

autocomplete

spell-correct

Phone 1
science

Phone 2
awesome

. . .

Phone n
thx

Server

Server wants to know word distribution amongst phones/devices
fx := how many devices just texted the word “x”?

Phone 1
science

Phone 2
awesome

. . .

Phone n
thx

Server

Server wants to know word distribution amongst phones/devices
fx := how many devices just texted the word “x”?

Simple (?). Each device sends a copy of all its texts to server.

Constraint: privacy
(do you really want phone manufacturers to read all your texts?)

Basic idea
send randomized messages (e.g., add noise)!

Original Image Noisified Versions

Now with lots of noise:

Heavily Noisified Copies Averaged Image

Moral of this story
can have each individual message look like garbage, thus
protecting individual privacy, but server can extract useful

knowledge by aggregating messages from all devices

Moral of this story
can have each individual message look like garbage, thus
protecting individual privacy, but server can extract useful

knowledge by aggregating messages from all devices

But what exactly does privacy mean?

Above, applied ’wavelet denoising’ to a single noised image
Maybe this isn’t so private after all?

Above, applied ’wavelet denoising’ to a single noised image
Maybe this isn’t so private after all?

Must be careful with the definition!

Local Differential Privacy

Idea: Device i sends random message Mi that is only weakly
correlated with its data (e.g., its word, or an image, etc.) xi

Local Differential Privacy

Idea: Device i sends random message Mi that is only weakly
correlated with its data (e.g., its word, or an image, etc.) xi

I One individual device’s message almost looks like random
noise, but server can extract signal from many such messages
from different devices in aggregate

Local Differential Privacy

Idea: Device i sends random message Mi that is only weakly
correlated with its data (e.g., its word, or an image, etc.) xi

I One individual device’s message almost looks like random
noise, but server can extract signal from many such messages
from different devices in aggregate

I Privacy definition: scheme provides ε-differential privacy
[Dwork-McSherry-Nissim-Smith’06] if for all devices i and all possible msgs
M, and for all x 6= x ′,

P(Mi = M|xi = x)

P(Mi = M|xi = x ′)
≤ eε.

ε is called the privacy loss (ε = 0 is perfectly private)

(informally: device would have been almost as likely to send
the same exact message even if their data were different)

Two regimes to keep in mind . . .

I ε small (ε < 1): eε ≈ 1 + ε

I ε large (what’s usually deployed in practice)

Two regimes to keep in mind . . .

I ε small (ε < 1): eε ≈ 1 + ε

I ε large (what’s usually deployed in practice)

Large ε means worse privacy, so why deploy large ε?

Two regimes to keep in mind . . .

I ε small (ε < 1): eε ≈ 1 + ε

I ε large (what’s usually deployed in practice)

Large ε means worse privacy, so why deploy large ε?

Fundamental tradeoff between . . .

I Utility: quality of the knowledge the server extracts

I Privacy: defined in terms of privacy loss ε

Two regimes to keep in mind . . .

I ε small (ε < 1): eε ≈ 1 + ε

I ε large (what’s usually deployed in practice)

Large ε means worse privacy, so why deploy large ε?

Fundamental tradeoff between . . .

I Utility: quality of the knowledge the server extracts

I Privacy: defined in terms of privacy loss ε

Small ε requires too much utility loss to be usable. Silver lining:
shuffling improves privacy [BEM+17], [CSU+19], [EFM+19], [BBGN19], [BKM+20], [FMT21].

Before going further: our particular problem for today

Before going further: our particular problem for today

Each device holds i some data xi from a set {1, . . . , k}.
This implies a frequency histogram, fx := (#devices with xi = x)

Before going further: our particular problem for today

Each device holds i some data xi from a set {1, . . . , k}.
This implies a frequency histogram, fx := (#devices with xi = x)

Server wants to recover f̃ that is close to f

(e.g., small Mean Squared Error (MSE) 1
k

∑k
x=1(fx − f̃x)

2)

Things to optimize

Privacy and utility are just two things to consider; the full list:

I Privacy: defined already (ε = privacy loss)

I Utility: if query(x) returns f̃x , want |fx − f̃x | small

(we define utility loss as the MSE, 1
k
E ‖f − f̃ ‖22)

