Curiosities and counterexamples in smooth convex optimization

EDOUARD PAUWELS (IRIT, TOULOUSE 3) collaboration with JÉRÔME BOLTE (TSE, TOULOUSE 1)

Learning and Optimization in Luminy

October 2022, CIRM, Lumniy

Forewords:

We work in \mathbb{R}^2 (negative results).

 $k \ge 2$ is an arbitrary smoothness index.

Functions on \mathbb{R}^2 : convex, compact sublevel sets, C^k .

 $f : \mathbb{R}^{p} \to \mathbb{R}$ convex, *L*-Lipschitz gradient, a minimum x^{*} . Set $x_{0} \in \mathbb{R}^{p}$ and for $k \in \mathbb{N}$,

$$x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k).$$

 $(x_k)_{k\in\mathbb{N}}$ converges toward a solution (Féjer monotonicity: for any solution x^* , $||x_k - x^*||$ is monotone).

 $f : \mathbb{R}^{p} \to \mathbb{R}$ convex, *L*-Lipschitz gradient, a minimum x^{*} . Set $x_{0} \in \mathbb{R}^{p}$ and for $k \in \mathbb{N}$,

$$x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k).$$

 $(x_k)_{k\in\mathbb{N}}$ converges toward a solution (Féjer monotonicity: for any solution x^* , $||x_k - x^*||$ is monotone).

Exact line search

$$x_{k+1} \in \arg\min_{z} f(z), \quad s.t. \quad z \in x_k - \mathbb{R}_+ \nabla f(x_k).$$

 $f : \mathbb{R}^{p} \to \mathbb{R}$ convex, L-Lipschitz gradient, a minimum x^{*} . Set $x_{0} \in \mathbb{R}^{p}$ and for $k \in \mathbb{N}$,

$$x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k).$$

 $(x_k)_{k\in\mathbb{N}}$ converges toward a solution (Féjer monotonicity: for any solution x^* , $||x_k - x^*||$ is monotone).

Exact line search

$$x_{k+1} \in \arg\min_{z} f(z), \qquad s.t. \quad z \in x_k - \mathbb{R}_+ \nabla f(x_k).$$

Contribution: does not converge in general,

- dimension 2
- f convex, C^k , coercive
- unique minimum along the trajectory (selection in the argmin).

Construct f, C^k , with oscillating gradients around its minimum.

Construct f, C^k , with oscillating gradients around its minimum.

Main ideas:

- Gradient orthogonal to level sets.
- Interpolate a sequence of level sets.

Additional counterexamples

 C^k convex counter examples on \mathbb{R}^2

 C^k convex counter examples on \mathbb{R}^2

- Thom's Gradient conjecture: convergence of secants of gradient flow (Kurdyka-Mostowski-Parusinski 2000, Daniilidis-Haddou-Ley 2020)
- Kurdyka-Łojasiewicz: convex function with no error bound (Bolte, Daniilidis, Ley, Mazet 2009).
- **Tikhonov regularization:** infinite length regularization path (Torralba 1996).
- Newton flow: non convergence $(\nabla^2 f \text{ PD outside } \arg \min f)$

$$\dot{x} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

 C^k convex counter examples on \mathbb{R}^2

- Thom's Gradient conjecture: convergence of secants of gradient flow (Kurdyka-Mostowski-Parusinski 2000, Daniilidis-Haddou-Ley 2020)
- Kurdyka-Łojasiewicz: convex function with no error bound (Bolte, Daniilidis, Ley, Mazet 2009).
- **Tikhonov regularization:** infinite length regularization path (Torralba 1996).
- Newton flow: non convergence ($\nabla^2 f$ PD outside arg min f)

$$\dot{x} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

Algorithmic counter examples:

 C^k convex counter examples on \mathbb{R}^2

- Thom's Gradient conjecture: convergence of secants of gradient flow (Kurdyka-Mostowski-Parusinski 2000, Daniilidis-Haddou-Ley 2020)
- Kurdyka-Łojasiewicz: convex function with no error bound (Bolte, Daniilidis, Ley, Mazet 2009).
- **Tikhonov regularization:** infinite length regularization path (Torralba 1996).
- Newton flow: non convergence ($\nabla^2 f$ PD outside arg min f)

$$\dot{x} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

Algorithmic counter examples:

• Bregman gradient / mirror descent: non convergence (h Bregman, $c \in \mathbb{R}^2$).

$$x_{k+1} = \nabla h^* (\nabla h(x_k) + c).$$

 \mathcal{C}^k convex counter examples on \mathbb{R}^2

- Thom's Gradient conjecture: convergence of secants of gradient flow (Kurdyka-Mostowski-Parusinski 2000, Daniilidis-Haddou-Ley 2020)
- Kurdyka-Łojasiewicz: convex function with no error bound (Bolte, Daniilidis, Ley, Mazet 2009).
- **Tikhonov regularization:** infinite length regularization path (Torralba 1996).
- Newton flow: non convergence ($\nabla^2 f$ PD outside arg min f)

$$\dot{x} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

Algorithmic counter examples:

• Bregman gradient / mirror descent: non convergence (h Bregman, $c \in \mathbb{R}^2$).

$$x_{k+1} = \nabla h^* (\nabla h(x_k) + c).$$

• Frank-Wolfe algorithm: non convergence (with C. Combettes).

$$x_{k+1} = (1 - \gamma_k) x_k + \gamma_k v_k, \qquad v_k \in \operatorname{arg\,min}_{v \in \mathcal{C}} \langle \nabla f(x_k), v \rangle$$

- 1. Overview of the convex interpolation problem
- 2. Positive curvature and smooth convex interpolation
- 3. Construction of algorithmic counter examples
- 4. Conclusion

Description of the problem

Convex interpolation problem: Let $(T_i)_{i \in -\mathbb{N}}$ be convex compact with $T_{i-1} \subset \operatorname{int}(T_i) \neq \emptyset$ for $i \in -\mathbb{N}$. Construct f convex with T_i as a sublevel for all $i \in -\mathbb{N}$.

Description of the problem

Convex interpolation problem: Let $(T_i)_{i \in -\mathbb{N}}$ be convex compact with $T_{i-1} \subset \operatorname{int}(T_i) \neq \emptyset$ for $i \in -\mathbb{N}$. Construct f convex with T_i as a sublevel for all $i \in -\mathbb{N}$.

Early questionning: de Finetti, Fenchel (50's).

Description of the problem

Convex interpolation problem: Let $(T_i)_{i \in -\mathbb{N}}$ be convex compact with $T_{i-1} \subset \operatorname{int}(T_i) \neq \emptyset$ for $i \in -\mathbb{N}$. Construct f convex with T_i as a sublevel for all $i \in -\mathbb{N}$.

Early questionning: de Finetti, Fenchel (50's).

Kannai-Torralba (77, 96): f exists (convex continuous).

• T_0 , sublevel set of value 0, T_1 sublevel set of value $f_1 > 0$.

- T_0 , sublevel set of value 0, T_1 sublevel set of value $f_1 > 0$.
- For $\lambda \in [0, f_1]$, set $T_{\lambda} = (1 \lambda/f_1)T_0 + \lambda/f_1T_1$ the λ sublevel set.

- T_0 , sublevel set of value 0, T_1 sublevel set of value $f_1 > 0$.
- For $\lambda \in [0, f_1]$, set $T_{\lambda} = (1 \lambda/f_1)T_0 + \lambda/f_1T_1$ the λ sublevel set.

- T_0 , sublevel set of value 0, T_1 sublevel set of value $f_1 > 0$.
- For $\lambda \in [0, f_1]$, set $T_{\lambda} = (1 \lambda/f_1)T_0 + \lambda/f_1T_1$ the λ sublevel set.

- T_0 , sublevel set of value 0, T_1 sublevel set of value $f_1 > 0$.
- For $\lambda \in [0, f_1]$, set $T_{\lambda} = (1 \lambda/f_1)T_0 + \lambda/f_1T_1$ the λ sublevel set.

Kannai-Torralba (77, 96):

- Connect Minkowski interpolation.
- Choose function values to enforce convexity.

