >lex x1x2x3.

Example (Degree Reverse Lexicographic order – drl)

xa1
1 · · · xann >drl x

b1
1 · · · xbnn if either

∑n
i=1 ai >

∑n
i=1 bi or∑n

i=1 ai =
∑n

i=1 bi and the last nonzero coordinate of
(a1 − b1, . . . , an − bn) is negative.

E.g., x1x3 >drl x2, x1x
2
2 >drl x1x2x3, and x1x

2
2x

2
3 <drl x

2
1x2x

2
3 .

For the sequel, we fix a term order.
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Leading terms and Gröbner bases
I = (f1, . . . , fm) = {

∑m
i=1 hi fi | hi ∈ R} ideal generated by f1, . . . , fm ∈ R

Definition

The leading term of f =
∑

a∈Nn αax
a ∈ R is in(f ) = max{xa | αa 6= 0}.

The initial ideal of I is in(I ) = (in(f ) | f ∈ I ).
The polynomials g1, . . . , gs ∈ I are a Gröbner basis of I if

in(I ) = (in(g1), . . . , in(gs)).

E.g., in R = F3[x1, x2] with the lex term order, in(x3
2 − x1x

2
2 ) = x1x

2
2 .

I = (x3
2 − x1x

2
2 , x

2
1 + x2

2 ) 3 −x4
2 = (x1 + x2)(x3

2 − x1x
2
2 ) + x2

2 (x2
1 + x2

2 ),

in<(I ) = (x2
1 , x1x

2
2 , x

4
2 )

and x3
2 − x1x

2
2 , x

2
1 + x2

2 , x
4
2 is a (lex) Gröbner basis of I .
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Gröbner bases

(Finite) Gröbner bases always exists, since the initial ideal in(I ) is finitely
generated by Noetherianity.

There is a flat family whose special fiber is in(I ) and whose general fiber is
I . This implies that many algebraic invariants and properties are preserved
when passing from I to in(I ). This makes Gröbner bases an important tool
in commutative algebra and algebraic geometry.

Definition

A Gröbner basis g1, . . . , gs of I is reduced if in(g1), . . . , in(gs) are a
minimal system of generators of in(I ) and in(gi ) does not divide any
monomial in the support of gj for j 6= i .
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Gröbner bases
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minimal system of generators of in(I ) and in(gi ) does not divide any
monomial in the support of gj for j 6= i .
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The importance of being lex
Proposition (Shape Lemma)

Fix the lex term order on R = K [x1, . . . , xn], I = (F) = (f1, . . . , fm) ⊆ R.

Assume that F has finitely many solutions over K and for any solutions α, β ∈ K
n

αn 6= βn. If (F) is radical, then the reduced Gröbner basis of (F) has the form

x1 − h1(xn), x2 − h2(xn), . . . , xn−1 − hn−1(xn), hn(xn)

where deg(hn) = number of solutions of f1 = . . . = fm = 0.

I is radical if f d ∈ I implies f ∈ I .

E.g. (x) is radical and (x2) is not.

If K = Fq and F = {f1, . . . , fm} contains the field equations, then (F) is radical.

The assumption on the solutions is true after applying a change of coordinates to
F , possibly over a field extension.

Hence to solve the polynomial system f1 = . . . = fm = 0 we:

• compute a reduced lex Gröbner basis of (F),

• factor hn(xn) to find its roots,

• for each a s.t. hn(a) = 0 we have a solution (h1(a), . . . , hn−1(a), a).
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The importance of being lex
Proposition (Shape Lemma)

Fix the lex term order on R = K [x1, . . . , xn], I = (F) = (f1, . . . , fm) ⊆ R.

Assume that F has finitely many solutions over K and for any solutions α, β ∈ K
n

αn 6= βn. If (F) is radical, then the reduced Gröbner basis of (F) has the form
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• factor hn(xn) to find its roots,

• for each a s.t. hn(a) = 0 we have a solution (h1(a), . . . , hn−1(a), a).
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x1 − h1(xn), x2 − h2(xn), . . . , xn−1 − hn−1(xn), hn(xn)

where deg(hn) = number of solutions of f1 = . . . = fm = 0.

