Toric Eigenvalue Methods for Solving Sparse Polynomial Systems

Matías R. BENDER

Technische Universität Berlin

4 March 2021

Supported by the ERC under the European's Horizon 2020 research and innovation programme (grant no. 787840)

"Toric Eigenvalue Methods for Solving Sparse Polynomial Systems"

• Symbolic-numerical algorithm for solving sparse polynomial systems when solutions near "infinity".

- Symbolic-numerical algorithm for solving sparse polynomial systems when solutions near "infinity".
 - $\bullet~\mbox{Symbolic} \rightarrow \mbox{Reduces problem to linear algebra}.$

"Toric Eigenvalue Methods for Solving Sparse Polynomial Systems"

- Symbolic-numerical algorithm for solving sparse polynomial systems when solutions near "infinity".
 - $\bullet~\mbox{Symbolic} \rightarrow \mbox{Reduces problem to linear algebra}.$

 $\bullet~$ Numerical \rightarrow Linear algebra with finite precision.

- Symbolic-numerical algorithm for solving sparse polynomial systems when solutions near "infinity".
 - $\bullet~\mbox{Symbolic} \rightarrow \mbox{Reduces problem to linear algebra}.$
 - Relies on toric geometry.
 - $\bullet~$ Numerical $\rightarrow~$ Linear algebra with finite precision.

- Symbolic-numerical algorithm for solving sparse polynomial systems when solutions near "infinity".
 - $\bullet~\mbox{Symbolic} \rightarrow \mbox{Reduces problem to linear algebra}.$
 - Relies on toric geometry.
 - Size of matrices controlled by regularity. In general \rightarrow combinatorics of the Newton polytopes.
 - $\bullet~$ Numerical \rightarrow Linear algebra with finite precision.

- Symbolic-numerical algorithm for solving sparse polynomial systems when solutions near "infinity".
 - $\bullet~\mbox{Symbolic} \rightarrow \mbox{Reduces problem to linear algebra}.$
 - Relies on toric geometry.
 - Size of matrices controlled by regularity. In general \rightarrow combinatorics of the Newton polytopes.
 - $\bullet~$ Numerical $\rightarrow~$ Linear algebra with finite precision.
- Bound for regularity of complete intersections. (Generic case!)

- Symbolic-numerical algorithm for solving sparse polynomial systems when solutions near "infinity".
 - $\bullet~\mbox{Symbolic} \rightarrow \mbox{Reduces problem to linear algebra}.$
 - Relies on toric geometry.
 - Size of matrices controlled by regularity. In general \rightarrow combinatorics of the Newton polytopes.
 - $\bullet~$ Numerical $\rightarrow~$ Linear algebra with finite precision.
- Bound for regularity of complete intersections. (Generic case!)
- Algorithm works in presence of multiplicities.

• Consider $f_1, \ldots, f_r \in S := \mathbb{C}[x_1, \ldots, x_n]$ and $I := \langle f_1, \ldots, f_r \rangle$.

- Consider $f_1, \ldots, f_r \in S := \mathbb{C}[x_1, \ldots, x_n]$ and $I := \langle f_1, \ldots, f_r \rangle$.
- Assume $\{f_1 = \cdots = f_r = 0\}$ has finite # of different solutions on \mathbb{C}^n , namely $\{\zeta_1, \ldots, \zeta_\delta\}$.

- Consider $f_1, \ldots, f_r \in S := \mathbb{C}[x_1, \ldots, x_n]$ and $I := \langle f_1, \ldots, f_r \rangle$.
- Assume {f₁ = ··· = f_r = 0} has finite # of different solutions on Cⁿ, namely {ζ₁,...,ζ_δ}.
- The quotient R := S/I describes the solution set.

- Consider $f_1, \ldots, f_r \in S := \mathbb{C}[x_1, \ldots, x_n]$ and $I := \langle f_1, \ldots, f_r \rangle$.
- Assume {f₁ = ··· = f_r = 0} has finite # of different solutions on Cⁿ, namely {ζ₁,...,ζ_δ}.
- The quotient R := S/I describes the solution set.
 - It is vector space of dimension $\sum_{i} \mu_{i}$, where μ_{i} multiplicity of ζ_{i} .

- Consider $f_1, \ldots, f_r \in S := \mathbb{C}[x_1, \ldots, x_n]$ and $I := \langle f_1, \ldots, f_r \rangle$.
- Assume {f₁ = ··· = f_r = 0} has finite # of different solutions on Cⁿ, namely {ζ₁,...,ζ_δ}.
- The quotient R := S/I describes the solution set.
 - It is vector space of dimension $\sum_{i} \mu_{i}$, where μ_{i} multiplicity of ζ_{i} .

Eigenvalues of the multiplication maps

Given $g \in S$, consider $M_g : R \to R$, s.t. $h + I \mapsto g h + I$. Then,

$$\operatorname{CharPol}(M_g)(\lambda) = \prod_{i=1}^{\delta} (g(\zeta_i) - \lambda)^{\mu_i}.$$

- Consider $f_1, \ldots, f_r \in S := \mathbb{C}[x_1, \ldots, x_n]$ and $I := \langle f_1, \ldots, f_r \rangle$.
- Assume {f₁ = ··· = f_r = 0} has finite # of different solutions on Cⁿ, namely {ζ₁,...,ζ_δ}.
- The quotient R := S/I describes the solution set.
 - It is vector space of dimension $\sum_{i} \mu_{i}$, where μ_{i} multiplicity of ζ_{i} .

