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Server

Server wants to know word distribution amongst phones/devices
fx := how many devices just texted the word “x”?

Simple (?). Each device sends a copy of all its texts to server.



Constraint: privacy
(do you really want phone manufacturers to read all your texts?)





Basic idea
send randomized messages (e.g., add noise)!
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Now with lots of noise:



Heavily Noisified Copies Averaged Image
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But what exactly does privacy mean?
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Maybe this isn’t so private after all?

Must be careful with the definition!



Local Differential Privacy

Idea: Device i sends random message Mi that is only weakly
correlated with its data (e.g., its word, or an image, etc.) xi



Local Differential Privacy

Idea: Device i sends random message Mi that is only weakly
correlated with its data (e.g., its word, or an image, etc.) xi

I One individual device’s message almost looks like random
noise, but server can extract signal from many such messages
from different devices in aggregate



Local Differential Privacy

Idea: Device i sends random message Mi that is only weakly
correlated with its data (e.g., its word, or an image, etc.) xi

I One individual device’s message almost looks like random
noise, but server can extract signal from many such messages
from different devices in aggregate

I Privacy definition: scheme provides ε-differential privacy
[Dwork-McSherry-Nissim-Smith’06] if for all devices i and all possible msgs
M, and for all x 6= x ′,

P(Mi = M|xi = x)

P(Mi = M|xi = x ′)
≤ eε.

ε is called the privacy loss (ε = 0 is perfectly private)

(informally: device would have been almost as likely to send
the same exact message even if their data were different)
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Two regimes to keep in mind . . .

I ε small (ε < 1): eε ≈ 1 + ε

I ε large (what’s usually deployed in practice)

Large ε means worse privacy, so why deploy large ε?

Fundamental tradeoff between . . .

I Utility: quality of the knowledge the server extracts

I Privacy: defined in terms of privacy loss ε

Small ε requires too much utility loss to be usable. Silver lining:
shuffling improves privacy [BEM+17], [CSU+19], [EFM+19], [BBGN19], [BKM+20], [FMT21].
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Before going further: our particular problem for today

Each device holds i some data xi from a set {1, . . . , k}.
This implies a frequency histogram, fx := (#devices with xi = x)

Server wants to recover f̃ that is close to f

(e.g., small Mean Squared Error (MSE) 1
k

∑k
x=1(fx − f̃x)

2)



Things to optimize

Privacy and utility are just two things to consider; the full list:

I Privacy: defined already (ε = privacy loss)

I Utility: if query(x) returns f̃x , want |fx − f̃x | small

(we define utility loss as the MSE, 1
k
E ‖f − f̃ ‖22)

I Communication: devices each send b = |Mi | bits

I Server time: time server takes to produce f̃ given messages

I Device time: device takes to produce Mi given xi



Things to optimize

Privacy and utility are just two things to consider; the full list:

I Privacy: defined already (ε = privacy loss)

I Utility: if query(x) returns f̃x , want |fx − f̃x | small

(we define utility loss as the MSE, 1
k
E ‖f − f̃ ‖22)

I Communication: devices each send b = |Mi | bits

I Server time: time server takes to produce f̃ given messages

I Device time: device takes to produce Mi given xi

Ideally want all five of the above to be small simultaneously.
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A simple scheme

RandomizedResponse. Each device sends its true item x with
probability eεp; otherwise sends a uniformly random other item
(so that any other item is sent with probability p)

P(send something) = 1, so eεp + (k − 1)p = 1
solves to p = 1

eε+k−1

How does the server estimate f̃x ≈ fx?
For each message Mi , add α+ β to estimate if Mi = x , else add β

If xi = x : expected contribution is αeεp + β
If xi 6= x : expected contribution is αp + β
Thus want αeε + β = 1, αp + β = 0; two eqns and two unknowns,
solves to α = eε+k−1

eε−1 , β = − 1
eε−1

Pros: Low communication, and very fast for server and devices
Con: Terrible utility loss (can show)
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Another simple scheme

SubsetSelection [Ye, Barg ’17]. Each device sends a random subset
S ⊂ {1, . . . , k} of size d . If x ∈ S , S is sent with probability eεp;
else S sent with probability p

P(send something) = 1, so eεp
(

k−1
d−1

)

+ p
(

k−1
d

)

= 1

solves to p = 1

eε(k−1
d−1)+(

k−1
d )

How does the server estimate f̃x ≈ fx?
For each message Mi , add α+ β to estimate if x ∈ Mi , else add β

If xi = x : expected contribution is αeεp
(

k−1
d−1

)

+ β

If xi 6= x : expected contribution is α(eεp
(

k−2
d−1

)

+ p
(

k−2
d

)

) + β
As before want first equal 1, second equal 0; two eqns and two
unknowns, and can solve for α, β. Gives low MSE for d ≈ k

eε+1 .