I is radical if f d ∈ I implies f ∈ I . E.g. (x) is radical and (x2) is not.
If K = Fq and F = {f1, . . . , fm} contains the field equations, then (F) is radical.

The assumption on the solutions is true after applying a change of coordinates to
F , possibly over a field extension.

Hence to solve the polynomial system f1 = . . . = fm = 0 we:

• compute a reduced lex Gröbner basis of (F),
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Buchberger’s Algorithm

It generalizes Gaussian elimination and the Euclidean Algorithm.

Example

f1 = x1x2 + x2, f2 = x2
2 − 1, lex order

g1 := f1, g2 := f2,

lcm{in(g1), in(g2)} = lcm{x1x2, x
2
2} = x1x

2
2

S(g1, g2) =
x1x

2
2

in(g1)g1 − x1x
2
2

in(g2)g2 = x2(x1x2 + x2)− x1(x2
2 − 1) = x2

2 + x1  x1 + 1

g3 := x1 + 1

S(g1, g3) = g1 − x2g3 = x2
2 − 1 = 0

S(g2, g3) = x1g2 − x2
2g3 = −x1−x2

2  −x1 − 1 0.

Hence x1x2 + x2, x
2
2 − 1, x1 + 1 are a lexicographic Gröbner basis of (f1, f2).

Buchberger’s Algorithm computes and reduces S-pairs for each pair of
elements in the Gröbner basis and adds the results to the Gröbner basis.
When all the S-pairs reduce to zero, a Gröbner basis has been found.
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Buchberger’s Algorithm computes and reduces S-pairs for each pair of
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Linear algebra based algorithms

They are the most efficient. They include F4/F5 and XL and its variants.

Definition

For each degree d one has a Macaulay matrix:

• columns ↔ monomials of degree ≤ d

• rows ↔ polynomials xafi of degree ≤ d

• the entry (i , j) is the coefficient of the monomial corresponding to
column j in the polynomial corresponding to row i

The matrix is brought in RREF. If the rows are not a Gröbner basis of
I = (f1, . . . , fm), then one looks at the Macaulay matrix in the next degree.

Some variants add new rows to the matrix, whenever a degree drop occurs.
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Example

f1 = x1x2 + x2, f2 = x2
2 − 1, lex order

x2
1 x1x2 x1 x2

2 x2 1

f1 0 1 0 0 1 0
f2 0 0 0 1 0 −1

x1 + 1

and x2
2 − 1 are a reduced lexicographic Gröbner basis of (f1, f2).
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Gröbner bases computations and change of
order

The complexity of computing a Gröbner basis...

... is usually largest for the lexicographic order and smallest for the
degree reverse lexicographic order

... is dominated by the cost of Gaussian elimination in the largest matrix

Algorithm (Faugère, Gianni, Lazard, Mora)

A Gröbner basis for I = (f1, . . . , fm) wrt a given term order can be
converted into a Gröbner basis for I wrt a different term order with
O(n2d3) operations, where d is the number of solutions of
f1 = . . . = fm = 0.

Polynomial systems of cryptographic interest typically have d = 1 or d
very small.
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Computing a lex Gröbner basis in practice

• compute a drl Gröbner basis using a linear algebra based algorithm

• convert it into a lex one using the FGLM Algorithm

For cryptographic systems, the complexity is dominated by the first step.

Theorem

The complexity of Gaussian elimination in an a× b matrix is O(a2b)
operations in K .

If we compute matrices up to degree s, then the largest has

a =
m∑
i=1

(
n + s − di − 1

s − di

)
and b =

(
n + s − 1

s

)
where di = deg(fi ).
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Solving degree

Let F = {f1, . . . , fm}, fix the degree reverse lexicographic order.

Definition

The solving degree of F , denoted solv. deg(F), is the least degree for
which Gaussian elimination in the drl Macaulay matrix of degree d yields a
Gröbner basis of (F) = (f1, . . . , fm).
max.GB. deg(F) denotes the largest degree of a polynomial in a reduced
drl Gröbner basis of (F).