Eigenvalues of the multiplication maps

Given $g \in S$, consider $M_g: R o R$, s.t. $h + I \mapsto g \ h + I$. Then,

$$\operatorname{CharPol}(M_g)(\lambda) = \prod_{i=1}^{\delta} (g(\zeta_i) - \lambda)^{\mu_i}.$$

Note that, for $h, g \in S$, $M_h M_g = M_{hg} = M_g M_h$.

Solve system \rightarrow simultaneous Schur triangulation (diagonalization) of $M_{x_1},\ldots,M_{x_n}.$

Matías R. BENDER

$$\begin{cases} f_1 := x^2 + 3xy - 5x - y + 2\\ f_2 := x^2 + xy - 3x - 3y + 4 \end{cases}$$

$\begin{cases} f_1 := x^2 \\ f_2 := x^2 \end{cases}$	+3xy +xy	y' = 5x -3x	к — у - — З у -	+ 2 + 4		$egin{array}{llllllllllllllllllllllllllllllllllll$				
	$ xy^2$	y^2	x^2y	xy	y	<i>x</i> ³	<i>x</i> ²	x	1	
f_1				3	-1		1	-5	2	
$x f_1$			3	-1		1	-5	2		
y f ₁	3	-1	1	-5	2					
f_2				1	-3		1	-3	4	
$x f_2$			1	-3		1	-3	4		
y f ₂	1	-3	1	-3	4					

$\begin{cases} f_1 := x^2 \\ f_2 := x^2 \end{cases}$	+ 3 xy + xy -	- 3 x	к — у - — З у -	+ 2 + 4	$\begin{array}{l} \operatorname{Sylv}:(g_1,g_2)\mapsto g_1f_1+g_2f_2\\ M_y:S/I\to S/I\cong\operatorname{coker}(\operatorname{Sylv} \end{array}$						
[]	xy ²	y^2	x^2y	xy	y	<i>x</i> ³	<i>x</i> ²	x	1		
f_1				3	-1		1	-5	2		
x f ₁			3	-1		1	-5	2			
<i>y f</i> ₁	3	$^{-1}$	1	-5	2						
f ₂				1	-3		1	-3	4		
x f ₂			1	-3		1	-3	4			
y f ₂	1	-3	1	-3	4						
$x^2 y$			1								
<u>х у</u>				1							
1 <i>y</i>					1				-		

$\begin{cases} f_1 := x^2 \\ f_2 := x^2 \end{cases}$	+ 3 xy + xy -	- 3 x	к — у - — З у -	+ 2 + 4		Sylv M _y :	$\begin{array}{l} \operatorname{Sylv}:(g_1,g_2)\mapsto g_1f_1+g_2f_2\\ \mathcal{A}_y:S/I\to S/I\cong\operatorname{coker}(\operatorname{Sylv}) \end{array}$					
[]	xy ²	y^2	x^2y	xy	у	<i>x</i> ³	<i>x</i> ²	x	1			
f_1				3	-1		1	-5	2			
$x f_1$			3	-1		1	-5	2				
y f ₁	3	-1	1	-5	2							
<i>f</i> ₂				1	-3		1	-3	4			
$x f_2$			1	-3		1	-3	4				
y f ₂	1	-3	1	-3	4							
$x^2 y + I$							5/4	-1/2	1/4			
x y + I							-1/4	3/2	- 1/4			
$\left 1 y + I \right $							1/4	- 1/2	5/4			

$\begin{cases} f_1 := x^2 \\ f_2 := x^2 \end{cases}$	+ 3 xy + xy -	$)\mapsto g_1 f_1$ $f/I\cong \operatorname{cok}$	$+g_2 f_2$ er(Sylv)						
[]	xy ²	y^2	x^2y	xy	у	<i>x</i> ³	<i>x</i> ²	x	1
f_1				3	-1		1	-5	2
$x f_1$			3	-1		1	-5	2	
y f ₁	3	-1	1	-5	2				
<i>f</i> ₂				1	-3		1	-3	4
$x f_2$			1	-3		1	-3	4	
y f ₂	1	-3	1	-3	4				
$x^2 y + I$							5/4	-1/2	1/4
$ \mathbf{x}\mathbf{y} + \mathbf{I} $							-1/4	3/2	-1/4
$\begin{bmatrix} 1 y + I \end{bmatrix}$							1/4	- 1/2	5/4

The system has 2 different sols: (-1, 2), and (1, 1) with multiplicity 2.

$\begin{cases} f_1 := x^2 \\ f_2 := x^2 \end{cases}$	+ 3 xy + xy -	- 3 x	< — y - — 3 y -	+ 2 + 4		Sylv M _y :	$s: (g_1, g_2) \\ S/I \to S$	$)\mapsto g_1 f_1$ $f/I\cong \operatorname{cok}$	$+g_2 f_2$ er(Sylv)
ΓΙ	xy ²	y^2	x^2y	xy	у	<i>x</i> ³	<i>x</i> ²	x	1
f_1				3	-1		1	-5	2
x f ₁			3	$^{-1}$		1	-5	2	
y f ₁	3	-1	1	-5	2				
f ₂				1	-3		1	-3	4
$x f_2$			1	-3		1	-3	4	
y f ₂	1	-3	1	-3	4				
$x^2 y + I$							5/4	-1/2	1/4
x y + I							-1/4	3/2	-1/4
$\begin{bmatrix} 1 y + I \end{bmatrix}$							1/4	-1/2	5/4