Smooth convex interpolation problem:

Let $(T_i)_{i \in -\mathbb{N}}$ be convex compact with C^k boundary, such that $T_{i-1} \subset \operatorname{int}(T_i) \neq \emptyset$ for $i \in -\mathbb{N}$. Construct f convex C^k , such that, for all $i \in -\mathbb{N}$, T_i is a sublevel set of f.

Smooth convex interpolation problem:

Let $(T_i)_{i \in -\mathbb{N}}$ be convex compact with C^k boundary, such that $T_{i-1} \subset \operatorname{int}(T_i) \neq \emptyset$ for $i \in -\mathbb{N}$. Construct f convex C^k , such that, for all $i \in -\mathbb{N}$, T_i is a sublevel set of f.

Minkowski addition and smoothness?

There are A, B ⊂ ℝ^p convex with C[∞] boundary, such that A + B does not have C² boundary (Kiselman 1986)

1. Overview of the convex interpolation problem

2. Positive curvature and smooth convex interpolation

- 3. Construction of algorithmic counter examples
- 4. Conclusion

Schneider: Convex Bodies: The Brunn-Minkowski Theory. Section 2.5.

Schneider: Convex Bodies: The Brunn-Minkowski Theory. Section 2.5.

Gauss map: $A \subset \mathbb{R}^{p}$ compact, convex, nonempty interior, C^{1} boundary. $n_{A}: \partial A \to S_{p-1}$ unit outer normal on ∂A .

Schneider: Convex Bodies: The Brunn-Minkowski Theory. Section 2.5.

Gauss map: $A \subset \mathbb{R}^{p}$ compact, convex, nonempty interior, C^{1} boundary. $n_{A}: \partial A \to S_{p-1}$ unit outer normal on ∂A . Diffeomorphism if and only if, ∂A is C^{2} with positive curvature, denoted C_{+}^{2} .

Schneider: Convex Bodies: The Brunn-Minkowski Theory. Section 2.5.

Gauss map: $A \subset \mathbb{R}^{p}$ compact, convex, nonempty interior, C^{1} boundary. $n_{A}: \partial A \to S_{p-1}$ unit outer normal on ∂A . Diffeomorphism if and only if, ∂A is C^{2} with positive curvature, denoted C_{+}^{2} .

Normal parametrization: inverses of n_A , $(A \in C^2_+)$. $c_A \colon S_{p-1} \to \partial A$.

 $c_A: n \mapsto \operatorname{argmax}_{x \in A} \langle n, x \rangle.$

Schneider: Convex Bodies: The Brunn-Minkowski Theory. Section 2.5.

Gauss map: $A \subset \mathbb{R}^{p}$ compact, convex, nonempty interior, C^{1} boundary. $n_{A}: \partial A \to S_{p-1}$ unit outer normal on ∂A . Diffeomorphism if and only if, ∂A is C^{2} with positive curvature, denoted C_{+}^{2} .

Normal parametrization: inverses of n_A , $(A \in C^2_+)$. $c_A \colon S_{p-1} \to \partial A$.

 $c_A: n \mapsto \operatorname{argmax}_{x \in A} \langle n, x \rangle.$

Schneider: Convex Bodies: The Brunn-Minkowski Theory. Section 2.5.

Gauss map: $A \subset \mathbb{R}^{p}$ compact, convex, nonempty interior, C^{1} boundary. $n_{A}: \partial A \to S_{p-1}$ unit outer normal on ∂A . Diffeomorphism if and only if, ∂A is C^{2} with positive curvature, denoted C_{+}^{2} .

Normal parametrization: inverses of n_A , $(A \in C^2_+)$. $c_A \colon S_{p-1} \to \partial A$.

 $c_A: n \mapsto \operatorname{argmax}_{x \in A} \langle n, x \rangle.$

Get smoothness back: $A, B \in C^2_+$, C^k boundary, then $A + B \in C^2_+$ with C^k boundary

 $c_{A+B} = c_A + c_B$

Homothetic sublevel sets.

Idea: Enforce a similar behavior for orders $0, 1, \ldots, k$.

Preserves monotonicity, concavity, control derivatives up to order k at endpoints

Preserves monotonicity, concavity, control derivatives up to order k at endpoints

Preserves monotonicity, concavity, control derivatives up to order k at endpoints

Conic interpolation:

$$T_{\lambda} = a(\lambda)T_0 + b(\lambda)T_1$$

a et b: Bernstein approximation of a piecewise affine, positive function.