I Communication: devices each send b = |Mi | bits

I Server time: time server takes to produce f̃ given messages

I Device time: device takes to produce Mi given xi

Things to optimize

Privacy and utility are just two things to consider; the full list:

I Privacy: defined already (ε = privacy loss)

I Utility: if query(x) returns f̃x , want |fx − f̃x | small

(we define utility loss as the MSE, 1
k
E ‖f − f̃ ‖22)

I Communication: devices each send b = |Mi | bits

I Server time: time server takes to produce f̃ given messages

I Device time: device takes to produce Mi given xi

Ideally want all five of the above to be small simultaneously.

A simple scheme

RandomizedResponse. Each device sends its true item x with
probability eεp; otherwise sends a uniformly random other item
(so that any other item is sent with probability p)

A simple scheme

RandomizedResponse. Each device sends its true item x with
probability eεp; otherwise sends a uniformly random other item
(so that any other item is sent with probability p)

P(send something) = 1, so eεp + (k − 1)p = 1
solves to p = 1

eε+k−1

A simple scheme

RandomizedResponse. Each device sends its true item x with
probability eεp; otherwise sends a uniformly random other item
(so that any other item is sent with probability p)

P(send something) = 1, so eεp + (k − 1)p = 1
solves to p = 1

eε+k−1

How does the server estimate f̃x ≈ fx?

A simple scheme

RandomizedResponse. Each device sends its true item x with
probability eεp; otherwise sends a uniformly random other item
(so that any other item is sent with probability p)

P(send something) = 1, so eεp + (k − 1)p = 1
solves to p = 1

eε+k−1

How does the server estimate f̃x ≈ fx?
For each message Mi , add α+ β to estimate if Mi = x , else add β

A simple scheme

RandomizedResponse. Each device sends its true item x with
probability eεp; otherwise sends a uniformly random other item
(so that any other item is sent with probability p)

P(send something) = 1, so eεp + (k − 1)p = 1
solves to p = 1

eε+k−1

How does the server estimate f̃x ≈ fx?
For each message Mi , add α+ β to estimate if Mi = x , else add β

If xi = x : expected contribution is αeεp + β
If xi 6= x : expected contribution is αp + β

A simple scheme

RandomizedResponse. Each device sends its true item x with
probability eεp; otherwise sends a uniformly random other item
(so that any other item is sent with probability p)

P(send something) = 1, so eεp + (k − 1)p = 1
solves to p = 1

eε+k−1

How does the server estimate f̃x ≈ fx?
For each message Mi , add α+ β to estimate if Mi = x , else add β

If xi = x : expected contribution is αeεp + β
If xi 6= x : expected contribution is αp + β
Thus want αeε + β = 1, αp + β = 0; two eqns and two unknowns,
solves to α = eε+k−1

eε−1 , β = − 1
eε−1

A simple scheme

RandomizedResponse. Each device sends its true item x with
probability eεp; otherwise sends a uniformly random other item
(so that any other item is sent with probability p)

P(send something) = 1, so eεp + (k − 1)p = 1
solves to p = 1

eε+k−1

How does the server estimate f̃x ≈ fx?
For each message Mi , add α+ β to estimate if Mi = x , else add β

If xi = x : expected contribution is αeεp + β
If xi 6= x : expected contribution is αp + β
Thus want αeε + β = 1, αp + β = 0; two eqns and two unknowns,
solves to α = eε+k−1

eε−1 , β = − 1
eε−1

Pros: Low communication, and very fast for server and devices
Con: Terrible utility loss (can show)

Another simple scheme

SubsetSelection [Ye, Barg ’17]. Each device sends a random subset
S ⊂ {1, . . . , k} of size d . If x ∈ S , S is sent with probability eεp;
else S sent with probability p

Another simple scheme

SubsetSelection [Ye, Barg ’17]. Each device sends a random subset
S ⊂ {1, . . . , k} of size d . If x ∈ S , S is sent with probability eεp;
else S sent with probability p

P(send something) = 1, so eεp
(

k−1
d−1

)

+ p
(

k−1
d

)

= 1

solves to p = 1

eε(k−1
d−1)+(

k−1
d)

Another simple scheme

SubsetSelection [Ye, Barg ’17]. Each device sends a random subset
S ⊂ {1, . . . , k} of size d . If x ∈ S , S is sent with probability eεp;
else S sent with probability p

P(send something) = 1, so eεp
(

k−1
d−1

)

+ p
(

k−1
d

)

= 1

solves to p = 1

eε(k−1
d−1)+(

k−1
d)

How does the server estimate f̃x ≈ fx?

