
Combinatorics and algebra of partially ordered sets
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Partially ordered set = �nite set  endowed with a partial order relation 

abbreviated as "poset" (en français, ordre partiel)

somewhere between

(A) combinatorics, more precisely graph theory

(B) algebra, more precisely representation theory

On the (A) side : a poset is an acyclic and transitively-reduced directed graph

On the (B) side : a poset is a �nite category in which each set  has at most one

element

So posets are both very concrete objects on which one can look for algorithms solving
discrete problems, but also algebraic entities that possess a very rich representation
theory.

And a lot of fun : many kinds of cool posets appear in nature. Name your favorite !

P ≤

Hom(x, y)



The directed graphs in (A) (acyclic and transitively-reduced) are called Hasse diagrams.

acyclic means: no oriented cycles

transitively-reduced means: no con�guration of edges  and 

From a poset , its Hasse diagram is made of

vertices = elements of 

edges  = cover relations  in 

(note the visual convention here : arrows go decreasing)

cover relation = pair  with  such that  implies  or .

x → y → z x → z

P

P

x ← y x ≤ y P

(x, y) x ≠ y x ≤ z ≤ y z = x z = y



Backward, to recover the partial order relation from one Hasse diagram H

elements of P = vertices of H

 in  if and only if there is a directed path in H from  to .

Note : this is like a transitive closure operation on directed graphs.

x ≤ y P y x



Here is an example of poset, seen through its Hasse diagram.

(all examples in SageMath)

This one has 5 elements, 5 cover relations and 13 relations .x ≤ y

In [1]: P = posets.PentagonPoset();P.plot(figsize=4) 

Out[1]:



The category of a poset P (an algebraic viewpoint)

This is a �nite category : �nite set of objects and �nite Hom set between any two objects

denoted by cat(P)

objects = elements of P = vertices of the Hasse diagram of P

Hom(x, y) has either one unique element  if  and no element otherwise

(convention here : morphisms go decreasing, follow the arrows)

The axioms of category come from

re�exivity => existence of  in Hom(x,x)
transitivity => composition is well-de�ned

Then associativity and unit axiom are clear, because 

⋆x,y x ≥ y

Idx

|Hom(x, y)| ≤ 1



So for example,  and  in the example below

empty if no path, singleton if at least one path

Hom(1, 2) = ∅ Hom(2, 4) = { }⋆2,4

In [2]: P.plot(figsize=4) 

Out[2]:



Operations on posets

One can speak of isomorphisms between posets = isomorphisms of Hasse diagrams as
directed graphs.

So here is a �rst question about any two posets

( ) are P and Q isomorphic ?

Can be seen as a special case of isomorphism between directed graphs

There are easy operations on posets

dual poset of P = opposite Hasse diagram, returning the partial order and the
arrows,

disjoint union of P and Q, where the empty poset is the neutral element,

(cartesian) product of P and Q = product of Hasse diagram as directed graphs

partial order on  :  iff  and 

Any poset with 1 element is a neutral element up to isomorphism for the product.

Q0

P × Q (x, ) ≤ (y, )x′ y′ x ≤ x′ y ≤ y′



There are then very natural questions, for a given poset P:

( ) is the poset P isomorphic to its dual poset (self-dual) ?

( ) is the poset P isomorphic to a cartesian product of smaller posets
(decomposable)?

All these questions ( ), ( ), ( ) can be solved using general algorithms for directed
graphs.

But maybe there are better speci�c algorithms that apply only to posets and Hasse
diagrams ? Can one gain something in complexity ?

Q1

Q2

Q0 Q1 Q2



Visual display (side remark)

general issue of �nding a nice way to display directed graphs, to use our visual brain

one can apply general algorithms for directed graphs (springs, planar layout, projected
3D, etc), for the Hasse diagrams

sometimes gives correct results, but not always

not adapted to the visual display of the partial order relation !

unless there is some kind of natural height function and the display preserves this height



In [3]: posets.TamariLattice(4).plot(label_elements=False,figsize=4) 

In [4]: posets.TamariLattice(4).hasse_diagram().plot(vertex_labels=False,figsize=4) 

Out[3]:

Out[4]:



Möbius function

One important use of partial orders is Möbius inversion.

