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Phone n
thx

Server wants to know word distribution amongst phones/devices
f. :==how many devices just texted the word “x"7

Simple (7). Each device sends a copy of all its texts to server.



Constraint: privacy

(do you really want phone manufacturers to read all your texts?)
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Basic idea

send randomized messages (e.g., add noise)!
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Moral of this story

can have each individual message look like garbage, thus
protecting individual privacy, but server can extract useful
knowledge by aggregating messages from all devices



Moral of this story

can have each individual message look like garbage, thus
protecting individual privacy, but server can extract useful
knowledge by aggregating messages from all devices

But what exactly does privacy mean?



Above, applied 'wavelet denoising’ to a single noised image
Maybe this isn't so private after all?



Above, applied 'wavelet denoising’ to a single noised image
Maybe this isn't so private after all?

Must be careful with the definition!
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Local Differential Privacy

Idea: Device i sends random message M; that is only weakly
correlated with its data (e.g., its word, or an image, etc.) x;

» One individual device's message almost looks like random
noise, but server can extract signal from many such messages
from different devices in aggregate

» Privacy definition: scheme provides e-differential privacy

[Dwork-McSherry-Nissim-smith'os] if for all devices i and all possible msgs
M, and for all x # X/,

P(M; = M|x; = x)
P(M; = M|x; = x')

< e°.

e is called the privacy loss (¢ = 0 is perfectly private)

(informally: device would have been almost as likely to send
the same exact message even if their data were different)
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> csmall (e <1): e~ 1+¢
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Two regimes to keep in mind ...
> csmall (e <1): e~ 1+¢
>

Large € means worse privacy, so why deploy large £7

Fundamental tradeoff between ...
> Utility: quality of the knowledge the server extracts

» Privacy: defined in terms of privacy loss &

Small € requires too much utility loss to be usable. Silver lining:
shuffling improves privacy [Bem+17], [CSU-+19], [EFM+19], [BBGN19], [BKM--20], [FMT21].
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Before going further: our particular problem for today

Each device holds i some data x; from a set {1,..., k}.
This implies a frequency histogram, f, := (#devices with x; = x)

Server wants to recover f that is close to f ;
(e.g., small Mean Squared Error (MSE) 1 S°%_ (£, — £)?)



Things to optimize

Privacy and utility are just two things to consider; the full list:
» Privacy: defined already (¢ = privacy loss)
» Utility: if query(x) returns f., want |f — f| small
(we define utility loss as the MSE, £ E||f — f||3)
» Communication: devices each send b = |M;| bits
» Server time: time server takes to produce fgiven messages

» Device time: device takes to produce M; given x;



Things to optimize

Privacy and utility are just two things to consider; the full list:
» Privacy: defined already (¢ = privacy loss)
» Utility: if query(x) returns f., want |f — f| small
(we define utility loss as the MSE, £ E||f — f||3)
» Communication: devices each send b = |M;| bits
» Server time: time server takes to produce fgiven messages

» Device time: device takes to produce M; given x;

Ideally want all five of the above to be small simultaneously.
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A simple scheme

RandomizedResponse. Each device sends its true item x with
probability e®p; otherwise sends a uniformly random other item
(so that any other item is sent with probability p)

P(send something) =1,so e p+(k—1)p=1
solves to p = ﬁ

How does the server estimate fx ~ f,?
For each message M;, add a + (8 to estimate if M; = x, else add 3

If x; = x : expected contribution is ae®p + 3
If x; # x : expected contribution is ap + 8

Thus want e® + 8 =1, ap+ 5 = 0; two eqns and two unknowns,
e“+k—1 ,8 _
eE_l 1 -

_ 1
solves to o = |

Pros: Low communication, and very fast for server and devices
Con: Terrible utility loss (can show)
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Another simple scheme

SubsetSelection [Ye, Barg '17]. Each device sends a random subset
SC{l,...,k} of sized. If x€ S, S is sent with probability e®p;
else S sent with probability p