Another simple scheme

SubsetSelection [Ye, Barg ’17]. Each device sends a random subset
S ⊂ {1, . . . , k} of size d . If x ∈ S , S is sent with probability eεp;
else S sent with probability p

P(send something) = 1, so eεp
(

k−1
d−1

)

+ p
(

k−1
d

)

= 1

solves to p = 1

eε(k−1
d−1)+(

k−1
d)

How does the server estimate f̃x ≈ fx?
For each message Mi , add α+ β to estimate if x ∈ Mi , else add β

Another simple scheme

SubsetSelection [Ye, Barg ’17]. Each device sends a random subset
S ⊂ {1, . . . , k} of size d . If x ∈ S , S is sent with probability eεp;
else S sent with probability p

P(send something) = 1, so eεp
(

k−1
d−1

)

+ p
(

k−1
d

)

= 1

solves to p = 1

eε(k−1
d−1)+(

k−1
d)

How does the server estimate f̃x ≈ fx?
For each message Mi , add α+ β to estimate if x ∈ Mi , else add β

If xi = x : expected contribution is αeεp
(

k−1
d−1

)

+ β

If xi 6= x : expected contribution is α(eεp
(

k−2
d−1

)

+ p
(

k−2
d

)

) + β

Another simple scheme

SubsetSelection [Ye, Barg ’17]. Each device sends a random subset
S ⊂ {1, . . . , k} of size d . If x ∈ S , S is sent with probability eεp;
else S sent with probability p

P(send something) = 1, so eεp
(

k−1
d−1

)

+ p
(

k−1
d

)

= 1

solves to p = 1

eε(k−1
d−1)+(

k−1
d)

How does the server estimate f̃x ≈ fx?
For each message Mi , add α+ β to estimate if x ∈ Mi , else add β

If xi = x : expected contribution is αeεp
(

k−1
d−1

)

+ β

If xi 6= x : expected contribution is α(eεp
(

k−2
d−1

)

+ p
(

k−2
d

)

) + β
As before want first equal 1, second equal 0; two eqns and two
unknowns, and can solve for α, β. Gives low MSE for d ≈ k

eε+1 .

Another simple scheme

SubsetSelection [Ye, Barg ’17]. Each device sends a random subset
S ⊂ {1, . . . , k} of size d . If x ∈ S , S is sent with probability eεp;
else S sent with probability p

P(send something) = 1, so eεp
(

k−1
d−1

)

+ p
(

k−1
d

)

= 1

solves to p = 1

eε(k−1
d−1)+(

k−1
d)

How does the server estimate f̃x ≈ fx?
For each message Mi , add α+ β to estimate if x ∈ Mi , else add β

If xi = x : expected contribution is αeεp
(

k−1
d−1

)

+ β

If xi 6= x : expected contribution is α(eεp
(

k−2
d−1

)

+ p
(

k−2
d

)

) + β
As before want first equal 1, second equal 0; two eqns and two
unknowns, and can solve for α, β. Gives low MSE for d ≈ k

eε+1 .

Pro: Optimal privacy loss/utility loss tradeoff [Ye, Barg’06]

Cons: Terrible communication, server/device runtimes

A meta approach
[Acharya, Sun, Zhang’19]

A meta approach [Acharya, Sun, Zhang’19]

Suppose data xi ∈ {1, . . . , k}, and there is a “message space” Y

A meta approach [Acharya, Sun, Zhang’19]

Suppose data xi ∈ {1, . . . , k}, and there is a “message space” Y

I Associate with each x some Sx ⊂ Y, |Sx | = s

I Suppose {Sx}x∈X is such that ∀x 6= x ′, |Sx ∩ Sx ′ | = `

A meta approach [Acharya, Sun, Zhang’19]