Let  and  be two functions from  to some �xed ring .

Then there is an equivalence between 

and 

where  is a function from  to  called the Möbius function.

The function  is unique, and determined by the property

Example: for the boolean lattice of subsets of a set, .

f g P R

f(x) = g(y)∑x≤y

g(x) = μ(x, y)f(y)∑x≤y

μ P × P Z

μ

∀x, y μ(x, z) =∑x≤z≤y δx,y

μ(S,T ) = (−1)|T∖S|



Möbius matrix

One can think of the Möbius inversion as matrix inversion.

In order to make matrices in the usual sense, one must choose an increasing numbering of
the elements of the poset P by the integers between  and . There are usually many

such choices.

Then one can encode the partial order relation  into a triangular matrix

 ; with 1s on the diagonal

and the Möbius matrix is just the inverse of this matrix. Example:

1 |P |

x ≤ y

=Mx,y δx≤y

In [5]: P.lequal_matrix(),P.moebius_function_matrix() 

Out[5]: ( 

[1 1 1 1 1]  [ 1 -1 -1  0  1] 

[0 1 0 0 1]  [ 0  1  0  0 -1] 

[0 0 1 1 1]  [ 0  0  1 -1  0] 

[0 0 0 1 1]  [ 0  0  0  1 -1] 

[0 0 0 0 1], [ 0  0  0  0  1] 

)



Incidence algebra

Another way to thing about the Möbius matrix is to use the incidence algebra.

Choose a base ring , for instance  or 

Let us de�ne an associative algebra .

It has a basis  for every relation  in  (all relations, not only the cover

relations)

One can think of  as any path from  to  in the Hasse diagram, or as the unique

morphism from  to  in the category cat(P)

The product  is either  if  or zero otherwise

Think about composable paths in a directed graph

This gives a �nite dimensional associative algebra  for every poset P.

The dimension of the incidence algebra  is a basic numerical invariant of a poset, this

is the number of comparable pairs of elements. This number is invariant under duality
and multiplicative for the Cartesian product of posets.

R Q Z

I(P )

Bx,y x ≤ y P

Bx,y y x

y x

Bx,yBz,t Bx,t y = z

I(P )

I(P )



One can also think of the incidence algebra

as the subalgebra of upper triangular matrices  that have non zero coef�cient in
position  only if .

So the Möbius function is the inverse in  of the element with  everywhere

which is sometimes called the zeta element.

The names Möbius and zeta are inspired by the poset  ordered by divisibility.

N
(x, y) x ≤ y

⎛* * * * *⎞ 
⎜0 * 0 0 *⎟ 
⎜0 0 * * *⎟ 
⎜0 0 0 * *⎟ 
⎝0 0 0 0 *⎠ 

I(P ) 1

∑x≤yBx,y

N



Core problem : Computing the Möbius function

Naive algorithm : create the matrix , invert this matrix

building on very fast existing algorithms for linear algebra over 

(and this is in fact a very special inversion, for a sparse triangular matrix)

Another algorithm : use increasing induction on the poset

This is smarter, but maybe there is a better way still.

More generally, one could ask:

How to compute ef�ciently in the incidence algebra  ?

Using matrices does not seem to be a good idea. One should rather use graph-theoretic
ideas, and even �nd poset-speci�c algorithms.

M

Z

I(P )



Hasse diagram and incidence algebra

Yet another viewpoint on the incidence algebras (quiver viewpoint)

R-linear combinations of paths in the Hasse diagram of P

modulo the equivalence relation "having same start and same end" between paths

any two paths from  to  are identi�ed modulo this equivalence relation

product = concatenation of paths

One can associate a representative path from  to  to each basis element  with 

.

x y

y x Bx,y

x ≤ y



Modules and representations

 is an associative algebra over the base ring .

So one can talk about modules over P, meaning modules over 

The category of �nite dimensional modules over P is an Abelian category (kernel,
cokernel, short exact sequences).