P(send something) = 1, so eap(f;j) + p(kgl) =1
solves to p = — vy
P e D
How does the server estimate fx ~ f,?
For each message M;, add o + (8 to estimate if x € M;, else add

If x; = x : expected contribution is aeep(sj) +5
If x; # x : expected contribution is a(egp(f;j) + p(kgz)) + 8
As before want first equal 1, second equal 0; two eqns and two
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Another simple scheme

SubsetSelection [Ye, Barg '17]. Each device sends a random subset
SC{l,...,k} of sized. If x€ S, S is sent with probability e®p;
else S sent with probability p

P(send something) = 1, so eap(f;j) + p(kgl) =1
solves to p = — vy
P e D
How does the server estimate fx ~ f,?
For each message M;, add o + (8 to estimate if x € M;, else add

If x; = x : expected contribution is aeep(sj) +7

If x; # x : expected contribution is a(egp(f;j) + p(kgz)) + 8
As before want first equal 1, second equal 0; two eqns and two
unknowns, and can solve for «, 8. Gives low MSE for d ~ ea—’jrl
Pro: Optimal privacy loss/utility loss tradeoff (ve, sargoe]

Cons: Terrible communication, server/device runtimes
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A meta approach [Acharya, Sun, Zhang'19]
Suppose data x; € {1,..., k}, and there is a “message space” )

» Associate with each x some S, C ), |S«| =s

» Suppose {Sx}xex is such that Vx # x/,|Sx N S| = £

» Mechanism: For any y € ), send message M = y with
probability p if y ¢ Sy, and with probability e*p if y € S,
(call Sy the preferred messages for x)
Note: e“ps + p(|Y| —s)=1,s0 p= e L

es—1)+[Y
P> Server estimates f, as

fo =" (a-[[M; € S]]+ B) ([[P]] = 1 iff P is True; 0 o/w)
» To have E fx = f, we just want to make sure:

» x; = x = ith summand has expectation 1
> x; # x => ith summand has expectation 0



A meta approaCh [Acharya, Sun, Zhang'19]
Suppose data x; € {1,..., k}, and there is a “message space” )

>
| 2
>

Associate with each x some S, C ), |S«| =s

Suppose {Sx}xex is such that Vx # X', |Sx N S| = ¢
Mechanism: For any y € )V, send message M = y with
probability p if y ¢ Sy, and with probability e*p if y € S,

(call Sy the preferred messages for x)

Note: e*ps + p(I¥| =) = 1, 50 p = sty

Server estimates f, as
— ST (o [[M; € S1+ 8) ([[P]] = 1iff Pis True; 0 o/w)
To have E fx = f, we just want to make sure:

» x; = x = ith summand has expectation 1
> x; # x => ith summand has expectation 0

In other words:
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A meta approaCh [Acharya, Sun, Zhang'19]
Suppose data x; € {1,..., k}, and there is a “message space” )

>
| 2
>

Associate with each x some S, C ), |S«| =s

Suppose {Sx}xex is such that Vx # x',[S, N S| = ¢
Mechanism: For any y € )V, send message M = y with
probability p if y ¢ Sy, and with probability e*p if y € S,
(call Sy the preferred messages for x)

Note: e*ps + p(I¥| =) = 1, 50 p = sty

Server estimates f, as
f= ST (o [[M; € S1+ 8) ([[P]] = 1iff Pis True; 0 o/w)
To have E fx = f, we just want to make sure:
» x; = x = ith summand has expectation 1
> x; # x => ith summand has expectation 0
In other words:
> ae*ps+p=1
> a(e5p£+p(s— 0))+8=0

_ s+{(ef—1)
— 0= 7;)(5 =) B = ~e=oe=1)
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Utility of meta approach

By independence,
> Var[fi] = 327, Var[(a - [[M; € 5]+ 5)
so Var[f] = a?- S0 P(M; € S)(1 — P(M; € Sy))

