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e Joint work with Simon Telen (MPI MiS). [arXiv:2006.10654]

“Toric Eigenvalue Methods for Solving Sparse Polynomial Systems”

@ Symbolic-numerical algorithm for solving sparse polynomial systems
when solutions near “infinity”.
e Symbolic — Reduces problem to linear algebra.

@ Relies on toric geometry.
o Size of matrices controlled by regularity.
In general — combinatorics of the Newton polytopes.

o Numerical — Linear algebra with finite precision.

@ Bound for regularity of complete intersections. (Generic case!)

@ Algorithm works in presence of multiplicities.
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e Consider f1,...,f, € S:=Cl[x1,...,x5) and | := (f1,...,f).
@ Assume {fi = --- = f, = 0} has finite # of different solutions on C",
namely {(1,...,(s}
@ The quotient R := S/I describes the solution set.
o It is vector space of dimension >, 11;, where 11; multiplicity of (.

Eigenvalues of the multiplication maps
Given g € S, consider My : R — R, st. h+/+— gh+ 1. Then,

CharPol(M,)(\) = H(g ¢i) =

Note that, for h,g € S, My Mg = My g = Mg Mj,.

Solve system — simultaneous Schur triangulation (diagonalization) of
My ..., My,
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Example - Computing multiplication maps

fir=x>4+3xy —5x—y+2
fr=x>+xy—3x—3y+4
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Example - Computing multiplication maps

fli=x2+3xy —5x—y+2 Sylv:(g1,8) > gh+g&h
Hi=x2+xy—3x—3y+4 S/1 = coker(Sylv)
x> v* Xy x y | < X

A 3 1 1 —5 2
xf 3 -1 1| -5 2
v 3 -1 1 -5 2

f 1 -3 1 -3 4

x 1 -3 1 -3 4
yh 1 -3 1 -3 4
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Example - Computing multiplication maps

fir=x>4+3xy —5x—y+2
fr=x>+xy—3x—3y+4

Sylv: (g1,82) > g1fi + &2 f2
M, :S/1 — S/ = coker(Sylv)

H x> y?2 X’y xy oy x5 ‘ X2 X 1 7
fi 3 -1 1 -5 2
x fi 3 -1 1 -5 2
yh 3 -1 1 -5 2
fp 1 -3 1 -3 4
x b 1 -3 1 -3 4
yf 1 -3 1 -3 4
X2y +1 5/4 —-1/2 1/4
xy+1 —-1/4  3)2 —1/4
L ly+1 1/4 —-1/2 5/4

The system has 2 different sols: (—1,2), and (1,1) with multiplicity 2.

5/4 —1/2 1/4 } [ 1 1 2} {2 ] [ 1/4  —1/2  1/4
-1/4 3/2 -1/4 |=| -1 1 1 |- 1 | —-1/4 172 3/4
1/4 -1/2 5/4 1 1 0 1 1/2 0 -1/2
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Problems with solutions at “near infinity”

fi=x>+(1+e)xy—B+e)x+(1—e)y+e
hi=x?—(1—-e)xy—(1+e)x—(1+e)y+2+¢

r ‘ny y2 x2y Xy y x3‘ x? X 1
fi e+1 —+1 1 ——3 €
xf e+l —e+41 1| —--3 €
yvh |e+1 —e+1 1 ——3 €
f> e—1 ——1 1 —e—1 42
xb e—1 —e-1 1 |—e—1 &+4+2
yh |e—1 ——1 1 —e—1 e+2
X%y 1
Xy 1

L ¥y 1 i
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Solutions: (—1, %) and (1,1) with multiplicity 2.
As e =0,
o First solution “goes to infinity”.
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Problems with solutions at “near infinity”

fi=x>+(1+e)xy—B+e)x+(1—¢e)y+e
hi=x?—(1—e)xy—(1+e)x—(1+e)y+2+¢

r ‘ny y2 x2y Xy y x3‘ x? X 1
fi e+1 —e+1 1 ——3 €
xf e+l —e+41 1| —--3 €
vh e+l —e+1 1 ——3 €
f> e—1 —e—1 1 ——1 42
xb e—1 —e-—-1 1 |—-e—1 &+2
vh |e—1 —e—1 1 —e—1 e42
X%y 1
Xy 1