The system has 2 different sols: (-1, 2), and (1, 1) with multiplicity 2.

$$\begin{bmatrix} 5/4 & -1/2 & 1/4 \\ -1/4 & 3/2 & -1/4 \\ 1/4 & -1/2 & 5/4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ -1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 & & \\ & 1 & \\ & & 1 \end{bmatrix} \cdot \begin{bmatrix} 1/4 & -1/2 & 1/4 \\ -1/4 & 1/2 & 3/4 \\ 1/2 & 0 & -1/2 \end{bmatrix}$$

		<pre>{</pre>	$f_1 := x^2$	+ (1 +	€) xy -	$(3+\varepsilon)$	x +	$(1-\varepsilon)$	/ + <i>ɛ</i>	
		$\int f_2$	$:= x^2 -$	$(1 - \varepsilon$) <i>xy</i> – (1	$1 + \varepsilon$) x	- (1	+ ɛ) y -	+ 2 + ε	
ſ		xy^2	y^2	x^2y	xy	у	x^3	x^2	x	1
	f_1				arepsilon+1	-arepsilon+1		1	<i>−ε</i> − 3	ε
	xf_1			$\varepsilon + 1$	$-\varepsilon + 1$		1	<i>−ε</i> − 3	ε	
	yf_1	$\varepsilon + 1$	$-\varepsilon + 1$	1	- <i>ɛ</i> – 3	ε				
	f_2				arepsilon - 1	-arepsilon-1		1	-arepsilon-1	<i>€</i> + 2
	xf_2			arepsilon-1	-arepsilon-1		1	$-\varepsilon - 1$	<i>€</i> + 2	
	yf ₂	$\varepsilon - 1$	-arepsilon-1	1	-arepsilon-1	<i>ε</i> + 2				
	x^2y			1						
	xy				1					
l	. у					1				

		ſ	$f_1 := x^2$	+(1 +	-ε) xy –	$(3 + \varepsilon)$	<i>x</i> +	$(1-\varepsilon)$	$\prime + \varepsilon$	
		$\int f_2$	$:= x^2 -$	$(1 - \varepsilon$) <i>xy</i> – (1	$1 + \varepsilon$) x	- (1	$+\varepsilon$) y -	$+2+\varepsilon$	
Γ		xy ²	y^2	x^2y	xy	У	x^3	<i>x</i> ²	x	1
f	1				$\varepsilon + 1$	$-\varepsilon + 1$		1	$-\varepsilon - 3$	ε
	f_1			$\varepsilon + 1$	$-\varepsilon + 1$		1	$-\varepsilon - 3$	ε	
y y	f_1	$\varepsilon + 1$	$-\varepsilon + 1$	1	$-\varepsilon - 3$	ε				
f	2				arepsilon-1	-arepsilon-1		1	-arepsilon-1	$\varepsilon + 2$
	f_2			arepsilon-1	-arepsilon-1		1	-arepsilon-1	$\varepsilon + 2$	
y y	f_2	arepsilon - 1	-arepsilon-1	1	-arepsilon-1	$\varepsilon + 2$				
x^2	² y			1						
	y				1					
L١	/					1				_

Solutions: $(-1, \frac{\varepsilon+2}{\varepsilon})$, and (1, 1) with multiplicity 2.

		5	$f_1 := x^2$	+ (1 +	-ε) xy -	$(3 + \varepsilon)$	<i>x</i> +	$(1-\varepsilon)$	$\prime + \varepsilon$	
		ζ f ₂	$:= x^2 -$	$(1 - \varepsilon$) <i>xy</i> – (1	$1 + \varepsilon$) x	- (1	$(+\varepsilon)y$ -	$+2+\varepsilon$	
Γ_		xy^2	y^2	x^2y	xy	у	x^3	x^2	x	ן 1
-	f_1				$\varepsilon + 1$	$-\varepsilon + 1$		1	$-\varepsilon - 3$	ε
	xf_1			$\varepsilon + 1$	$-\varepsilon + 1$		1	$-\varepsilon - 3$	ε	
	yf_1	$\varepsilon + 1$	$-\varepsilon + 1$	1	$-\varepsilon - 3$	ε				
	f_2				arepsilon-1	-arepsilon-1		1	-arepsilon-1	$\varepsilon + 2$
	xf ₂			arepsilon-1	-arepsilon-1		1	$-\varepsilon - 1$	$\varepsilon + 2$	
	yf ₂	$\varepsilon - 1$	-arepsilon-1	1	-arepsilon-1	$\varepsilon + 2$				
	x^2y			1						
	хy				1					
L	у					1				

Solutions: $(-1, \frac{\varepsilon+2}{\varepsilon})$, and (1, 1) with multiplicity 2. As $\varepsilon \to 0$,

• First solution "goes to infinity".

