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Definition

A pencil of matrices M = [M1, ...,Ms] is said to be simultaneously
diagonalizable if there exists an invertible matrix E (called
diagonalizer) such that E−1MiE is a diagonal matrix for every
Mi ∈M .

An important property which characterizes such sets, is that their
matrices commute.

Contrarily, not every pencil of commuting matrices is

simultaneously diagonalizable, example: let A =

λ 1 0
0 λ 1
0 0 λ

,

B =

σ 1 0
0 σ 1
0 0 σ

, two Jordan blocks matrices. We have

AB = BA, but [A,B] is not simultaneously diagonalizable since a
Jordan block matrix is not diagonalizable.
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Motivation (simultaneous matrix diagonalization and
tensor decomposition)

P is a symmetric tensor of order d of dimension n ∈ Sd(Cn):

P = [vi1...id ] ∈ C

d times︷ ︸︸ ︷
n× ...× n

such that vi1...id = viσ(1)...iσ(d)
, ∀σ ∈ Gd

The symmetric tensor decomposition of P consists in writing it as
a sum of rank one symmetric tensors

P =

r∑
i=1

wivi ⊗ ...⊗ vi, wi ∈ C, vi ∈ Cn (1)

By identification of Sd(Cn) with C[x]d, (1) is equivalent to write a
homogeneous polynomial P (associated to P) as a sum of linear
forms to the dth power:

P =
∑r

i=1wi(vi,1x1 + ...+ vi,nxn)d :=
∑r

i=1wi(v
t
ix)d
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The symmetric rank of P, denoted by ranks(P), is the smallest
”r” such that the decomposition exists.

In practice the input tensor P is known with some perturbations
on its coefficients. For this reason, computing an approximate
decomposition of low rank is usually more interesting than
computing the exact symmetric decomposition of P:

(STA)
1

2
min
Q∈σr

||Q− P ||2d, (2)

where σr = {Q ∈ C[x]d | ranks(Q) ≤ r}.
We develop a Riemannian Newton iteration with trust-region
scheme (RNS-TR) to solve localy (2)1. In such algorithm the
choice of the initial point is important.

1
R.Khouja, H.Khalil, and B.Mourrain, ”A Riemannian Newton optimization framework for the

symmetric tensor rank approximation problem” https://hal.archives-ouvertes.fr/hal-02494172.
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For the initialization we use a direct algorithm2 based on moment
decomposition via SVD and eigenvector computation:

Input: homogeneous polynomial P ∈ C[x]d, r ≤ rg and ι ≤ bd−12 c,
where ι denotes the interpolation degree.
d1 := dd+1

2 e and d2 := bd−12 c
Compute the Hankel matrix Hd1,d2

P .

Compute the singular value decomposition of Hd1,d2

P = USV ∗.

Let Mi = S−1r U∗rH
d1,d2

xiP
V̄r, for i = 1, . . . , n.

Compute the eigenvectors ξj of
∑n

i=1 liMi for a random choice of
li ∈ [−1, 1], and for j = 1, . . . , r do the following:

Compute vj,i such that Miξj = vj,iξj for i = 1, . . . , n and deduce
the point vj := (vj,1, . . . , vj,n).

Compute wj =
〈(ξtjx)d,P 〉d

〈(ξtjx)d,(vtjx)d〉d
.

Output: wj ∈ C∗, vj ∈ Cn for j = 1, . . . , r.

2
J. Harmouch, H. Khalil, and B. Mourrain, Structured low rank decomposition of multivariate Hankel

matrices, Linear Algebra and its Applications, (2017).

R.Khouja, B.Mourrain, J-C.Yakoubsohn JNCF March 1 - 5, 2021 5 / 17



6/17

In this algorithm we diagonalize simultaneously a pencil of
matrices [M1, . . . ,Mn].

More generally, for symmetric tensors of sub-generic rank, similar
approach based on simultaneous diagonalization of extensions of
Hankel matrices is presented3.

In the case of multilinear tensors, decomposition methods and
bounds on tensor rank are obtained by constructing subspaces of
matrices from tensors that satisfy various commutation properties4
5 6.

3
J. Brachat, P. Comon, B. Mourrain, and E. Tsigaridas, Symmetric tensor decomposition, Linear

Algebra and its Applications, (2009).
4
V. Strassen, Rank and optimal computation of generic tensors, Linear Algebra and its Applications,

(1983).
5

L. De Lathauwer, A Link between the Canonical Decomposition in Multilinear Algebra and
Simultaneous Matrix Diagonalization, SIMAX, (2006).