One can consider either left modules or right modules. This does not make much
difference, because left-modules over I(P) amount to right modules over the incidence
algebra of the dual poset of P.

Alternative viewpoint = functors from the category cat(P) to the category of R-modules

This last viewpoint allows to de�ne representations with values in any Abelian category,
for examples chain complexes, Hodge structures, sheaves, etc.

Note: These categories of modules were already considered in 1975 by Loupias. Some
articles on the subject since then, but not so many.

I(P ) R

I(P )



Alternative point of view : representations of the Hasse diagram

let H be the Hasse diagram of a poset P

a representation  of H over the �eld R is the data

of one vector space  for every vertex  of H

of one linear map  from  to  for every arrow  in H

that must satisfy the following commutations

for all , all linear maps associated to paths from  to  are equal

Here the linear map of a path is de�ned by composition of the .

Morphisms are then given by linear maps  that make commuting diagrams.

(V , f)

Vx x

fx,y Vx Vy x → y

x, y x y

fx,y

gi



Examples:

simple modules  with one non-zero space  and all maps are zero

projective modules  with  iff  and identity maps or zero

injective modules  with  iff  and identity maps or zero

more generally, for each interval  and for each convex subset  of , one can

associate a representation of  : a copy of the ring  on every element of  and the
identity map wherever possible.

Remark:

every representation has a unique decomposition as a direct sum of
indecomposable representations
in general, in�nitely many iso-classes of indecomposables. The classi�cation
problem is wild and therefore hopeless, with continuous parameters. This happens
even for rather simple-looking posets, for example a star-shaped tree with 6
vertices.

Sx (Sx)x

Px ( = RPx)y x ≥ y

Ix ( = RIx)y x ≤ y

[x, y] K P

P R K



Example of representation: (equality of two paths holds)

 on red vertices
 vector space on white vertices

 on arrows between red vertices
 map on other arrows

Q

0
Id
0

In [6]: P.plot(element_colors={'red':[0,1,2]},element_color='white') 

Out[6]:



a little bit of homological algebra

height  of P := length of longest maximal chain .

Proposition : every representation M of P has a projective resolution of length at most .
(chain complex of projective modules whose homology is P in degree 0)

proof by induction on the height of the support of the module

hence algorithm for �nding a projective resolution

implemented in HAP package of GAP

⚠ Attention : projective resolutions are not unique, but unique up-to-homotopy.

=> each module has a unique representative in the bounded derived category 

 is de�ned as the homotopy category of bounded complexes of projective modules

Take that as a blackbox ; think of is as a simpli�ed version of the module category ; objects
are �nite chain complexes of projectives, so this remains rather computable

h < ⋯ <x1 x2 xh

h

PDb

PDb



Derived category as an invariant for posets

Dé�nition: let P and Q posets. P is derived equivalent to Q, denoted  (over the
ring R) if the derived categories  and  (over R) are equivalent as triangulated
categories.

To decide if  is a dif�cult problem in general.

to show that , one can look for invariants depending only on derived
categories and taking distinct values => need for re�ned but computable
invariants

to show that , one can search for a tilting-complex between P and Q : an
object of  whose endomorphisms recover the incidence algebra of 
(something like an incarnation of  inside the modules over )

BUT : 🛑 �nding a tilting complex is very hard as the classi�cation of indecomposable
objects in  is almost always wild. Like walking at random in hyperbolic space..

One can also look directly for functors giving the equivalence, not easy either

P Q≃d

PDb QDb

P Q≃d

P Q≄d

P Q≃d

PDb Q
Q P

PDb



Examples of derived equivalences

Let P and Q be given by Hasse diagram that are orientations of the same unoriented tree ;
then P and Q are derived-equivalent. (using Bernstein-Gelfand-Ponomarev re�exions
functors ) This example is really about quivers, rather speci�c posets.