Preserves monotonicity, concavity, control derivatives up to order k at endpoints

Conic interpolation:

$$T_{\lambda} = a(\lambda)T_0 + b(\lambda)T_1$$

a et b: Bernstein approximation of a piecewise affine, positive function.

Explicit derivatives, C^k junction around boundaries:

- "normal" direction: C^1 control, variations of order 2,..., k vanish.
- "tangent" direction: C^k control.

Theorem:

Let $(T_i)_{i \in \mathbb{Z}}$ be a sequence of C_+^2 and C^k subsets in \mathbb{R}^2 , such that $T_i \subset \text{int } T_{i+1} \neq \emptyset$ for all $i \in \mathbb{Z}$. Then there is C^k convex function f, such that each T_i is a sublevel set of f.

Theorem:

Let $(T_i)_{i \in \mathbb{Z}}$ be a sequence of C^2_+ and C^k subsets in \mathbb{R}^2 , such that $T_i \subset \text{int } T_{i+1} \neq \emptyset$ for all $i \in \mathbb{Z}$. Then there is C^k convex function f, such that each T_i is a sublevel set of f. $\nabla^2 f$ positive definite outside of: $\operatorname{argmin} f = \bigcap_{i \in \mathbb{Z}} T_i$.

Theorem:

Let $(T_i)_{i \in \mathbb{Z}}$ be a sequence of C^2_+ and C^k subsets in \mathbb{R}^2 , such that $T_i \subset \text{int } T_{i+1} \neq \emptyset$ for all $i \in \mathbb{Z}$. Then there is C^k convex function f, such that each T_i is a sublevel set of f. $\nabla^2 f$ positive definite outside of: $\operatorname{argmin} f = \bigcap_{i \in \mathbb{Z}} T_i$.

Original goal: construct f with oscillating gradients.

Theorem:

Let $(T_i)_{i \in \mathbb{Z}}$ be a sequence of C^2_+ and C^k subsets in \mathbb{R}^2 , such that $T_i \subset \text{int } T_{i+1} \neq \emptyset$ for all $i \in \mathbb{Z}$. Then there is C^k convex function f, such that each T_i is a sublevel set of f. $\nabla^2 f$ positive definite outside of: $\operatorname{argmin} f = \bigcap_{i \in \mathbb{Z}} T_i$.

Original goal: construct f with oscillating gradients.

Construct C_{+}^{2} sets in \mathbb{R}^{2} with controled normals?

Theorem:

Let $(T_i)_{i \in \mathbb{Z}}$ be a sequence of C^2_+ and C^k subsets in \mathbb{R}^2 , such that $T_i \subset \text{int } T_{i+1} \neq \emptyset$ for all $i \in \mathbb{Z}$. Then there is C^k convex function f, such that each T_i is a sublevel set of f. $\nabla^2 f$ positive definite outside of: $\operatorname{argmin} f = \bigcap_{i \in \mathbb{Z}} T_i$.

Original goal: construct f with oscillating gradients.

Construct C_+^2 sets in \mathbb{R}^2 with controlled normals? C_+^2 and C^k outer approximation of polygons with prescribed normals

Theorem:

Let $(T_i)_{i \in \mathbb{Z}}$ be a sequence of C^2_+ and C^k subsets in \mathbb{R}^2 , such that $T_i \subset \text{int } T_{i+1} \neq \emptyset$ for all $i \in \mathbb{Z}$. Then there is C^k convex function f, such that each T_i is a sublevel set of f. $\nabla^2 f$ positive definite outside of: $\operatorname{argmin} f = \bigcap_{i \in \mathbb{Z}} T_i$.

Original goal: construct f with oscillating gradients.

Construct C_+^2 sets in \mathbb{R}^2 with controlled normals? C_+^2 and C^k outer approximation of polygons with prescribed normals

"Practical" counterexamples: polygonal skeleton sequence + normals at vertices. $\rightarrow C^k$ convex interpolation: gradient proportional to normals at vertices.