6
P. Koiran, On tensor rank and commuting matrices, 2020.
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The variety of simultaneous diagonalizable matrices

Let Ds be the variety of pencils of matrices M = [M1, . . . ,Ms]
such that there exists matrices E,F ∈ Cn×n invertibles with

Mk = F diag(Σ[:,k]) E
T = FΣ[k]E

T

where Σ = [σi,j ] ∈ Rn×s and Σ[:,k] is the kth column of Σ and
Σ[k] = diag(Σ[:,k]). This variety is of dimension 2n2 + n(s− 1).

M = [M1, . . . ,Ms] is simultaneously diagonalizable iff
M ′ = [Id,M1, . . . ,Ms] ∈ Ds+1.
A pencil M of matrices can be seen as a tensor
M ∈ T = Rn ⊗ Rn ⊗ Rs where the slice M[:,:,i] is the matrix Mi.
M = [M1, . . . ,Ms] ∈ Ds iff:

M =
n∑
k=1

Fk ⊗ Ek ⊗ Σ[k,:] is of rank ≤ n,

where Fk (resp. Ek) is the kth column of F , (resp. E) and
Σ[k,:] = [σk,1, . . . , σk,s] is the kth row of Σ.
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Newton-type method for simultaneous matrix
diagonalization

Let us consider s simultaneously diagonalizable matrices
M1, · · · ,Ms in Cn×n. We suppose that all the eigenvalues of Mi

are simple. We aim to solve the following system of equations:
FE − In

FM1E − Σ1
...

FMsE − Σs

 = 0 (3)

The strategy to solve (3) be the following. From E0, F0 and Σ1,0

close to a solution of (FE − In, FM1E − Σ1) = 0 we numerically
solve this system.
Another strategy to solve (3), is to take a linear combination M of
M1, . . . ,Ms, and to solve (FE − In, FME − Σ) = 0.
Next we deduce the diagonal matrices Σi by using the formula:

Σi = FMiE
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We consider the numerical resolution of:

(FE − In, FME − Σ) = 0. (4)

From an approximation (E0, F0,Σ0) close enough to a solution of
(4) we propose a sequence which converges quadratically towards a
solution.7

We use the max norm for vectors and the corresponding matrix
norm given for a vector v ∈ Cn and a matrix M ∈ Cn×n as follow:

‖v‖ = max{|v1|, . . . , |vn|}
‖M‖ = max

‖v‖=1
‖Mv‖.

7
Similar approach in the case of one matrix diagonalization equivalently eigenproblem is considered in

J. van der Hoeven, B. Mourrain, Efficient certication of numeric solutions to eigenproblems, MACIS 2017.
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We consider the perturbations E + EX, F + Y F , and Σ + S
respectively of E, F , and Σ. We get with Z = FE − In, and
∆ = FME − Σ :

(F + Y F )(E + EX)− In
= Z + (Z + In)X + Y (Z + In) + Y (Z + In)X

(5)

(F + Y F )M(E + EX)− Σ−S
= FME − In + FMEX + Y FME + Y FMEX

= ∆− S + ΣX + Y Σ + ∆X + Y∆ + Y (∆ + Σ)X

(6)

The Newton method consists in solving the linear system in
(X,Y, S) obtained from (5), (6):{

Z +X + Y = 0

∆− S + ΣX + Y Σ = 0

R.Khouja, B.Mourrain, J-C.Yakoubsohn JNCF March 1 - 5, 2021 10 / 17
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Lemma

Let Σ = diag(σ1, · · · , σn), Z = (zi,j) and ∆ = (δi,j) be given matrices.
Assume that σi 6= σj for i 6= j. Let S, X and Y be matrices defined by

S = diag(∆− ZΣ)

xi,i = 0

xi,j =
−δi,j + zi,jσj

σi − σj
, i 6= j

yi,i = −zi,i

yi,j =
δi,j − zi,jσi
σi − σj

, i 6= j.

Then we have

Z +X + Y = ∆− S + ΣX + Y Σ = 0, and ‖X‖, ‖Y ‖ 6 κε(K + 1),

where ε = max(‖Z‖, ‖∆‖), κ = max

(
1,maxi 6=j

1

|σi − σj |

)
and

K = max(1,maxi |σi|).