Remark

solv. deg(F) ≥ max.GB. deg(F)
solv. deg(F) = max.GB. deg(F) if f1, . . . , fm are homogeneous

Example

The Gröbner basis of f1 = x1x2 + x2, f2 = x2
2 − 1 wrt the lexicographic

order is x1 + 1, x2
2 − 1, so max.GB. deg(F) = 2 < 3 = solv. deg(F).
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Homogeneous polynomials and homogenization

Definition

A polynomial f is homogeneous if all the monomials in the support of f
have the same degree.

E.g., x2
1x3 − 2x3

2 is homogeneous, but x2
1x3 − 2x2 is not.

Definition

The homogenization of f =
∑

a∈Nn αax
a ∈ K [x1, . . . , xn] wrt x0 is

f h =
∑
a∈Nn

αax
ax

deg(f )−|a|
0 ∈ K [x0, . . . , xn],

where |a| = a1 + . . .+ an = deg(xa).

E.g., the homogenization of f = x2
1x3 − 2x2 wrt x0 is f h = x2

1x3 − 2x2
0x2.
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A provable bound for the solving degree

Let I = (f1, . . . , fm) ⊆ R = K [x1, . . . , xn], deg(fi ) = di , d1 ≥ . . . ≥ dm

Fh = {f h1 , . . . , f hm},

(Fh) ⊆ I h = (f h | f ∈ I )

⊆ S = K [x0, . . . , xn].

Theorem (Lazard)

Suppose that (Fh) is in generic coordinates, then
solv. deg(I ) ≤ d1 + . . .+ dn+1 − n.

Theorem (Caminata, G.)

Suppose that (Fh) is in generic coordinates, then
reg(Fh) ≥ max.GB. deg(Fh) = solv. deg(Fh) ≥ solv. deg(F)

≥

max.GB. deg(F) = max.GB. deg(I h) = solv. deg(I h)

where reg(Fh) is the Castelnuovo-Mumford regularity of (Fh).
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The Castelnuovo-Mumford regularity

J = (F1, . . . ,Fm), Fi ∈ S = K [x0, . . . , xn] homogeneous of deg(Fi ) = di

0→
`p⊕
i=1

S(−bp,i )→ · · · →
`1⊕
i=1

S(−b1,i )→
m⊕
i=1

S(−di )
(F1,...,Fm)−→

J

→ 0

Definition

The Castelnuovo-Mumford regularity of J is reg(J) = max{bj ,i − j , di}.

How to compute the Castelnuovo-Mumford regularity of Fh?

We can compute it from a Gröbner basis of Fh.

Have we made any progress?

Yes, because we know a lot on the Castelnuovo-Mumford regularity.
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The Castelnuovo-Mumford regularity

J = (F1, . . . ,Fm), Fi ∈ S = K [x0, . . . , xn] homogeneous of deg(Fi ) = di

0→
`p⊕
i=1

S(−bp,i )→ · · · →
`1⊕
i=1

S(−b1,i )→
m⊕
i=1

S(−di )
(F1,...,Fm)−→ J → 0

Definition

The Castelnuovo-Mumford regularity of J is reg(J) = max{bj ,i − j , di}.

How to compute the Castelnuovo-Mumford regularity of Fh?

We can compute it from a Gröbner basis of Fh.
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Example – The complexity of MinRank

MinRank Problem

Given M1, . . . ,Mn,N ∈ Matk×m(Fq) and r < min{k ,m}, find x1, . . . , xn ∈ Fq s.t.

rank (N −
∑n

i=1 xiMi ) ≤ r .

Generalized MinRank Problem

Given M ∈ Matk×m(K [x1, . . . , xn]) and r < min{k,m}, find x1, . . . , xn ∈ K s.t.

rank (M) ≤ r .

The next result was shown by Faugère, Safey El Din, and Spaenlehauer for
dij = d ≥ 1.

Theorem (Caminata, G.)

Let M ∈ Matk×m(R), let r < k ≤ m and n ≥ (m − r)(k − r).
Assume that the entries of M are generic of degree dij with dij > 0 and
dij + dh` = di` + dhj for all i , j , h, `.
Let F be the homogeneous polynomial system of the minors of size r + 1 of M.
Then

solv. deg(F) ≤ (m − r)
r∑

i=1

di,i +
k∑

i=r+1

m∑
j=r+1

dij − (m − r)(k − r) + 1.
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Algebra and geometry

K field, F = {f1, . . . , fm} ⊆ R = K [x1, . . . , xn], I = (F)

Definition

The affine variety associated to I is

V (I ) = {P = (x1, . . . , xn) ∈ Kn | f1(P) = . . . = fm(P) = 0} ⊆ Kn.