		{ 	$f_1 := x^2$	+(1 + (1 + (1 + (1 + (1 + (1 + (1 + (1	-ε) xy –	$(3+\varepsilon)$	x +	$(1-\varepsilon)$	$1 + \varepsilon$	
			:= x	$(1-\varepsilon$) xy - (1	$L + \varepsilon j x$	- (1	$(+\varepsilon)y$ -	$+2+\varepsilon$	
ſ	-	xy^2	y^2	x^2y	xy	у	x^3	x^2	X	1 -
	f_1				$\varepsilon + 1$	$-\varepsilon + 1$		1	$-\varepsilon - 3$	ε
	xf_1			$\varepsilon + 1$	$-\varepsilon + 1$		1	$-\varepsilon - 3$	ε	
	yf_1	$\varepsilon + 1$	$-\varepsilon + 1$	1	$-\varepsilon - 3$	ε				
	f_2				arepsilon-1	-arepsilon-1		1	-arepsilon-1	$\varepsilon + 2$
	xf_2			arepsilon-1	-arepsilon-1		1	$-\varepsilon - 1$	$\varepsilon + 2$	
	yf_2	$\varepsilon - 1$	-arepsilon-1	1	-arepsilon-1	$\varepsilon + 2$				
	x^2y			1						
	xy				1					
l	_ <i>y</i>					1				-

Solutions: $(-1, \frac{\varepsilon+2}{\varepsilon})$, and (1, 1) with multiplicity 2. As $\varepsilon \to 0$,

- First solution "goes to infinity".
- We invert a nearly-singular matrix \rightarrow Numerically bad!

Matías R. BENDER

Compactification over \mathbb{P}^n

$$\begin{cases} f_1 := x^2 + (1 + \varepsilon) xy - (3 + \varepsilon) x + (1 - \varepsilon) y + \varepsilon \\ f_2 := x^2 - (1 - \varepsilon) xy - (1 + \varepsilon) x - (1 + \varepsilon) y + (2 + \varepsilon) \end{cases}$$

 $\bullet~$ Main issue \rightarrow affine space is not compact.

Compactification over \mathbb{P}^n

$$\begin{cases} f_1 := x^2 + (1 + \varepsilon) xy - (3 + \varepsilon) xz + (1 - \varepsilon) yz + \varepsilon z^2 \\ f_2 := x^2 - (1 - \varepsilon) xy - (1 + \varepsilon) xz - (1 + \varepsilon) yz + (2 + \varepsilon) z^2 \end{cases}$$

- $\bullet~$ Main issue $\rightarrow~$ affine space is not compact.
- Approach \rightarrow "Homogenize" polynomials & solve new system over \mathbb{P}^n .

$$\begin{cases} f_1 := x^2 + (1 + \varepsilon) xy - (3 + \varepsilon) xz + (1 - \varepsilon) yz + \varepsilon z^2 \\ f_2 := x^2 - (1 - \varepsilon) xy - (1 + \varepsilon) xz - (1 + \varepsilon) yz + (2 + \varepsilon) z^2 \end{cases}$$

- $\bullet~$ Main issue $\rightarrow~$ affine space is not compact.
- Approach \rightarrow "Homogenize" polynomials & solve new system over \mathbb{P}^n .
- Eigenvalue theorem \rightarrow multiplication maps at big enough degrees.

$$(S/I)_{\alpha} \xrightarrow{\times g} (S/I)_{\alpha + \deg(g)}$$

$$\begin{cases} f_1 := x^2 + (1 + \varepsilon) xy - (3 + \varepsilon) xz + (1 - \varepsilon) yz + \varepsilon z^2 \\ f_2 := x^2 - (1 - \varepsilon) xy - (1 + \varepsilon) xz - (1 + \varepsilon) yz + (2 + \varepsilon) z^2 \end{cases}$$

- $\bullet~$ Main issue $\rightarrow~$ affine space is not compact.
- Approach \rightarrow "Homogenize" polynomials & solve new system over \mathbb{P}^n .
- Eigenvalue theorem \rightarrow multiplication maps at big enough degrees.

$$\mathbb{C}[V] \cong (S/I)_{\alpha} \xrightarrow{\times g} (S/I)_{\alpha + \deg(g)} \cong \mathbb{C}[V]$$

• At certain degrees, quotient ring \cong affine coord. ring of the points V.

$$\begin{cases} f_1 := x^2 + (1 + \varepsilon) xy - (3 + \varepsilon) xz + (1 - \varepsilon) yz + \varepsilon z^2 \\ f_2 := x^2 - (1 - \varepsilon) xy - (1 + \varepsilon) xz - (1 + \varepsilon) yz + (2 + \varepsilon) z^2 \end{cases}$$

- $\bullet~$ Main issue $\rightarrow~$ affine space is not compact.
- Approach \rightarrow "Homogenize" polynomials & solve new system over \mathbb{P}^n .
- Eigenvalue theorem \rightarrow multiplication maps at big enough degrees.

$$\mathbb{C}[V] \cong (S/I)_{\alpha} \xrightarrow{\times g} (S/I)_{\alpha + \deg(g)} \cong \mathbb{C}[V]$$

- At certain degrees, quotient ring \cong affine coord. ring of the points V.
- Castelnuovo-Mumford regularity.

$$\begin{cases} f_1 := x^2 + (1+\varepsilon) xy - (3+\varepsilon) xz + (1-\varepsilon) yz + \varepsilon z^2 \\ f_2 := x^2 - (1-\varepsilon) xy - (1+\varepsilon) xz - (1+\varepsilon) yz + (2+\varepsilon) z^2 \end{cases}$$

- $\bullet~$ Main issue $\rightarrow~$ affine space is not compact.
- Approach \rightarrow "Homogenize" polynomials & solve new system over \mathbb{P}^n .
- $\bullet\,$ Eigenvalue theorem \rightarrow multiplication maps at big enough degrees.