Let P be a poset with unique maximal element . Let Q obtained from P by removing ,
then adding a new minimal element . Then P is derived-equivalent to Q. (Ladkani)

Particular case of the powerful construction "�ip-�op" introduced by Ladkani. Given two
posets ,  and a map from  to  with some hypotheses, one can de�ne two derived
equivalent posets, where  is either below or above .

t t
b

P Q P Q
P Q



In [7]: Q = Poset(DiGraph(P.subposet([0,1,2,3]).cover_relations() + [[4,0]]));Q.plot(fi

gsize=4) 

Out[7]:



Basic Invariants of posets

(A) cardinality of P

(B) valence bi-variate polynomial :  where  and  are the

incoming and outgoing valences in  in the Hasse diagram

(C) number of intervals in , i.e. number of pairs  such that 

(which is also the dimension of the incidence algebra)

(D) Zeta polynomial of , counting -chains in  for all 

These 4 invariants are multiplicative, hence allow to show that a poset is not isomorphic
to a cartesian product of smaller posets. Only (A) is invariant under derived equivalence.

∑x∈P ai(x)bo(x) i(x) o(x)
x

P (x, y) x ≤ y

P k P k



More subtle invariants

Recall the matrix  with  encoding the poset P.

De�ne the Coxeter matrix as .

Proposition : up to conjugation by an invertible matrix over , the matrix  only
depends on the derived category of P.

Not so easy to check if two matrices are conjugate over the integers !

Dé�nition : the Coxeter polynomial of P is the characteristic polynomial of .

Our main concrete derived invariant of posets.

MP =Mx,y δx≤y

= − (CP MP M t
P )−1

Z CP

CP

In [8]: P.coxeter_transformation(),P.coxeter_polynomial() 

In [9]: P.coxeter_polynomial() == Q.coxeter_polynomial() 

Out[8]: ( 

[ 0  0  0  0 -1]                    

[ 0  0  0  1 -1]                    

[ 0  1  0  0 -1]                    

[-1  1  1  0 -1]                    

[-1  1  0  1 -1], x^5 + x^4 + x + 1 

)

Out[9]: True



Some comments:

equality of Coxeter polynomials does not imply derived equivalence

(there are counter-examples, probably many)

but equality in famillies still gives a strong hint in favor of derived equivalence

Example: Tamari lattices (binary trees 🌳 under rotation) and Dyck paths under inclusion
: conjectural derived equivalence, with strong hints

No known algorithm to decide derived equivalence, could be undecidable ?

Basic strategy trying to prove that P and Q are derived equivalent :

�nd conjugating matrices over  between the Coxeter matrices of P and
Q with small entries (by lifting conjugating matrices over small �nite
�elds).

lift the nicest among such matrices to a tilting complex and prove that it is
indeed a tilting complex.

Z



Comments on implementations

The Coxeter polynomial is rather easy to compute :  so

one triangular matrix inversion
one matrix transposition
one matrix product (lower triangular times upper triangular)
one characteristic polynomial (sparse matrix over )

Sage implementation takes a reasonable time for posets of size at most  2000.

Using magma for the last step, one can go a bit further.

Last step seems to be the blocking point.

I do not know of any low-level implementation of the Coxeter polynomial.

Also implemented in Macaulay2 Poset package. Not available in Maple® or
Mathematica®.

= − (CP MP M t
P )−1

Z

≃



Derived factorisation of posets

For a cartesian product of posets , the categories of modules over the incidence
algebra and the derived categories are cartesian products of categories.

Therefore the Coxeter matrix of  is the tensor product of those of  and .

Problem: Can one recognize if a poset is derived-equivalent to a cartesian product of
posets ?

One tool : decide if the Coxeter polynomial is the characteristic polynomial of a tensor
product of matrices.

This could be done by factorising the Coxeter polynomials, but probably not the best way
to do it. Any better algorithm ?

⚠ not the usual kind of factorisation for polynomials ! set of roots must be a Cartesian
product !

 from  and 

P × Q

P × Q P Q

(z − )∏i,j rir
′
j (z − )∏i ri (z − )∏j r′

j



The Coxeter functor (where does all this comes from)

The Coxeter matrix comes from a functor from  to itself, called the Coxeter functor
or the Auslander-Reiten translation functor . Also closely related to the Serre duality
functor.

The Auslander-Reiten theory is a very central tool in modern representation theory of
associative algebras.