Suppose data xi ∈ {1, . . . , k}, and there is a “message space” Y

I Associate with each x some Sx ⊂ Y, |Sx | = s

I Suppose {Sx}x∈X is such that ∀x 6= x ′, |Sx ∩ Sx ′ | = `

I Mechanism: For any y ∈ Y, send message M = y with
probability p if y /∈ Sx , and with probability eεp if y ∈ Sx

(call Sx the preferred messages for x)

A meta approach [Acharya, Sun, Zhang’19]

Suppose data xi ∈ {1, . . . , k}, and there is a “message space” Y

I Associate with each x some Sx ⊂ Y, |Sx | = s

I Suppose {Sx}x∈X is such that ∀x 6= x ′, |Sx ∩ Sx ′ | = `

I Mechanism: For any y ∈ Y, send message M = y with
probability p if y /∈ Sx , and with probability eεp if y ∈ Sx

(call Sx the preferred messages for x)

Note: eεps + p(|Y| − s) = 1, so p = 1
s(eε−1)+|Y|

A meta approach [Acharya, Sun, Zhang’19]

Suppose data xi ∈ {1, . . . , k}, and there is a “message space” Y

I Associate with each x some Sx ⊂ Y, |Sx | = s

I Suppose {Sx}x∈X is such that ∀x 6= x ′, |Sx ∩ Sx ′ | = `

I Mechanism: For any y ∈ Y, send message M = y with
probability p if y /∈ Sx , and with probability eεp if y ∈ Sx

(call Sx the preferred messages for x)

Note: eεps + p(|Y| − s) = 1, so p = 1
s(eε−1)+|Y|

I Server estimates fx as

f̃x =
∑n

i=1(α · [[Mi ∈ Sx]] + β) ([[P]] = 1 iff P is True; 0 o/w)

A meta approach [Acharya, Sun, Zhang’19]

Suppose data xi ∈ {1, . . . , k}, and there is a “message space” Y

I Associate with each x some Sx ⊂ Y, |Sx | = s

I Suppose {Sx}x∈X is such that ∀x 6= x ′, |Sx ∩ Sx ′ | = `

I Mechanism: For any y ∈ Y, send message M = y with
probability p if y /∈ Sx , and with probability eεp if y ∈ Sx

(call Sx the preferred messages for x)

Note: eεps + p(|Y| − s) = 1, so p = 1
s(eε−1)+|Y|

I Server estimates fx as

f̃x =
∑n

i=1(α · [[Mi ∈ Sx]] + β) ([[P]] = 1 iff P is True; 0 o/w)

I To have E f̃x = fx we just want to make sure:
I xi = x =⇒ ith summand has expectation 1
I xi 6= x =⇒ ith summand has expectation 0

A meta approach [Acharya, Sun, Zhang’19]

Suppose data xi ∈ {1, . . . , k}, and there is a “message space” Y

I Associate with each x some Sx ⊂ Y, |Sx | = s

I Suppose {Sx}x∈X is such that ∀x 6= x ′, |Sx ∩ Sx ′ | = `

I Mechanism: For any y ∈ Y, send message M = y with
probability p if y /∈ Sx , and with probability eεp if y ∈ Sx

(call Sx the preferred messages for x)

Note: eεps + p(|Y| − s) = 1, so p = 1
s(eε−1)+|Y|

I Server estimates fx as

f̃x =
∑n

i=1(α · [[Mi ∈ Sx]] + β) ([[P]] = 1 iff P is True; 0 o/w)

I To have E f̃x = fx we just want to make sure:
I xi = x =⇒ ith summand has expectation 1
I xi 6= x =⇒ ith summand has expectation 0

I In other words:
I αeεps + β = 1
I α(eεp`+ p(s − `)) + β = 0

A meta approach [Acharya, Sun, Zhang’19]

Suppose data xi ∈ {1, . . . , k}, and there is a “message space” Y

I Associate with each x some Sx ⊂ Y, |Sx | = s

I Suppose {Sx}x∈X is such that ∀x 6= x ′, |Sx ∩ Sx ′ | = `

I Mechanism: For any y ∈ Y, send message M = y with
probability p if y /∈ Sx , and with probability eεp if y ∈ Sx