- 1. Overview of the convex interpolation problem
- 2. Positive curvature and smooth convex interpolation
- 3. Construction of algorithmic counter examples
- 4. Conclusion

Exact line search gradient descent

Exact line search: f convex C^k .

 $x_{k+1} \in \arg\min_{x} f(x), \qquad s.t. \quad x \in x_k - \mathbb{R}_+ \nabla f(x_k).$

Optimality condition: $\langle x_{k+1} - x_k, \nabla f(x_{k+1}) \rangle = 0.$

Exact line search gradient descent

Exact line search: f convex C^k .

$$x_{k+1} \in \arg\min_{x} f(x), \quad s.t. \quad x \in x_k - \mathbb{R}_+ \nabla f(x_k)$$

Optimality condition: $\langle x_{k+1} - x_k, \nabla f(x_{k+1}) \rangle = 0.$

Exact line search gradient descent

Exact line search: f convex C^k .

$$x_{k+1} \in \arg\min_{x} f(x), \quad s.t. \quad x \in x_k - \mathbb{R}_+ \nabla f(x_k)$$

Optimality condition: $\langle x_{k+1} - x_k, \nabla f(x_{k+1}) \rangle = 0.$

Alternating minimization / Gauss-Seidel: same counterexample.

$$b_{k+1} \in \arg\min_b f(a_k, b), \qquad a_{k+1} \in \arg\min_a f(a, b_{k+1})$$

Linear program: C convex compact, $c \in \mathbb{R}^2$, $\max_{x \in C} \langle x, c \rangle$

Linear program: C convex compact, $c \in \mathbb{R}^2$, $\max_{x \in C} \langle x, c \rangle$

Legendre function h: on int C,

- essentially smooth (differentiable, ∇h explodes on the boundary)
- strictly convex $h(y) h(x) \langle \nabla h(x), y x \rangle > 0$ for $x \neq y$.

Linear program: C convex compact, $c \in \mathbb{R}^2$, $\max_{x \in C} \langle x, c \rangle$

Legendre function h: on int C,

- essentially smooth (differentiable, ∇h explodes on the boundary)
- strictly convex $h(y) h(x) \langle \nabla h(x), y x \rangle > 0$ for $x \neq y$.

Rockafellar: ∇h : int $\mathcal{C} \to \mathbb{R}^2$, homeomorphism, $(\nabla h)^{-1} = \nabla h^*$, h^* Legendre.

Linear program: C convex compact, $c \in \mathbb{R}^2$, $\max_{x \in C} \langle x, c \rangle$

Legendre function h: on int C,

- essentially smooth (differentiable, ∇h explodes on the boundary)
- strictly convex $h(y) h(x) \langle \nabla h(x), y x \rangle > 0$ for $x \neq y$.

Rockafellar: ∇h : int $\mathcal{C} \to \mathbb{R}^2$, homeomorphism, $(\nabla h)^{-1} = \nabla h^*$, h^* Legendre.

Linear program: C convex compact, $c \in \mathbb{R}^2$, $\max_{x \in C} \langle x, c \rangle$

Legendre function h: on int C,

- essentially smooth (differentiable, ∇h explodes on the boundary)
- strictly convex $h(y) h(x) \langle \nabla h(x), y x \rangle > 0$ for $x \neq y$.

Rockafellar: ∇h : int $\mathcal{C} \to \mathbb{R}^2$, homeomorphism, $(\nabla h)^{-1} = \nabla h^*$, h^* Legendre.

Linear program: C convex compact, $c \in \mathbb{R}^2$, $\max_{x \in C} \langle x, c \rangle$

Legendre function h: on int C,

- essentially smooth (differentiable, ∇h explodes on the boundary)
- strictly convex $h(y) h(x) \langle \nabla h(x), y x \rangle > 0$ for $x \neq y$.

Rockafellar: ∇h : int $\mathcal{C} \to \mathbb{R}^2$, homeomorphism, $(\nabla h)^{-1} = \nabla h^*$, h^* Legendre.

- O(1/k) optimality gap (Bauschke et. al. 17)
- sequential convergence?

Linear program: C convex compact, $c \in \mathbb{R}^2$, $\max_{x \in C} \langle x, c \rangle$

Legendre function h: on int C,

- essentially smooth (differentiable, ∇h explodes on the boundary)
- strictly convex $h(y) h(x) \langle \nabla h(x), y x \rangle > 0$ for $x \neq y$.