Theorem (Hilbert’s Nullstellensatz)

If K = K , then we have a one-to-one correspondence between radical
ideals and affine varieties.

Affine varieties in Kn are the closed sets of the Zarisky topology on Kn.

If K = Fq, then the Zarisky topology is the discrete topology.

If K is infinite, then any ∅ 6= U ⊆ Kn open is dense, i.e. U = Kn.
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Genericity

Definition

A property is generic if it holds on a nonempty Zarisky-open set.

Over a finite field this is meaningless, but over an infinite field this means
that the property holds “almost everywhere”.

However, when one can
describe the open set via the equations of its complement, then one can
check whether any given point belongs to the open set.

Example

Genericity conditions for the statement on the complexity of MinRank:

• the homogenization of the minors of M are the minors of the matrix
obtained from M by homogenizing its entries,

• the zero locus of the minors has codimension (m − r)(k − r).
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Ideals in generic coordinates
K = K , S = K [x0, . . . , xn], J ⊆ S homogeneous
G = GLn+1(K ) acts on S as changes of coordinates

Theorem (Galligo)

There is a nonempty open U ⊆ G ⊆ K (n+1)2

s.t. in(gJ) = in(hJ) for g , h ∈ U.

Definition

gin(J) := in(gJ) for g ∈ U is the generic initial ideal of J wrt the chosen term
order.

Theorem (Bayer, Stillman)

Fix the degree reverse lexicographic order, then

reg(J) = reg(gin(J)).

Hence, if J is in generic coordinates, then

reg(J) = reg(in(J)).
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Are we in generic coordinates?
I do not know of any deterministic algorithm that does that.

One could check whether in(J) = in(gJ) for a random g ∈ G , but this only shows
that J is in generic coordinates with high probability.

Theorem (Caminata, G.)

F ⊆ Fq[x1, . . . , xn]. Assume that

xq1 − x1, . . . , x
q
n − xn ∈ F or xq1 − x2, . . . , x

q
n−1 − xn, x

q
n − x1 ∈ F .

Then (Fh) is in generic coordinates.

Corollary (Macaulay Bound)

F = {f1, . . . , fm} ⊆ R = Fq[x1, . . . , xn], deg(fi ) = di , d1 ≥ . . . ≥ dm, m ≥ n + 1.
Assume that (Fh) is in generic coordinates, or that F contains the field
equations. Then

solv. deg(F) ≤ d1 + . . .+ dn+1 − n.
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Are we in generic coordinates?
I do not know of any deterministic algorithm that does that.

One could check whether in(J) = in(gJ) for a random g ∈ G , but this only shows
that J is in generic coordinates with high probability.

Theorem (Caminata, G.)

F ⊆ Fq[x1, . . . , xn]. Assume that

xq1 − x1, . . . , x
q
n − xn ∈ F or xq1 − x2, . . . , x

q
n−1 − xn, x

q
n − x1 ∈ F .

Then (Fh) is in generic coordinates.

Corollary (Macaulay Bound)

F = {f1, . . . , fm} ⊆ R = Fq[x1, . . . , xn], deg(fi ) = di , d1 ≥ . . . ≥ dm, m ≥ n + 1.
Assume that (Fh) is in generic coordinates, or that F contains the field
equations. Then

solv. deg(F) ≤ d1 + . . .+ dn+1 − n.
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Summary

• polynomial systems arise in many models from engineering and the
sciences

• they can be solved over finite fields by computing a Gröbner basis

• the complexity of linear algebra algorithms for computing Gröbner
bases is upper bounded by a function of the solving degree, which is
the least degree for which Gaussian elimination in the Macaulay
matrix yields a Gröbner basis

• the Castelnuovo-Mumford regularity of the homogenization of a
system is an upper bound for its solving degree

• the arguments to prove this use the concept of genericity from
algebraic geometry

Thank you for your attention!
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