If x; = x, P(M; € S¢) = €°ps

If x; # x, P(M; € 5¢) = e°pl + p(s — ¢)

Thus, Var[f] < a? (fe®ps + (n — £.)(e°pl + p(s — 1))
. s+l(ef—1) L 1

(s =02 =12 7 p(s = O)(ef — 1)

_ (s l(ef = D)(s(e” — 1) +[V]) | Als(e” — 1) + |V])
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Utility of meta approach

By independence,
> Var[fi] = 327, Var[(a - [[M; € 5]+ 5)
so Var[f] =a?- Y1 P(M; € S)(1 - P(M; € Sy))

If x; = x, P(M; € S¢) = €°ps

If x; # x, P(M; € 5¢) = e°pl + p(s — ¢)
Thus, Var[f] < o? (fie°ps + (n — f;)(e°pl + p(s — 1))
s+l(ef—1) 1
~ s =0 — 12 X (s — (e — 1)
_ (s l(ef = D)(s(e” — 1) +[V]) | Als(e” — 1) + |V])
(s —0)%(ef — 1)2 (s —0)(er — 1)
MSE is LE|f — £3 = L 3, Var[f], which is

n(l+ (e - D)(eE -+ 5 al(e —1)+ 5
(1 2(e - 12 k(1= D) - 1)

Punchline: : want these small
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Idea:
» Pick prime g ~ e° and define message space ) := IF‘Z
> Pick t large enough so Y| > k, and view x; as in [,
» Define Sy as (t — 1)-dimensional subspace orthogonal to x
> Then S, NS, is (t — 2)-dim subspace, so s = q* !, £ = q*~2
L _ s _ 197277
s T g
Not so fast: what if y is a multiple of x?
x=(1,0,0),y = (2,0,0)

\4



The fix: projective geometry

For all x € Ff], all points on line through 0 and x are equivalent.

Picture Plane

Horizon Line

Ground Line

Spectator

comes from perspective drawing (“0"” is spectator’s eye)
(known idea in combinatorics; thanks to Noga Alon for pointing this out)
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Projective geometry

Finite field projective geometry: Define projective points in IFf7
as nonzero vectors in IFt whose first nonzero is a 1 (“canonical™).
Can show #projective points is ; identify [k] with projective
points, and preferred set Sy is prOJectlve subspace “orthogonal” to
x, i.e., all projective points u s.t. (x,u) =0 mod gq.

Easy to compute s, £ since just amounts to counting size of a
subspace of Ff, of some dimension d (d =t —1ort—2).

Bottom line: can get the nice s, ¢, || we wanted!



scheme name C ication utility loss server time
RandomizedResponse [logy k] % n+k
RAPPOR O(log k - %) (52’%1)2 nk
SubsetSelection ELE(S + 0(1)) (ei”ﬁ nEL5
PI-RAPPOR [logy k] + O(e) (52"51)2 min(n + k%, n), or
n+ ke2e log k (this work)
HadamardResponse [logy k1 ﬁ n+ klog k
RecursiveHadamardResponse [logy k] ﬁ n+ klog k
ProjectiveGeometryResponse [logy k1 (eg’%l)f n + ke® log k
HybridProjectiveGeometryResponse [logy k1 1+ ﬁ)(ei”ﬁ n + kqlog k

For HPG, q € [2, exp(g) + 1] is a prime that can be chosen arbitrarily to trade off utility for runtime

PGR and HPGR are our new schemes [Feldman, Nelson, Nguyen, Talwar’'22]




Experiments

spike,k=22000,n=50000,eps=5.0

spike,k=22000,n=10000,eps=5.0

SS

HR /
RHR

HR

Figure: RR has significantly worse error than other algorithms, even for
moderately large universes, followed by HR and RHR, which have roughly
double the error of state-of-the-art algorithms. HPG trades off having
slightly worse error than state-of-the-art for faster runtime.