L ¥y 1 i

Solutions: (—1, %) and (1,1) with multiplicity 2.
As e =0,
@ First solution “goes to infinity”.
o We invert a nearly-singular matrix — Numerically bad!
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Compactification over P”

{ fii=x®>+(1+e)xy—B+e)x +(1—¢)y +e
hi=x>—(1-e)xy—(1+e)x —(1+e)y +(2+¢)

@ Main issue — affine space is not compact.
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fii=x®+(1+e)xy—B+e)xz+(1—¢e)yz+ez?
hi=x>—(1-e)xy—(1+e)xz—(1+e)yz+(2+¢)7?
@ Main issue — affine space is not compact.

@ Approach — “Homogenize" polynomials & solve new system over P".
@ Eigenvalue theorem — multiplication maps at big enough degrees.

(C[V] = (S/I)a ig_> (S/l)a+deg(g) = (C[V]

o At certain degrees, quotient ring = affine coord. ring of the points V.
e Castelnuovo-Mumford regularity.
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@ Main issue — affine space is not compact.

@ Approach — “Homogenize" polynomials & solve new system over P".

o Eigenvalue theorem — multiplication maps at big enough degrees.

CIVI = (S/Da =5 (5/1)atdeate) = CIV]

@ But... the homogenization might introduce new elements.
The new system has 4 solutions over P2
o original solution (1 :1: 1) with multiplicity 2,
e solution “going to infinity” (~=1:1: %), and
e new point (0:1:0).
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Compactification over P”

fi=xP 4+ (14e)xy—(B+e)xz+(1—e)yz+ez’
hi=x>—(1-¢g)xy—(l+e)xz—(1+¢e)yz+(2+¢)2>

Main issue — affine space is not compact.

Approach — “Homogenize" polynomials & solve new system over P".

Eigenvalue theorem — multiplication maps at big enough degrees.

CIVI = (S/Da =5 (5/1)atdeate) = CIV]

But... the homogenization might introduce new elements.
The new system has 4 solutions over P2
o original solution (1 :1: 1) with multiplicity 2,
e solution “going to infinity” (~=1:1: %), and
e new point (0:1:0).
Warning: The homogenization might increase the dim. of our variety.
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A better compactification: Projective toric varieties

N I<

Ox
X
z
1 1 2 3
X z d
-1 (C[}—/, }—/ . 0z

Normal fan X of standard 2-dim simplex

Gluing the affine pieces — P2.
x? 4+ xy —3xz+yz +ez?
X2 —xy —xz — yz +22°
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A better compactification: Projective toric varieties

N I<

Ox
X
z
1 1 2 3
X z d
-1 (C[}—/, }—/ . 0z

Normal fan X of standard 2-dim simplex

Gluing the affine pieces — P2.
{ x>+ xy—3x +y +e

2
XE=xy—=x —y +2 But Newton Polytope is not a simplex...
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A better compactification: Projective toric varieties

{

Ox

14 (C[X, % o,

Normal fan X
x>+ xy—3x +y +e¢
X2 —xy—x —y +2
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A better compactification: Projective toric varieties

Ox

Oz

Normal fan ©
x>+ xy—3x +y +e¢ Gluing the affine pieces — ;.
{ X2 —xy—x —y +2
But how we “homogenize”?
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Cox ring and Homogenization

@ Cox ring S — Homogeneous coord. ring of a proj. toric variety X.
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Cox ring and Homogenization

@ Cox ring S — Homogeneous coord. ring of a proj. toric variety X.
o At degree o, monomials in S, <> integer points of a polytope P,.

o Given affine f,. .. ,ﬁ — Normal projective toric variety X associated
to Minkowski sum of Newton polytopes.

@ We can homogenize each f, — i € S,,.
Each «; corresponds to the Newton polytope of f.

@ Hence, we work with [ :=(f1,...,f,) C S
and its associated scheme Vx(/).