(call Sx the preferred messages for x)

Note: eεps + p(|Y| − s) = 1, so p = 1
s(eε−1)+|Y|

I Server estimates fx as

f̃x =
∑n

i=1(α · [[Mi ∈ Sx]] + β) ([[P]] = 1 iff P is True; 0 o/w)

I To have E f̃x = fx we just want to make sure:
I xi = x =⇒ ith summand has expectation 1
I xi 6= x =⇒ ith summand has expectation 0

I In other words:
I αeεps + β = 1
I α(eεp`+ p(s − `)) + β = 0

I =⇒ α = 1
p(s−`)(eε−1) , β = − s+`(eε−1)

(s−`)(eε−1)

Utility of meta approach
By independence,
I Var [f̃x] =

∑n
i=1 Var [(α · [[Mi ∈ Sx]] + β)

so Var [f̃x] = α2 ·
∑n

i=1 P(Mi ∈ Sx)(1− P(Mi ∈ Sx))

Utility of meta approach
By independence,
I Var [f̃x] =

∑n
i=1 Var [(α · [[Mi ∈ Sx]] + β)

so Var [f̃x] = α2 ·
∑n

i=1 P(Mi ∈ Sx)(1− P(Mi ∈ Sx))

If xi = x , P(Mi ∈ Sx) = eεps

Utility of meta approach
By independence,
I Var [f̃x] =

∑n
i=1 Var [(α · [[Mi ∈ Sx]] + β)

so Var [f̃x] = α2 ·
∑n

i=1 P(Mi ∈ Sx)(1− P(Mi ∈ Sx))

If xi = x , P(Mi ∈ Sx) = eεps

If xi 6= x , P(Mi ∈ Sx) = eεp`+ p(s − `)

Utility of meta approach
By independence,
I Var [f̃x] =

∑n
i=1 Var [(α · [[Mi ∈ Sx]] + β)

so Var [f̃x] = α2 ·
∑n

i=1 P(Mi ∈ Sx)(1− P(Mi ∈ Sx))

If xi = x , P(Mi ∈ Sx) = eεps

If xi 6= x , P(Mi ∈ Sx) = eεp`+ p(s − `)

Thus, Var [f̃x] ≤ α2 (fxe
εps + (n − fx)(e

εp`+ p(s − `)))

= n ·
s + `(eε − 1)

p(s − `)2(eε − 1)2
+ fx ·

1

p(s − `)(eε − 1)

=
n(s + `(eε − 1))(s(eε − 1) + |Y|)

(s − `)2(eε − 1)2
+

fx(s(e
ε − 1) + |Y|)

(s − `)(eε − 1)

Utility of meta approach
By independence,
I Var [f̃x] =

∑n
i=1 Var [(α · [[Mi ∈ Sx]] + β)

so Var [f̃x] = α2 ·
∑n

i=1 P(Mi ∈ Sx)(1− P(Mi ∈ Sx))

If xi = x , P(Mi ∈ Sx) = eεps

If xi 6= x , P(Mi ∈ Sx) = eεp`+ p(s − `)

Thus, Var [f̃x] ≤ α2 (fxe
εps + (n − fx)(e

εp`+ p(s − `)))

= n ·
s + `(eε − 1)

p(s − `)2(eε − 1)2
+ fx ·

1

p(s − `)(eε − 1)

=
n(s + `(eε − 1))(s(eε − 1) + |Y|)

(s − `)2(eε − 1)2
+

fx(s(e
ε − 1) + |Y|)

(s − `)(eε − 1)

MSE is 1
k
E ‖f − f̃x‖

2
2 =

1
k

∑

x Var [f̃x], which is

n(1 + `
s
(eε − 1))((eε − 1) + |Y|

s
)

(1− `
s
)2(eε − 1)2

+
n((eε − 1) + |Y|

s
)

k(1− `
s
)(eε − 1)

Utility of meta approach
By independence,
I Var [f̃x] =

∑n
i=1 Var [(α · [[Mi ∈ Sx]] + β)

so Var [f̃x] = α2 ·
∑n

i=1 P(Mi ∈ Sx)(1− P(Mi ∈ Sx))