$$\mathbb{C}[V] \cong (S/I)_{\alpha} \xrightarrow{\times g} (S/I)_{\alpha + \deg(g)} \cong \mathbb{C}[V]$$

$$\begin{cases} f_1 := x^2 + (1+\varepsilon) xy - (3+\varepsilon) xz + (1-\varepsilon) yz + \varepsilon z^2 \\ f_2 := x^2 - (1-\varepsilon) xy - (1+\varepsilon) xz - (1+\varepsilon) yz + (2+\varepsilon) z^2 \end{cases}$$

- $\bullet~$ Main issue $\rightarrow~$ affine space is not compact.
- Approach \rightarrow "Homogenize" polynomials & solve new system over \mathbb{P}^n .
- Eigenvalue theorem \rightarrow multiplication maps at big enough degrees.

$$\mathbb{C}[V] \cong (S/I)_{\alpha} \xrightarrow{\times g} (S/I)_{\alpha + \deg(g)} \cong \mathbb{C}[V]$$

• But... the homogenization might introduce new elements. The new system has 4 solutions over \mathbb{P}^2

$$\begin{cases} f_1 := x^2 + (1+\varepsilon) xy - (3+\varepsilon) xz + (1-\varepsilon) yz + \varepsilon z^2 \\ f_2 := x^2 - (1-\varepsilon) xy - (1+\varepsilon) xz - (1+\varepsilon) yz + (2+\varepsilon) z^2 \end{cases}$$

- $\bullet~$ Main issue $\rightarrow~$ affine space is not compact.
- Approach \rightarrow "Homogenize" polynomials & solve new system over \mathbb{P}^n .
- Eigenvalue theorem \rightarrow multiplication maps at big enough degrees.

$$\mathbb{C}[V] \cong (S/I)_{\alpha} \xrightarrow{\times g} (S/I)_{\alpha + \deg(g)} \cong \mathbb{C}[V]$$

- $\bullet\,$ But... the homogenization might introduce new elements. The new system has 4 solutions over \mathbb{P}^2
 - original solution (1:1:1) with multiplicity 2,

$$\begin{cases} f_1 := x^2 + (1+\varepsilon) xy - (3+\varepsilon) xz + (1-\varepsilon) yz + \varepsilon z^2 \\ f_2 := x^2 - (1-\varepsilon) xy - (1+\varepsilon) xz - (1+\varepsilon) yz + (2+\varepsilon) z^2 \end{cases}$$

- $\bullet~$ Main issue $\rightarrow~$ affine space is not compact.
- Approach \rightarrow "Homogenize" polynomials & solve new system over \mathbb{P}^n .
- Eigenvalue theorem \rightarrow multiplication maps at big enough degrees.

$$\mathbb{C}[V] \cong (S/I)_{\alpha} \xrightarrow{\times g} (S/I)_{\alpha + \deg(g)} \cong \mathbb{C}[V]$$

- $\bullet\,$ But... the homogenization might introduce new elements. The new system has 4 solutions over \mathbb{P}^2
 - original solution (1:1:1) with multiplicity 2,
 - solution "going to infinity" $(-1:1:rac{arepsilon}{arepsilon+2})$, and

$$\begin{cases} f_1 := x^2 + (1+\varepsilon) xy - (3+\varepsilon) xz + (1-\varepsilon) yz + \varepsilon z^2 \\ f_2 := x^2 - (1-\varepsilon) xy - (1+\varepsilon) xz - (1+\varepsilon) yz + (2+\varepsilon) z^2 \end{cases}$$

- $\bullet~$ Main issue $\rightarrow~$ affine space is not compact.
- Approach \rightarrow "Homogenize" polynomials & solve new system over \mathbb{P}^n .
- Eigenvalue theorem \rightarrow multiplication maps at big enough degrees.

$$\mathbb{C}[V] \cong (S/I)_{\alpha} \xrightarrow{\times g} (S/I)_{\alpha + \deg(g)} \cong \mathbb{C}[V]$$

- $\bullet\,$ But... the homogenization might introduce new elements. The new system has 4 solutions over \mathbb{P}^2
 - original solution (1:1:1) with multiplicity 2,
 - solution "going to infinity" $(-1:1:\frac{\varepsilon}{\varepsilon+2})$, and
 - new point (0 : 1 : 0).

$$\begin{cases} f_1 := x^2 + (1 + \varepsilon) xy - (3 + \varepsilon) xz + (1 - \varepsilon) yz + \varepsilon z^2 \\ f_2 := x^2 - (1 - \varepsilon) xy - (1 + \varepsilon) xz - (1 + \varepsilon) yz + (2 + \varepsilon) z^2 \end{cases}$$

- $\bullet~$ Main issue $\rightarrow~$ affine space is not compact.
- Approach \rightarrow "Homogenize" polynomials & solve new system over \mathbb{P}^n .
- Eigenvalue theorem \rightarrow multiplication maps at big enough degrees.

$$\mathbb{C}[V] \cong (S/I)_{\alpha} \xrightarrow{\times g} (S/I)_{\alpha + \deg(g)} \cong \mathbb{C}[V]$$

- $\bullet\,$ But... the homogenization might introduce new elements. The new system has 4 solutions over \mathbb{P}^2
 - original solution (1:1:1) with multiplicity 2,
 - solution "going to infinity" $(-1:1:rac{arepsilon}{arepsilon+2})$, and
 - new point (0 : 1 : 0).