Experiments

spike,k=1024,n=1000,eps=5.0

spike,k=1024,n=1000

RAPPOR
PI-RAPPOR
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S
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x
.
£

Figure: Error distributions from experiments.



Experiments

zipf3.0,k=22000,n=1000,eps=5.0
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S o

5 5
5 5
x x
o s
3 5

oy
I
=)

zipf0.1,k=22000,n=1000 Zipf3.0,k=22000,n=1000

Figure: Error distributions from experiments.



Experiments

Timing:
scheme name runtime (in seconds)
PI-RAPPOR | 1,893.82 (approximately 31.5 minutes)
PG 36.92
HPG3 5.94
RHR 1.20
HR 0.64
RR 0.02

Table: Server runtimes for ¢ = 5, k = 3,307,948. For HPG, we chose the
parameters h = 50,q = 3,t = 11, so that the mechanism rounded up the
universe size to h(g* — 1)/(g — 1), which is about 34% larger than k.
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Making our scheme fast

Idea: find a recurrence relation; use dynamic programming + one more trick
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Recalling the definition of Sy, this is,

E(:Oé' Z Yu —FB”,

canonical u:(x,u)=0

where y,, is the number of messages M; equal to v.



Reconstruction

FX:Za (M €Sl +8)=a- (Z[[M GSX]]>+5n

i=1

Recalling the definition of Sy, this is,

E(: Z Yu +6n7

canonical u:(x,u)=0
where y,, is the number of messages M; equal to v.

Naively computing the above Would take = k/q time per x, and
2
there are k values of x, so % = e5+1 time total

(plus an additional n time to form the vector y)
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Can reconstruct f.faster: Dynamic programming

For ac T, bc Fi 7, z € Fy,, where ais further restricted to have
its first nonzero entry be a 1 (it may also be the all-zeroes vector),
and b is restricted to be a canonical vector when j = 0, define

F(a, b,z) = Z Yu
pref;(u)=a
(Sufft—,( u),b)=z
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For ac T, bc Fi 7, z € Fy,, where ais further restricted to have
its first nonzero entry be a 1 (it may also be the all-zeroes vector),
and b is restricted to be a canonical vector when j = 0, define
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Then, f, = a- F(L,v,0)+ 8n



Faster reconstruction

Can reconstruct f.faster: Dynamic programming

For ac T, bc Fi 7, z € Fy,, where ais further restricted to have
its first nonzero entry be a 1 (it may also be the all-zeroes vector),
and b is restricted to be a canonical vector when j = 0, define

F(a,b,z) = Z Yu
pref ()=a
(suffy_;(u),b)=2
Then, f, = a- F(L,v,0)+ 8n

F satisfies a recurrence relation, and we can use DP



Faster reconstruction

Let j € [0, t) denote the length of the vector a. Let suff_;(b)
denote the vector b but with the first entry removed (so it is a
vector of length one shorter). Then

Ya, ifj=t,a#0,z=0
F(abz)— o ifj=t, anda=0o0rz#0
) My - \1/./:0 F(aow,suff_l(b),z— biw mod q)7 ifj;é t,a:()

9L F(aow,suff_1(b),z — byw mod q), if j#t,a#0
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Dynamic Programming gives O(kg?t) time and O(kq) space.



Faster reconstruction

Let j € [0, t) denote the length of the vector a. Let suff_;(b)
denote the vector b but with the first entry removed (so it is a
vector of length one shorter). Then

Ya, ifj=t,a#0,z=0
F(abz)— o ifj=t, anda=0o0rz#0
) My - \1/./:0 F(aow,suff_l(b),z— biw mod q)7 ifj;é t7a:0

9L F(aow,suff_1(b),z — byw mod q), if j#t,a#0
Dynamic Programming gives O(kg?t) time and O(kq) space.
Optimization: observe F(a, b,z) = F(a, b{™1,z(™1) for any

¢ € 5. If we choose ¢ so that b¢~1 is either canonical or the zero
vector, then we cut down on the possibilities for b by a factor of gq.