If xi = x , P(Mi ∈ Sx) = eεps

If xi 6= x , P(Mi ∈ Sx) = eεp`+ p(s − `)

Thus, Var [f̃x] ≤ α2 (fxe
εps + (n − fx)(e

εp`+ p(s − `)))

= n ·
s + `(eε − 1)

p(s − `)2(eε − 1)2
+ fx ·

1

p(s − `)(eε − 1)

=
n(s + `(eε − 1))(s(eε − 1) + |Y|)

(s − `)2(eε − 1)2
+

fx(s(e
ε − 1) + |Y|)

(s − `)(eε − 1)

MSE is 1
k
E ‖f − f̃x‖

2
2 =

1
k

∑

x Var [f̃x], which is

n(1 + `
s
(eε − 1))((eε − 1) + |Y|

s
)

(1− `
s
)2(eε − 1)2

+
n((eε − 1) + |Y|

s
)

k(1− `
s
)(eε − 1)

Punchline: MSE increases as `
s
, |Y|

s
increase; want these small

Now reduces to a
combinatorial question

Idea:

I Pick prime q ≈ eε and define message space Y := F
t
q

I Pick t large enough so |Y| ≥ k , and view xi as in F
t
q

Idea:

I Pick prime q ≈ eε and define message space Y := F
t
q

I Pick t large enough so |Y| ≥ k , and view xi as in F
t
q

I Define Sx as (t − 1)-dimensional subspace orthogonal to x

Idea:

I Pick prime q ≈ eε and define message space Y := F
t
q

I Pick t large enough so |Y| ≥ k , and view xi as in F
t
q

I Define Sx as (t − 1)-dimensional subspace orthogonal to x

I Then Sx ∩ Sy is (t − 2)-dim subspace, so s = qt−1, ` = qt−2

`
s
= s

|Y| =
1
q
???

Idea:

I Pick prime q ≈ eε and define message space Y := F
t
q

I Pick t large enough so |Y| ≥ k , and view xi as in F
t
q

I Define Sx as (t − 1)-dimensional subspace orthogonal to x

I Then Sx ∩ Sy is (t − 2)-dim subspace, so s = qt−1, ` = qt−2

`
s
= s

|Y| =
1
q
???

I Not so fast: what if y is a multiple of x?
x = (1, 0, 0), y = (2, 0, 0)

The fix: projective geometry

For all x ∈ F
t
q, all points on line through 0 and x are equivalent.

comes from perspective drawing (“0” is spectator’s eye)
(known idea in combinatorics; thanks to Noga Alon for pointing this out)

q = 3, t = 3

Projective geometry

Finite field projective geometry: Define projective points in F
t
q

as nonzero vectors in F
t
q whose first nonzero is a 1 (“canonical”).

Projective geometry

Finite field projective geometry: Define projective points in F
t
q

as nonzero vectors in F
t
q whose first nonzero is a 1 (“canonical”).

Can show #projective points is qt−1
q−1 ; identify [k] with projective

points, and preferred set Sx is projective subspace “orthogonal” to
x , i.e., all projective points u s.t. 〈x , u〉 = 0 mod q.

Projective geometry

Finite field projective geometry: Define projective points in F
t
q

as nonzero vectors in F
t
q whose first nonzero is a 1 (“canonical”).

Can show #projective points is qt−1
q−1 ; identify [k] with projective

points, and preferred set Sx is projective subspace “orthogonal” to
x , i.e., all projective points u s.t. 〈x , u〉 = 0 mod q.

Easy to compute s, ` since just amounts to counting size of a
subspace of Ft

q of some dimension d (d = t − 1 or t − 2).