Warning: The homogenization might increase the dim. of our variety.

$$\begin{cases} x^2 + xy - 3x + y + \varepsilon \\ x^2 - xy - x - y + 2 \\ \in \mathbb{C}[x, y] \end{cases}$$

$$\begin{cases} x^2 + xy - 3x + y + \varepsilon \\ x^2 - xy - x - y + 2 \\ \in \mathbb{C}[x, y] \end{cases}$$

$$\begin{cases} x^2 + xy - 3x + y + \varepsilon \\ x^2 - xy - x - y + 2 \\ \in \mathbb{C}[x, y] \end{cases}$$

$$\begin{cases} x^2 + xy - 3x + y + \varepsilon \\ x^2 - xy - x - y + 2 \\ \in \mathbb{C}[x, y] \end{cases}$$

$$\begin{cases} x^2 + xy - 3xz + yz + \varepsilon z^2 \\ x^2 - xy - xz - yz + 2z^2 \\ \in \mathbb{C}[x, y, z] \end{cases}$$

Normal fan Σ of standard 2-dim simplex Gluing the affine pieces $\rightarrow \mathbb{P}^2.$

$$\begin{bmatrix} x^2 + xy - 3xz + yz + \varepsilon z \\ x^2 - xy - xz - yz + 2z^2 \end{bmatrix}$$

Normal fan Σ of standard 2-dim simplex Gluing the affine pieces $\rightarrow \mathbb{P}^2.$

But Newton Polytope is not a simplex...

Normal fan Σ

$$\begin{cases} x^2 + xy - 3x + y + \varepsilon \\ x^2 - xy - x - y + 2 \end{cases}$$

Normal fan Σ

$$\begin{cases} x^2 + xy - 3x + y + \varepsilon \\ x^2 - xy - x - y + 2 \end{cases}$$

Normal fan Σ

$$\left\{ \begin{array}{l} x^2 + xy - 3x + y + \varepsilon \\ x^2 - xy - x - y + 2 \end{array} \right.$$

$$\left\{ \begin{array}{l} x^2 + xy - 3x + y + \varepsilon \\ x^2 - xy - x - y + 2 \end{array} \right.$$

Normal fan Σ Gluing the affine pieces $\rightarrow \mathcal{H}_1.$

But how we "homogenize"?

• Cox ring $S \longrightarrow$ Homogeneous coord. ring of a proj. toric variety X.

- Cox ring $S \longrightarrow$ Homogeneous coord. ring of a proj. toric variety X.
- At degree α , monomials in $S_{\alpha} \leftrightarrow$ integer points of a polytope P_{α} .

- Cox ring $S \longrightarrow$ Homogeneous coord. ring of a proj. toric variety X.
- At degree α , monomials in $S_{\alpha} \leftrightarrow$ integer points of a polytope P_{α} .
- Given affine $\hat{f}_1, \ldots, \hat{f}_r \to \text{Normal projective toric variety } X$ associated to Minkowski sum of Newton polytopes.

- Cox ring $S \longrightarrow$ Homogeneous coord. ring of a proj. toric variety X.
- At degree α , monomials in $S_{\alpha} \leftrightarrow$ integer points of a polytope P_{α} .
- Given affine $\hat{f}_1, \ldots, \hat{f}_r \to Normal projective toric variety X associated to Minkowski sum of Newton polytopes.$
- We can homogenize each $\hat{f}_i \longrightarrow f_i \in S_{\alpha_i}$.

Each α_i corresponds to the Newton polytope of \hat{f}_i .

- Cox ring $S \longrightarrow$ Homogeneous coord. ring of a proj. toric variety X.
- At degree α , monomials in $S_{\alpha} \leftrightarrow$ integer points of a polytope P_{α} .
- Given affine $\hat{f}_1, \ldots, \hat{f}_r \to Normal projective toric variety X associated to Minkowski sum of Newton polytopes.$
- We can homogenize each $\hat{f}_i \longrightarrow f_i \in S_{\alpha_i}$.

Each α_i corresponds to the Newton polytope of \hat{f}_i .

• Hence, we work with $I := \langle f_1, \dots, f_r \rangle \subset S$ and its associated scheme $V_X(I)$.

$$V_{\mathbb{C}^n}(\langle \hat{f}_1,\ldots,\hat{f}_r\rangle)\cap (\mathbb{C}^*)^n \hookrightarrow V_X(I).$$

- Cox ring $S \longrightarrow$ Homogeneous coord. ring of a proj. toric variety X.
- At degree α , monomials in $S_{\alpha} \leftrightarrow$ integer points of a polytope P_{α} .
- Given affine $\hat{f}_1, \ldots, \hat{f}_r \to Normal projective toric variety X associated to Minkowski sum of Newton polytopes.$
- We can homogenize each $\hat{f}_i \longrightarrow f_i \in S_{\alpha_i}$.

Each α_i corresponds to the Newton polytope of \hat{f}_i .

• Hence, we work with $I := \langle f_1, \ldots, f_r \rangle \subset S$ and its associated scheme $V_X(I)$.

$$V_{\mathbb{C}^n}(\langle \hat{f}_1,\ldots,\hat{f}_r\rangle)\cap (\mathbb{C}^*)^n \hookrightarrow V_X(I).$$

• Assuming 0-dim $V_X(I) \rightarrow$ we want coordinates of the points.