Pro: Optimal privacy loss/utility loss tradeoff [Ye, Barg’06]

Cons: Terrible communication, server/device runtimes
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Suppose data xi ∈ {1, . . . , k}, and there is a “message space” Y

I Associate with each x some Sx ⊂ Y, |Sx | = s

I Suppose {Sx}x∈X is such that ∀x 6= x ′, |Sx ∩ Sx ′ | = `

I Mechanism: For any y ∈ Y, send message M = y with
probability p if y /∈ Sx , and with probability eεp if y ∈ Sx

(call Sx the preferred messages for x)

Note: eεps + p(|Y| − s) = 1, so p = 1
s(eε−1)+|Y|

I Server estimates fx as

f̃x =
∑n

i=1(α · [[Mi ∈ Sx ]] + β) ([[P]] = 1 iff P is True; 0 o/w)

I To have E f̃x = fx we just want to make sure:
I xi = x =⇒ ith summand has expectation 1
I xi 6= x =⇒ ith summand has expectation 0

I In other words:
I αeεps + β = 1
I α(eεp`+ p(s − `)) + β = 0

I =⇒ α = 1
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Punchline: MSE increases as `
s
, |Y|

s
increase; want these small
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Idea:

I Pick prime q ≈ eε and define message space Y := F
t
q

I Pick t large enough so |Y| ≥ k , and view xi as in F
t
q

I Define Sx as (t − 1)-dimensional subspace orthogonal to x

I Then Sx ∩ Sy is (t − 2)-dim subspace, so s = qt−1, ` = qt−2

`
s
= s

|Y| =
1
q
???

I Not so fast: what if y is a multiple of x?
x = (1, 0, 0), y = (2, 0, 0)



The fix: projective geometry

For all x ∈ F
t
q, all points on line through 0 and x are equivalent.

comes from perspective drawing (“0” is spectator’s eye)
(known idea in combinatorics; thanks to Noga Alon for pointing this out)



q = 3, t = 3
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Projective geometry

Finite field projective geometry: Define projective points in F
t
q

as nonzero vectors in F
t
q whose first nonzero is a 1 (“canonical”).

Can show #projective points is qt−1
q−1 ; identify [k] with projective

points, and preferred set Sx is projective subspace “orthogonal” to
x , i.e., all projective points u s.t. 〈x , u〉 = 0 mod q.

Easy to compute s, ` since just amounts to counting size of a
subspace of Ft

q of some dimension d (d = t − 1 or t − 2).

Bottom line: can get the nice s, `, |Y| we wanted!



scheme name communication utility loss server time

RandomizedResponse dlog2 ke
n(2eε+k)

(eε−1)2
n + k

RAPPOR O(log k · k
eε

) 4neε

(eε−1)2
n k
eε

SubsetSelection k
eε

(ε + O(1)) 4neε

(eε−1)2
n k
eε

PI-RAPPOR dlog2 ke + O(ε) 4neε

(eε−1)2
min(n + k2, n k

eε
), or

n + ke2ε log k (this work)

HadamardResponse dlog2 ke 36neε

(eε−1)2
n + k log k

RecursiveHadamardResponse dlog2 ke 8neε

(eε−1)2
n + k log k

ProjectiveGeometryResponse dlog2 ke 4neε

(eε−1)2
n + keε log k

HybridProjectiveGeometryResponse dlog2 ke (1 + 1
q−1

) 4neε

(eε−1)2
n + kq log k

For HPG, q ∈ [2, exp(ε) + 1] is a prime that can be chosen arbitrarily to trade off utility for runtime

PGR and HPGR are our new schemes [Feldman, Nelson, Nguyen, Talwar’22]



Experiments

(a) (b)

Figure: RR has significantly worse error than other algorithms, even for
moderately large universes, followed by HR and RHR, which have roughly
double the error of state-of-the-art algorithms. HPG trades off having
slightly worse error than state-of-the-art for faster runtime.
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(c) (d)

Figure: Error distributions from experiments.



Experiments

(a) (b)

(c) (d)

Figure: Error distributions from experiments.