Faster reconstruction

Let j € [0, t) denote the length of the vector a. Let suff_;(b)
denote the vector b but with the first entry removed (so it is a
vector of length one shorter). Then

Ya) ifj=t,a#0,z=0
F(abz)— 9 ifj=t, anda=0o0rz#0
s My - 1 F(aow,suff_l(b),z— biw mod q)7 ifj#t,a=0

w=0

9L F(aow,suff_1(b),z — byw mod q), if j#t,a#0
Dynamic Programming gives O(kg?t) time and O(kq) space.

Optimization: observe F(a, b,z) = F(a, b{™1,z(™1) for any

¢ € 5. If we choose ¢ so that b¢~1 is either canonical or the zero
vector, then we cut down on the possibilities for b by a factor of gq.
Leads to O(kgqt) time and O(k) space.



Code release

https://github.com/minilek/private_frequency_oracles/
vector<int> ProjectiveGeometryResponse: :dp_bottom_up(vector<int> &y) {
int N = K + 13
for (int U=1; U< t; ++1)
N = max(N, ((qpows[1]-1)/(q-1) + 1) * ((gpows[t-1]-1)/(q-1) + 1) * q);
vector<int> last(N), next(N);

for (int a = 1; a <= K; ++a)
last[a] = y[a-1];

int lastA = K+1, lastB = 1, curA = 8, curB = ©;
vectorsint> ret(K);

for (int length = t - 1; length >= @; --length) {
curA = (gpows[length] - 1) / (q-1) + 1, curB = (qpows[t - length] - 1) / (q-1) + 1
fill(next.begin(), next.end(), 0);
for (int b = @; b < curB; ++b) {
vector<int> decomp = Util::decompose_canonical_vector(b, t - length, g, gpows, qinv);
int vbo = decomp[®], ginv = ginv[decomp[1]], vbsuff_index = decomp[2]
for (int a = ©; a < curA; ++a)
if (tlength) {
int calc = last[vbsuff_index*lastA*q + 0%q + 0];
calc += last[vbsuff_index*lastA*q + 1*q + (((int64_t)q - vbe) * ginv) % ql;
next[b] = calc;
} else {
int extenslon =a?(2+ (a-1)%q) : ©
for (int z = 8; z < q; ++2) {
int calc = @;
for (int d = 0; d
int new_dot_prod

(a2g-1:1); ++d) {
(((Cint64_t)q + z - vbe*d) % q) * ginv) % q;

if (length — t-1)
calc += (new_dot_prod ? @ : last[extension + d1);
else

calc += last[vbsuff_index*lastA*q + (extension+d)*q + new_dot_prod];
}
next[b*curA*q + a*q + z] = calc;

}
3

swap(last, next);
lastA = curh;
lastB = curB;

for (int 1 = 8; 1 < K; ++1)

ret[i] = last[t + 1];
return ret;


https://github.com/minilek/private_frequency_oracles/

Tradeoff

Also possible to trade off utility and time: for any prime

g € [2,exp(e) + 1], can worsen utility by 1 + 1/q factor but speed

up runtime by % factor.



Tradeoff

Also possible to trade off utility and time: for any prime
g € [2,exp(e) + 1], can worsen utility by 1 + 1/q factor but speed
up runtime by % factor.

Basic idea: Break up universe [k] into h blocks of size k/h each.
Each local randomizer first reveals its true block with some
probability (basically RandomizedResponse) then does PGR inside
the block, else just sends a totally random message.

We call this scheme HybridProjectiveGeometryResponse.
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What next?

> Find a way to get around k having to be a power of g ~ e +1
(if it isn't, we round up to next power of g, which has costs)

> Finding f so ||f — f|| small is related to locally differentially
private heavy hitters. Can we get sublinear-time heavy hitters
algorithm with the optimal constant in the error ||f — f||?