At the level of objects, the functor  maps the indecomposable projective object  to
the shifted indecomposable object .

This is therefore something that can be implemented easily, and that is available in HAP

The functor  acts linearly on the  of the category  : this is the Coxeter matrix 
 that was introduced before.

PDb

τ

τ Px

[1]Ix

τ K0 PDb

CP



Fractionally Calabi-Yau posets  🍰

now introducing a very interesting and special sub-class of posets.

A poset P is called fractionally-Calabi-Yau  if some power of  is isomorphic to some power
of the shift functor [1] in  (which just shift the indices in chain complexes).

De�nition by Kontsevich, comes from the geometry of Calabi-Yau varieties, mirror
symmetry, algebraic geometry, etc

This condition implies that the Coxeter matrix has a power that is  the identity matrix :
indeed  implies .

And therefore, the Coxeter polynomial is a product of cyclotomic polynomials.

Remark: for an arbitrary poset, roots of the Coxeter polynomial are arbitrary

τ
PDb

±
= [q]τ p = (−1C

p
P )q

In [10]: posets.DiamondPoset(6).coxeter_polynomial().complex_roots()  

Out[10]: [-1.00000000000000, 0.381966011250105, 2.61803398874989]



PROBLEM : How to prove that a poset is fCY ?

one needs to understand the functor  on suf�ciently many objects (not so easy)

Much easier sometimes to prove the weaker statement that the roots of the Coxeter
polynomial are on the unit circle

For example, both statements known for the Tamari lattices

posets : planar binary trees with n leaves ; Hasse diagram = rotation of binary trees

roots of Coxeter polynomial described using operad theory and Koszul duality ;

more recently, Rognerud proved the fCY property

Techniques are very speci�c to this particular family of posets.

Many examples of nice posets conjectured to be fCY : a lot of open problems ! includes
plane partitions, m-Dyck paths, minuscule posets, etc

τ



Bonus track 🥧

The monoid of Weight Symbols

This is a tool used in the study of fractionnally Calabi-Yau posets, and their factors. This
provides an enriched version of the Coxeter polynomial.

A weight symbol is a pair  where  are positive integers (exponents) and

 is a positive integer (weight, larger than any )

For example . The order among the  is irrelevant.

The product of (e,N) and (e',N') is de�ned as follows: let M be the lcm of N and N'.

Then the product is  : one scales the exponents.

For example 

One only considers weight symbols such that  is an integer and such that

the similar quotient of q-integers is a polynomial in .

So there is a morphism to  and a morphism to .

For example .

([ , … , ],N)e1 en ei
N ei

([3, 4, 5], 20) ei

([(Me/N) ⊔ (M / )],M)e′ N ′

([(3, 5], 20) ∗ ([1], 5) = ([3, 4, 5], 20)

(N − )/∏i ei ei
q

N Z[q]

15/5 ∗ 16/4 ∗ 17/3 = 68



This is related to quasi-homogeneous isolated hypersurface singularities and their study
by Milnor : pick one variable  of degree  for each exponent and choose at random a
polynomial  in the  of total degree . Assuming that the polynomial gives an isolated
singularity, the Milnor number is given by the morphism from weight symbols to .

QUESTION: �nd an ef�cient algorithm to factorise a weight symbol into weight symbols.

⚠ Factorisation is not unique, so one should rather �nd all possible factors. Expl 

Some examples to play with :

type D : ([2,...,n-2],2n-2)

Tamari posets : ([2,...,n],2n+2)

something ([3,...,n+1],3n+3)

Tamari intervals : ([3,...,n+1],4n+4)

xi ei
p xi N

N

([2, 4, 6, 7], 18)



Summary:

many interesting posets around to play with
not clear if speci�c and optimal algorithms are known already (Mobius,
factorisation, Coxeter polynomial, etc)
smart low-level data structure for posets ?
derived equivalence is a dif�cult but rewarding problem, no public implementation
of the most subtle know-how
many open conjectures about fractionally Calabi-Yau posets, now being studied
toy monoid of weight symbols as an investigation tool

In [ ]:  