Bottom line: can get the nice s, `, |Y| we wanted!

scheme name communication utility loss server time

RandomizedResponse dlog2 ke
n(2eε+k)

(eε−1)2
n + k

RAPPOR O(log k · k
eε

) 4neε

(eε−1)2
n k
eε

SubsetSelection k
eε

(ε + O(1)) 4neε

(eε−1)2
n k
eε

PI-RAPPOR dlog2 ke + O(ε) 4neε

(eε−1)2
min(n + k2, n k

eε
), or

n + ke2ε log k (this work)

HadamardResponse dlog2 ke 36neε

(eε−1)2
n + k log k

RecursiveHadamardResponse dlog2 ke 8neε

(eε−1)2
n + k log k

ProjectiveGeometryResponse dlog2 ke 4neε

(eε−1)2
n + keε log k

HybridProjectiveGeometryResponse dlog2 ke (1 + 1
q−1

) 4neε

(eε−1)2
n + kq log k

For HPG, q ∈ [2, exp(ε) + 1] is a prime that can be chosen arbitrarily to trade off utility for runtime

PGR and HPGR are our new schemes [Feldman, Nelson, Nguyen, Talwar’22]

Experiments

(a) (b)

Figure: RR has significantly worse error than other algorithms, even for
moderately large universes, followed by HR and RHR, which have roughly
double the error of state-of-the-art algorithms. HPG trades off having
slightly worse error than state-of-the-art for faster runtime.

Experiments

(a) (b)

(c) (d)

Figure: Error distributions from experiments.

Experiments

(a) (b)

(c) (d)

Figure: Error distributions from experiments.

Experiments

Timing:

scheme name runtime (in seconds)

PI-RAPPOR 1,893.82 (approximately 31.5 minutes)

PG 36.92

HPG3 5.94

RHR 1.20

HR 0.64

RR 0.02

Table: Server runtimes for ε = 5, k = 3,307,948. For HPG, we chose the
parameters h = 50, q = 3, t = 11, so that the mechanism rounded up the
universe size to h(qt − 1)/(q − 1), which is about 34% larger than k .

Making our scheme fast

Making our scheme fast
Idea: find a recurrence relation; use dynamic programming + one more trick

Reconstruction

f̃x =
n
∑

i=1

(α · [[Mi ∈ Sx]] + β) = α ·

(

n
∑

i=1

[[Mi ∈ Sx]]

)

+ βn

Reconstruction

f̃x =
n
∑

i=1

(α · [[Mi ∈ Sx]] + β) = α ·

(

n
∑

i=1

[[Mi ∈ Sx]]

)

+ βn

Recalling the definition of Sx , this is,

f̃x = α ·





∑

canonical u:〈x ,u〉=0

yu



+ βn,

where yu is the number of messages Mi equal to u.

Reconstruction

f̃x =
n
∑

i=1

(α · [[Mi ∈ Sx]] + β) = α ·

(

n
∑

i=1

[[Mi ∈ Sx]]

)

+ βn

Recalling the definition of Sx , this is,

f̃x = α ·





∑

canonical u:〈x ,u〉=0

yu



+ βn,

where yu is the number of messages Mi equal to u.

Naively computing the above would take ≈ k/q time per x , and

there are k values of x , so k2

q
= k2

eε+1 time total
(plus an additional n time to form the vector y)

Faster reconstruction

Can reconstruct f̃ faster: Dynamic programming

Faster reconstruction

Can reconstruct f̃ faster: Dynamic programming
For a ∈ F

j
q, b ∈ F

t−j
q , z ∈ Fq, where a is further restricted to have

its first nonzero entry be a 1 (it may also be the all-zeroes vector),
and b is restricted to be a canonical vector when j = 0, define

F (a, b, z) =
∑

prefj (u)=a

〈sufft−j (u),b〉=z

yu

Faster reconstruction

Can reconstruct f̃ faster: Dynamic programming
For a ∈ F

j
q, b ∈ F

t−j
q , z ∈ Fq, where a is further restricted to have

its first nonzero entry be a 1 (it may also be the all-zeroes vector),
and b is restricted to be a canonical vector when j = 0, define

F (a, b, z) =
∑

prefj (u)=a

〈sufft−j (u),b〉=z

yu

Then, f̃v = α · F (⊥, v , 0) + βn

Faster reconstruction

Can reconstruct f̃ faster: Dynamic programming
For a ∈ F

j
q, b ∈ F

t−j
q , z ∈ Fq, where a is further restricted to have

its first nonzero entry be a 1 (it may also be the all-zeroes vector),
and b is restricted to be a canonical vector when j = 0, define