Solving using Eigenvalue Computations

- We introduce new notion of regularity of 0-dim subschemes $V_X(I)$.
- Main property, if $\alpha \in \operatorname{Reg}(S/I)$, then $(S/I)_{\alpha} \cong \mathbb{C}[V_X(I)]$.

Toric eigenvalue theorem

[Thm 3.1; B., Telen '21+]

Consider a 0-dim subscheme of X, V_X(I) = {ζ₁,...,ζ_δ},
 each ζ_i with multiplicity μ_i.

• Let
$$\alpha$$
, $(\alpha + \alpha_0) \in \operatorname{Reg}(S/I)$.

• For each $g\in S_{lpha_0}$, consider the multiplication map

$$M_{g}: (S/I)_{lpha}
ightarrow (S/I)_{lpha+lpha_{0}}.$$

Then,

- For $h \in S_{\alpha_0}$ such that $V_X(I) \cap V_X(h) = \emptyset$, M_h is invertible.
- Moreover, for $g\in S_{lpha_0}$,

$$\operatorname{CharPol}(M_h^{-1} \circ M_g)(\lambda) = \prod_i \left(\frac{g}{h}(\zeta_i) - \lambda\right)^{\mu_i}$$

It generalizes reduced version in [Telen '20]

- Generic square systems \rightarrow complete intersections (CI) over X. \implies we "know" the resulting variety:
 - $\bullet~$ BKK bound \rightarrow Number of solutions of the system.

- Generic square systems → complete intersections (CI) over X.
 ⇒ we "know" the resulting variety:
 - $\bullet~$ BKK bound \rightarrow Number of solutions of the system.
- We characterize the regularity of these systems.

- Generic square systems → complete intersections (CI) over X.
 ⇒ we "know" the resulting variety:
 - $\bullet~$ BKK bound \rightarrow Number of solutions of the system.
- We characterize the regularity of these systems.

Theorem[Thm 4.4; B., Telen '21+]Let
$$I = \langle f_1, \ldots, f_n \rangle$$
 such that $f_i \in S_{\alpha_i}$, nef $\alpha_i \in \operatorname{Pic}(X)$, and $V_X(I)$ CI.For any $V_X(I)$ -basepoint free $\alpha_0 \in \mathbb{Q}\operatorname{Pic}(X)$, we have $\alpha_1 + \cdots + \alpha_n + \alpha_0 \in \operatorname{Reg}(S/I)$.

• In practice, we compute with matrices of size

$$\left(\sum \operatorname{NewtonPolytope}(\hat{f}_i)
ight)\cap\mathbb{Z}^n$$

as symbolic techniques like sparse resultants [Emiris, 96'] and Gröbner bases [B., Faugère, Tsigaridas '19].

Matías R. BENDER

• Generic square systems \rightarrow complete intersections (CI) over X.

Theorem

[Thm 4.4; B., Telen '21+]

Let $I = \langle f_1, \ldots, f_n \rangle$ such that $f_i \in S_{\alpha_i}$, nef $\alpha_i \in \operatorname{Pic}(X)$, and $V_X(I)$ CI. For any $V_X(I)$ -basepoint free $\alpha_0 \in \mathbb{Q}\operatorname{Pic}(X)$, we have

 $\alpha_1 + \cdots + \alpha_n + \alpha_0 \in \operatorname{Reg}(S/I).$

• Proof relies on vanishing of sheaf cohomology

 \rightarrow depends on combinatorics of the polytopes.

• Generic square systems \rightarrow complete intersections (CI) over X.

Theorem

[Sec. 4.3; B., Telen '21+]

Let $I = \langle f_1, \ldots, f_n \rangle$ such that $f_i \in S_{\alpha_i}$, nef $\alpha_i \in \operatorname{Pic}(X)$, and $V_X(I)$ CI. For any $V_X(I)$ -basepoint free $\alpha_0 \in \mathbb{Q}\operatorname{Pic}(X)$, we have

 $\alpha_1 + \cdots + \alpha_n + \alpha_0 - \beta \in \operatorname{Reg}(S/I).$

- Proof relies on vanishing of sheaf cohomology \rightarrow depends on combinatorics of the polytopes.
- For special toric varieties, we improve our bounds:
 - Projective space $X = \mathbb{P}^n$,

 $\beta = n.$

• Generic square systems \rightarrow complete intersections (CI) over X.

Theorem

[Sec. 4.3; B., Telen '21+]

Let $I = \langle f_1, \ldots, f_n \rangle$ such that $f_i \in S_{\alpha_i}$, nef $\alpha_i \in \operatorname{Pic}(X)$, and $V_X(I)$ CI. For any $V_X(I)$ -basepoint free $\alpha_0 \in \mathbb{Q}\operatorname{Pic}(X)$, we have

 $\alpha_1 + \cdots + \alpha_n + \alpha_0 - \beta \in \operatorname{Reg}(S/I).$

- Proof relies on vanishing of sheaf cohomology \rightarrow depends on combinatorics of the polytopes.
- For special toric varieties, we improve our bounds:
 - Projective space $X = \mathbb{P}^n$, $\rightarrow \beta = n$.
 - Weighted projective space $X = \mathbb{P}(w_0, \ldots, w_n)$,

$$\beta = \sum_{j=0}^{n} w_j.$$

• Generic square systems \rightarrow complete intersections (CI) over X.