Experiments

Timing:

scheme name runtime (in seconds)

PI-RAPPOR 1,893.82 (approximately 31.5 minutes)

PG 36.92

HPG3 5.94

RHR 1.20

HR 0.64

RR 0.02

Table: Server runtimes for ε = 5, k = 3,307,948. For HPG, we chose the
parameters h = 50, q = 3, t = 11, so that the mechanism rounded up the
universe size to h(qt − 1)/(q − 1), which is about 34% larger than k .
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Making our scheme fast
Idea: find a recurrence relation; use dynamic programming + one more trick
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+ βn



Reconstruction

f̃x =
n
∑

i=1

(α · [[Mi ∈ Sx ]] + β) = α ·

(

n
∑

i=1

[[Mi ∈ Sx ]]

)

+ βn

Recalling the definition of Sx , this is,

f̃x = α ·





∑

canonical u:〈x ,u〉=0

yu



+ βn,

where yu is the number of messages Mi equal to u.
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(
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∑

i=1

[[Mi ∈ Sx ]]

)

+ βn

Recalling the definition of Sx , this is,

f̃x = α ·





∑

canonical u:〈x ,u〉=0

yu



+ βn,

where yu is the number of messages Mi equal to u.

Naively computing the above would take ≈ k/q time per x , and

there are k values of x , so k2

q
= k2

eε+1 time total
(plus an additional n time to form the vector y)
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Faster reconstruction

Can reconstruct f̃ faster: Dynamic programming
For a ∈ F

j
q, b ∈ F

t−j
q , z ∈ Fq, where a is further restricted to have

its first nonzero entry be a 1 (it may also be the all-zeroes vector),
and b is restricted to be a canonical vector when j = 0, define

F (a, b, z) =
∑

prefj (u)=a

〈sufft−j (u),b〉=z

yu

Then, f̃v = α · F (⊥, v , 0) + βn

F satisfies a recurrence relation, and we can use DP



Faster reconstruction

Let j ∈ [0, t) denote the length of the vector a. Let suff−1(b)
denote the vector b but with the first entry removed (so it is a
vector of length one shorter). Then

F (a, b, z) =











ya, if j = t, a 6= 0, z = 0

0, if j = t, and a = 0 or z 6= 0
∑1

w=0 F (a ◦ w , suff−1(b), z − b1w mod q), if j 6= t, a = 0
∑q−1

w=0 F (a ◦ w , suff−1(b), z − b1w mod q), if j 6= t, a 6= 0
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q. If we choose ζ so that bζ−1 is either canonical or the zero

vector, then we cut down on the possibilities for b by a factor of q.



Faster reconstruction

Let j ∈ [0, t) denote the length of the vector a. Let suff−1(b)
denote the vector b but with the first entry removed (so it is a
vector of length one shorter). Then

F (a, b, z) =











ya, if j = t, a 6= 0, z = 0

0, if j = t, and a = 0 or z 6= 0
∑1

w=0 F (a ◦ w , suff−1(b), z − b1w mod q), if j 6= t, a = 0
∑q−1

w=0 F (a ◦ w , suff−1(b), z − b1w mod q), if j 6= t, a 6= 0

Dynamic Programming gives O(kq2t) time and O(kq) space.

Optimization: observe F (a, b, z) = F (a, bζ−1, zζ−1) for any
ζ ∈ F

∗
q. If we choose ζ so that bζ−1 is either canonical or the zero

vector, then we cut down on the possibilities for b by a factor of q.
Leads to O(kqt) time and O(k) space.



Code release

https://github.com/minilek/private_frequency_oracles/

https://github.com/minilek/private_frequency_oracles/
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Also possible to trade off utility and time: for any prime
q ∈ [2, exp(ε) + 1], can worsen utility by 1 + 1/q factor but speed

up runtime by exp(ε)+1
q

factor.



Tradeoff

Also possible to trade off utility and time: for any prime
q ∈ [2, exp(ε) + 1], can worsen utility by 1 + 1/q factor but speed

up runtime by exp(ε)+1
q

factor.

Basic idea: Break up universe [k] into h blocks of size k/h each.
Each local randomizer first reveals its true block with some
probability (basically RandomizedResponse) then does PGR inside
the block, else just sends a totally random message.

We call this scheme HybridProjectiveGeometryResponse.
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What next?
I Find a way to get around k having to be a power of q ≈ eε+1

(if it isn’t, we round up to next power of q, which has costs)

I Finding f̃ so ‖f − f̃ ‖ small is related to locally differentially
private heavy hitters. Can we get sublinear-time heavy hitters
algorithm with the optimal constant in the error ‖f − f̃ ‖?