F (a, b, z) =
∑

prefj (u)=a

〈sufft−j (u),b〉=z

yu

Then, f̃v = α · F (⊥, v , 0) + βn

F satisfies a recurrence relation, and we can use DP

Faster reconstruction

Let j ∈ [0, t) denote the length of the vector a. Let suff−1(b)
denote the vector b but with the first entry removed (so it is a
vector of length one shorter). Then

F (a, b, z) =











ya, if j = t, a 6= 0, z = 0

0, if j = t, and a = 0 or z 6= 0
∑1

w=0 F (a ◦ w , suff−1(b), z − b1w mod q), if j 6= t, a = 0
∑q−1

w=0 F (a ◦ w , suff−1(b), z − b1w mod q), if j 6= t, a 6= 0

Faster reconstruction

Let j ∈ [0, t) denote the length of the vector a. Let suff−1(b)
denote the vector b but with the first entry removed (so it is a
vector of length one shorter). Then

F (a, b, z) =











ya, if j = t, a 6= 0, z = 0

0, if j = t, and a = 0 or z 6= 0
∑1

w=0 F (a ◦ w , suff−1(b), z − b1w mod q), if j 6= t, a = 0
∑q−1

w=0 F (a ◦ w , suff−1(b), z − b1w mod q), if j 6= t, a 6= 0

Dynamic Programming gives O(kq2t) time and O(kq) space.

Faster reconstruction

Let j ∈ [0, t) denote the length of the vector a. Let suff−1(b)
denote the vector b but with the first entry removed (so it is a
vector of length one shorter). Then

F (a, b, z) =











ya, if j = t, a 6= 0, z = 0

0, if j = t, and a = 0 or z 6= 0
∑1

w=0 F (a ◦ w , suff−1(b), z − b1w mod q), if j 6= t, a = 0
∑q−1

w=0 F (a ◦ w , suff−1(b), z − b1w mod q), if j 6= t, a 6= 0

Dynamic Programming gives O(kq2t) time and O(kq) space.

Optimization: observe F (a, b, z) = F (a, bζ−1, zζ−1) for any
ζ ∈ F

∗
q. If we choose ζ so that bζ−1 is either canonical or the zero

vector, then we cut down on the possibilities for b by a factor of q.

Faster reconstruction

Let j ∈ [0, t) denote the length of the vector a. Let suff−1(b)
denote the vector b but with the first entry removed (so it is a
vector of length one shorter). Then

F (a, b, z) =











ya, if j = t, a 6= 0, z = 0

0, if j = t, and a = 0 or z 6= 0
∑1

w=0 F (a ◦ w , suff−1(b), z − b1w mod q), if j 6= t, a = 0
∑q−1

w=0 F (a ◦ w , suff−1(b), z − b1w mod q), if j 6= t, a 6= 0

Dynamic Programming gives O(kq2t) time and O(kq) space.

Optimization: observe F (a, b, z) = F (a, bζ−1, zζ−1) for any
ζ ∈ F

∗
q. If we choose ζ so that bζ−1 is either canonical or the zero

vector, then we cut down on the possibilities for b by a factor of q.
Leads to O(kqt) time and O(k) space.

Code release

https://github.com/minilek/private_frequency_oracles/

https://github.com/minilek/private_frequency_oracles/

Tradeoff

Also possible to trade off utility and time: for any prime
q ∈ [2, exp(ε) + 1], can worsen utility by 1 + 1/q factor but speed

up runtime by exp(ε)+1
q

factor.

Tradeoff

Also possible to trade off utility and time: for any prime
q ∈ [2, exp(ε) + 1], can worsen utility by 1 + 1/q factor but speed

up runtime by exp(ε)+1
q

factor.

Basic idea: Break up universe [k] into h blocks of size k/h each.
Each local randomizer first reveals its true block with some
probability (basically RandomizedResponse) then does PGR inside
the block, else just sends a totally random message.

We call this scheme HybridProjectiveGeometryResponse.

What next?

What next?
I Find a way to get around k having to be a power of q ≈ eε+1

(if it isn’t, we round up to next power of q, which has costs)

I Finding f̃ so ‖f − f̃ ‖ small is related to locally differentially
private heavy hitters. Can we get sublinear-time heavy hitters
algorithm with the optimal constant in the error ‖f − f̃ ‖?