Theorem

[Sec. 4.3; B., Telen '21+]

Let $I = \langle f_1, \ldots, f_n \rangle$ such that $f_i \in S_{\alpha_i}$, nef $\alpha_i \in \operatorname{Pic}(X)$, and $V_X(I)$ CI. For any $V_X(I)$ -basepoint free $\alpha_0 \in \mathbb{Q}\operatorname{Pic}(X)$, we have

 $\alpha_1 + \cdots + \alpha_n + \alpha_0 - \beta \in \operatorname{Reg}(S/I).$

- Proof relies on vanishing of sheaf cohomology \rightarrow depends on combinatorics of the polytopes.
- For special toric varieties, we improve our bounds:
 - Projective space $X = \mathbb{P}^n$, $\rightarrow \qquad \beta = n$.
 - Weighted projective space $X = \mathbb{P}(w_0, \ldots, w_n), \quad \rightarrow \quad \beta = \sum_i w_i.$
 - Unmixed systems X_P (NewtonPolytope(\hat{f}_i) = P),

 $\beta = (\text{codegree}(P) - 1) \alpha_P.$

• Generic square systems \rightarrow complete intersections (CI) over X.

Theorem

[Sec. 4.3; B., Telen '21+]

Let $I = \langle f_1, \ldots, f_n \rangle$ such that $f_i \in S_{\alpha_i}$, nef $\alpha_i \in \operatorname{Pic}(X)$, and $V_X(I)$ CI. For any $V_X(I)$ -basepoint free $\alpha_0 \in \mathbb{Q}\operatorname{Pic}(X)$, we have

 $\alpha_1 + \cdots + \alpha_n + \alpha_0 - \beta \in \operatorname{Reg}(S/I).$

- Proof relies on vanishing of sheaf cohomology \rightarrow depends on combinatorics of the polytopes.
- For special toric varieties, we improve our bounds:
 - Projective space $X = \mathbb{P}^n$, $\rightarrow \qquad \beta = n$.
 - Weighted projective space $X = \mathbb{P}(w_0, \dots, w_n)$, $\rightarrow \beta = \sum_j w_j$.
 - Unmixed systems X_P $\rightarrow \beta = (\operatorname{codeg}(P) 1) \alpha_P$.
 - Multiprojective space $X = \mathbb{P}^{n_1} imes \cdots imes \mathbb{P}^{n_r}$,

$$\beta = (n_1, \ldots, n_r).$$

Wrapping up

In the paper

- Symbolic-numerical algorithm
- Eigenvalue theorem in presence of multiplicities
- (Characterization of Eigenvectors)
- Regularity for complete intersections
 - Improvements for special cases: Unmixed, multihomogeneous, weighted homogeneous, (product of varieties, non-all variables present...)
 - Matrices of same (or smaller) size than GBs, Resultants.

• (Test for regularity. Examples!)

Wrapping up

In the paper

- Symbolic-numerical algorithm
- Eigenvalue theorem in presence of multiplicities
- (Characterization of Eigenvectors)
- Regularity for complete intersections
 - Improvements for special cases: Unmixed, multihomogeneous, weighted homogeneous, (product of varieties, non-all variables present...)
 - Matrices of same (or smaller) size than GBs, Resultants.
- (Test for regularity. Examples!)

What's next?

- Efficient criterion for regularity.
- Solve accurately using Eigenvectors.
- Precision analysis. Condition numbers.

Wrapping up

In the paper

- Symbolic-numerical algorithm
- Eigenvalue theorem in presence of multiplicities
- (Characterization of Eigenvectors)
- Regularity for complete intersections
 - Improvements for special cases: Unmixed, multihomogeneous, weighted homogeneous, (product of varieties, non-all variables present...)
 - Matrices of same (or smaller) size than GBs, Resultants.
- (Test for regularity. Examples!)

What's next?

- Efficient criterion for regularity.
- Solve accurately using Eigenvectors.
- Precision analysis. Condition numbers.

Thank you!

[arXiv:2006.10654]

Regularity for 0-dimensional subschemes

 Non-unique definition of CM regularity on multigraded setting, e.g., [Maclagan, Smith '03, Sidman, Van Tuyl '06, Botbol, Chardin '17]

Regularity

For zero-dimensional $Y := V_X(I)$ (with δ^+ points, counting multipl.):

$$\operatorname{Reg}(S/I) := \{ \alpha \in \operatorname{Cl}(X) : \dim_{\mathbb{C}}((S/I)_{\alpha}) = \delta^+, \\ I_{\alpha} = (I : B^{\infty})_{\alpha}, \text{ and} \\ \alpha \text{ is } V_X(I) \text{-basepoint free} \} \\ (\alpha \text{ is } V_X(I) \text{-basepoint free} \leftrightarrow (\exists h \in S_{\alpha}) V_X(h) \cap Y = \emptyset)$$

 $\alpha \in \operatorname{Reg}(S/I) \implies (S/I)_{\alpha} \cong \mathbb{C}[Y]$ [Thm 4.1; B., Telen '21+]

Regularity pair

Pair $(\alpha, \alpha_0) \in \operatorname{Cl}(X)^2$ such that

• α_0 is $V_X(I)$ -basepoint free.

•
$$\alpha, \alpha + \alpha_0 \in \operatorname{Reg}(S/I)$$

Matías R. BENDER

Toric eigenvalue methods for sparse systems