Ven((h, ., £)) N(C)" = Vi (1),

@ Assuming 0-dim Vx(/) — we want coordinates of the points.
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Solving using Eigenvalue Computations

@ We introduce new notion of regularity of 0-dim subschemes Vx(/).
e Main property, if & € Reg(S//), then (§/1)a = C[Vx(1)].

Toric eigenvalue theorem [Thm 3.1; B., Telen '21+]

o Consider a 0-dim subscheme of X, Vx (/) = {C1,...,¢s},
each (; with multiplicity p;.

o Let o, (a+ ) € Reg(S/1).
@ For each g € S,,, consider the multiplication map
Mg (S/Da — (S/Datay.
Then. g (S/Da = (S/Nat
e For h € S,, such that Vx(/) N Vx(h) =0, My is invertible.

@ Moreover, for g € S,,,

CharPol(M; ! o Mg)(\) = H <%(C:) - )\)

1

Hi

v

It generalizes reduced version in [Telen '20]
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Regularity for Complete Intersections

@ Generic square systems — complete intersections (Cl) over X.
—> we "know" the resulting variety:

e BKK bound — Number of solutions of the system.
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Regularity for Complete Intersections

@ Generic square systems — complete intersections (Cl) over X.
—> we "know" the resulting variety:

e BKK bound — Number of solutions of the system.

@ We characterize the regularity of these systems.

Theorem [Thm 4.4; B., Telen '21+]

Let / = (fi,..., fy) such that f; € S,,, nef a; € Pic(X), and Vx(/) CI.
For any Vx(/)-basepoint free ap € QPic(X), we have

a1+ -+ apt+ ap EReg(S/l).
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Regularity for Complete Intersections

@ Generic square systems — complete intersections (Cl) over X.
—> we "know" the resulting variety:
e BKK bound — Number of solutions of the system.

@ We characterize the regularity of these systems.
[Thm 4.4; B., Telen '21+]

Theorem
Let / = (fi,..., fy) such that f; € S,,, nef a; € Pic(X), and Vx(/) CI.
For any Vx(/)-basepoint free ap € QPic(X), we have

a1+ -+ apt+ ap EReg(S/l).

@ In practice, we compute with matrices of size
(Z NewtonPolytope(fA,-)) nZ"

as symbolic techniques like sparse resultants [Emiris, 96'] and Grobner
bases [B., Faugere, Tsigaridas '19].
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Regularity for Complete Intersections

@ Generic square systems — complete intersections (Cl) over X.

Theorem [Thm 4.4; B., Telen '21+]

Let / = (fi,..., fy) such that f; € S,,, nef a; € Pic(X), and Vx(/) CI.
For any Vx(/)-basepoint free ap € QPic(X), we have

a1+ -+ apt+ ap GReg(S/l).

@ Proof relies on vanishing of sheaf cohomology
— depends on combinatorics of the polytopes.
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Regularity for Complete Intersections

@ Generic square systems — complete intersections (Cl) over X.

Theorem [Sec. 4.3; B., Telen '21+]

Let / = (fi,..., fy) such that f; € S,,, nef a; € Pic(X), and Vx(/) CI.
For any Vx(/)-basepoint free ap € QPic(X), we have

a1+-‘~+an+ao—B€Reg(5//).

@ Proof relies on vanishing of sheaf cohomology
— depends on combinatorics of the polytopes.

@ For special toric varieties, we improve our bounds:

o Projective space X =P",
B =n.
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Regularity for Complete Intersections

@ Generic square systems — complete intersections (Cl) over X.

Theorem [Sec. 4.3; B., Telen '21+]

Let / = (fi,..., fy) such that f; € S,,, nef a; € Pic(X), and Vx(/) CI.
For any Vx(/)-basepoint free ap € QPic(X), we have

a1+-‘~+an+ao—B€Reg(5//).

@ Proof relies on vanishing of sheaf cohomology
— depends on combinatorics of the polytopes.

@ For special toric varieties, we improve our bounds:
o Projective space X =P", — B8 =n.
o Weighted projective space X = P(wy, ..., w,),

B=> w.
j=0
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Regularity for Complete Intersections

@ Generic square systems — complete intersections (Cl) over X.