R.Khouja, B.Mourrain, J-C.Yakoubsohn JNCF March 1 - 5, 2021 11 / 17



12/17

Theorem

Let E0, F0 and Σ0 be given and define the sequences for i > 0,

Zi = FiEi − In
∆i = FiMEi − Σi

Si = diag(∆i − ZiΣi)

Ei+1 = Ei(In +Xi)

Fi+1 = (In + Yi)Fi

Σi+1 = Σi + Si

let ε0 = max(‖Z0‖, ‖∆0‖), κ0 = max

(
1,maxi 6=j

1

|σ0,i − σ0,j |

)
and

K0 = max(1,maxi |σ0,i|). Assume that u := κ20(K0 + 1)3ε0 6 0.136.
Then the sequence (Σi,Ei, Fi)i>0 converges quadratically to a solution of
(FE − In, FME − Σ) = 0. More precisely E0 and F0 are invertible and

‖Ei − E∞‖ 6 0.61× 21−2
i+1

‖E0‖u; ‖Fi − F∞‖ 6 0.61× 21−2
i+1

‖F0‖u.
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Numerical results

We take M ∈ Cn×n random diagonalizable matrix: M = EΣE−1. To
apply the theorem, we take a perturbation of E, Σ and F = E−1 as an
initial point, such that this initial point verifies κ20(K0 + 1)3ε0 6 0.136.

Iteration n = 10 n = 50 n = 100

1 0.01277 0.00706 0.00252
2 5.41e− 5 7.54e− 8 4.1 e− 9
3 4.03e− 11 4.7e− 16 2.51 e− 18
4 1.31e− 21 2.65e− 32 1.65 e− 36
5 5.06e− 42 1.78e− 64 2.45 e− 75
6 1.96e− 84 8.65e− 129 3.41e− 150
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M1 =

(
0.71761 0.39502
0.15013 0.41416

)
, M2 =

(
0.28899 0.1828
0.06947 0.14857

)
,

M3 =

(
0.33737 −0.44756
−0.17009 0.68118

)
.

Mi = EΣiE
−1 for i ∈ {1, 2, 3}, where E =

(
−0.66918 0.94612

0.7431 0.32381

)
,

Σ1 = diag(0.27896, 0.8528), Σ2 = diag(0.086004, 0.35155),
Σ3 = (0.83436, 0.18419), F = E−1.
First strategy: we consider (EF − In, FM1E − Σ1) = 0, from initial
point (E0, F0,Σ0,1) which verifies the condition in the Theorem we
apply the Newton iteration:
iter1: 0.00516
iter2: 1.2.e-5
iter3: 9.4.e-11
iter4: 5.1.e-21
Solution:

Esol =

(
−0.6676 0.9467
0.74133 0.32411

)
, Σsol,1 = diag(0.27896, 0.8528).
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Σsol,2 = FM2E = diag(0.086004, 0.35155),
Σsol,3 = FM3E = diag(0.83436, 0.18419).
Second strategy: we take for example the linear combination
M = M1 +M2 +M3. We consider (EF − In, FME − Σ) = 0, from
initial point (E0, F0,Σ0) which verifies the condition in the Theorem
we apply the Newton iteration:
iter1:0.00084
iter2:1.1.e-6
iter3: 6.5.e-12
iter4: 3.4.e-24
Solution:

Esol =

(
−0.66912 0.94603
0.74302 0.32378

)
.

Σsol,1 = FM1E = diag(0.27896, 0.8528),
Σsol,2 = FM2E = diag(0.086004, 0.35155),
Σsol,3 = FM3E = diag(0.83436, 0.18419).
We tested with another linear combinations and we found the same
solutions.
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What’s next ?

Let M = [M1, . . . ,Ms] be a pencil of matrices which is not
simultaneously diagonalizable. The objective is to approximate
locally M into a pencil of simultaneously diagonalizable matrices
M ′ = [M ′1, . . . ,M

′
s].

This problem is already considered when Mi are symmetric
matrices by using Riemannian optimization techniques8 9. We aim
to investigate the general case when Mi are general square
matrices and to developp an efficient algorithm.

8
P. Absil, K. A. Gallivan, Joint diagonalization on the oblique manifold for independent component

analysis, international conference on acoustics speech and signal processing, (2006).
9
F. Bouchard, B. Afsari, J. Malick, and M. Congedo, Approximate joint diagonalization with

Riemannian optimization on the general linear group, SIMAX, (2020).
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Thank you for your attention !

R.Khouja, B.Mourrain, J-C.Yakoubsohn JNCF March 1 - 5, 2021 17 / 17