Theorem [Sec. 4.3; B., Telen '21+]

Let / = (fi,..., fy) such that f; € S,,, nef a; € Pic(X), and Vx(/) CI.
For any Vx(/)-basepoint free ap € QPic(X), we have

a1+-‘~+an+ao—B€Reg(5//).

@ Proof relies on vanishing of sheaf cohomology
— depends on combinatorics of the polytopes.

@ For special toric varieties, we improve our bounds:
o Projective space X =P", — B8 =n.
o Weighted projective space X = P(wy, ... ,|A/v,,), — 8= Zj w;.
o Unmixed systems Xp (NewtonPolytope(f;) = P),
B = (codegree(P) — 1) ap.
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Regularity for Complete Intersections

@ Generic square systems — complete intersections (Cl) over X.

Theorem [Sec. 4.3; B., Telen '21+]

Let / = (fi,..., fy) such that f; € S,,, nef a; € Pic(X), and Vx(/) CI.
For any Vx(/)-basepoint free ap € QPic(X), we have

a1+-‘-+an+ao—6€Reg(5//).

@ Proof relies on vanishing of sheaf cohomology
— depends on combinatorics of the polytopes.

@ For special toric varieties, we improve our bounds:

o Projective space X =P", — B8 =n.
o Weighted projective space X = P(wy, ..., w,), — 8= Zj w;.
o Unmixed systems Xp — B = (codeg(P) — 1) ap.
o Multiprojective space X =P™ x --- x P,

B =(n,...,n).
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Wrapping up

In the paper

@ Symbolic-numerical algorithm
o Eigenvalue theorem in presence of multiplicities

o (Characterization of Eigenvectors)
@ Regularity for complete intersections

o Improvements for special cases:
Unmixed, multihomogeneous, weighted homogeneous, (product of

varieties, non-all variables present...)
o Matrices of same (or smaller) size than GBs, Resultants.

(Test for regularity. Examples!)
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Wrapping up

In the paper

Symbolic-numerical algorithm
Eigenvalue theorem in presence of multiplicities

°
o (Characterization of Eigenvectors)
@ Regularity for complete intersections

o Improvements for special cases:
Unmixed, multihomogeneous, weighted homogeneous, (product of
varieties, non-all variables present...)

o Matrices of same (or smaller) size than GBs, Resultants.

o (Test for regularity. Examples!)

Efficient criterion for regularity.

Solve accurately using Eigenvectors.

Precision analysis. Condition numbers.

Matias R. BENDER Toric eigenvalue methods for sparse systems 4 March 2021 10 / 10



Wrapping up

In the paper

Symbolic-numerical algorithm
Eigenvalue theorem in presence of multiplicities

(Characterization of Eigenvectors)
Regularity for complete intersections

o Improvements for special cases:
Unmixed, multihomogeneous, weighted homogeneous, (product of
varieties, non-all variables present...)

o Matrices of same (or smaller) size than GBs, Resultants.

(Test for regularity. Examples!)

Efficient criterion for regularity. Thank you!

Solve accurately using Eigenvectors.

Precision analysis. Condition numbers.

[arXiv:2006.10654]
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Regularity for O-dimensional subschemes

@ Non-unique definition of CM regularity on multigraded setting,
e.g., [Maclagan, Smith '03, Sidman, Van Tuyl '06, Botbol, Chardin '17]

Regularity

For zero-dimensional Y := Vx(/) (with T points, counting multipl.):

Reg(S/1) :={a € CI(X) : dimc((5/1)a) =46,
l, = (I : B®),, and
a is Vx(/)-basepoint free}
(o is Vix(I)-basepoint free <» (3h € S,) Vx(h)N'Y = 0) |

a € Reg(S/1) = (S/1)a = C[Y] [Thm 4.1; B. Telen '21+] |

Regularity pair
Pair (a, ag) € CI(X)? such that @ ag is Vx(I)-basepoint free.
° o,a+ ap € Reg(S/1)
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