Rockafellar: ∇h : int $\mathcal{C} \to \mathbb{R}^2$, homeomorphism, $(\nabla h)^{-1} = \nabla h^*$, h^* Legendre.

- O(1/k) optimality gap (Bauschke et. al. 17)
- sequential convergence? (yes, under additional assumptions, no in general).

Algorithm: $x_{k+1} = \nabla h^* (\nabla h(x_k) + c)$

$$\nabla h(x_k) = \nabla h(x_{k-1}) + c = \nabla h(x_0) + kc$$

Algorithm:
$$x_{k+1} = \nabla h^* (\nabla h(x_k) + c)$$
, set $x_0 = \arg \min_x h(x)$
 $\nabla h(x_k) = \nabla h(x_{k-1}) + c = \nabla h(x_0) + kc = kc$
 $x_k = \nabla h^*(kc).$

Algorithm:
$$x_{k+1} = \nabla h^* (\nabla h(x_k) + c)$$
, set $x_0 = \arg \min_x h(x)$
 $\nabla h(x_k) = \nabla h(x_{k-1}) + c = \nabla h(x_0) + kc = kc$
 $x_k = \nabla h^*(kc)$.

Skeleton for *h*^{*}: *h* Legendre bounded domain,

Algorithm:
$$x_{k+1} = \nabla h^* (\nabla h(x_k) + c)$$
, set $x_0 = \arg \min_x h(x)$
 $\nabla h(x_k) = \nabla h(x_{k-1}) + c = \nabla h(x_0) + kc = kc$
 $x_k = \nabla h^*(kc)$.

Skeleton for h^* : *h* Legendre bounded domain, h^* , C^k , strictly convex, *Lipschitz*.

Algorithm:
$$x_{k+1} = \nabla h^* (\nabla h(x_k) + c)$$
, set $x_0 = \arg \min_x h(x)$
 $\nabla h(x_k) = \nabla h(x_{k-1}) + c = \nabla h(x_0) + kc = kc$
 $x_k = \nabla h^* (kc)$.

Skeleton for *h*^{*}: *h* Legendre bounded domain, *h*^{*}, *C*^k, strictly convex, *Lipschitz*. polygons, oscilating normals.

Algorithm:
$$x_{k+1} = \nabla h^* (\nabla h(x_k) + c)$$
, set $x_0 = \arg \min_x h(x)$
 $\nabla h(x_k) = \nabla h(x_{k-1}) + c = \nabla h(x_0) + kc = kc$
 $x_k = \nabla h^* (kc)$.

 $\begin{array}{l} \textbf{Skeleton for } h^* \colon h \text{ Legendre bounded domain,} \\ h^*, \ C^k, \ \text{strictly convex, } Lipschitz. \\ & \text{polygons, oscilating normals.} \\ \rightarrow h^*, \ \nabla^2 h^* \ \text{P.D outside of argmin (singleton)} \end{array}$

Algorithm:
$$x_{k+1} = \nabla h^* (\nabla h(x_k) + c)$$
, set $x_0 = \arg \min_x h(x)$
 $\nabla h(x_k) = \nabla h(x_{k-1}) + c = \nabla h(x_0) + kc = kc$
 $x_k = \nabla h^* (kc)$.

Skeleton for h^* : *h* Legendre bounded domain, h^* , C^k , strictly convex, *Lipschitz*. homothetic polygons, oscilating normals. $\rightarrow h^*$, $\nabla^2 h^*$ P.D outside of argmin (singleton)

Additional properties:

- h* Lipschitz.
- *h* Legendre compact domain (unit square).

Algorithm:
$$x_{k+1} = \nabla h^* (\nabla h(x_k) + c)$$
, set $x_0 = \arg \min_x h(x)$
 $\nabla h(x_k) = \nabla h(x_{k-1}) + c = \nabla h(x_0) + kc = kc$
 $x_k = \nabla h^* (kc)$.

Skeleton for h^* : *h* Legendre bounded domain, h^* , C^k , strictly convex, *Lipschitz*. homothetic polygons, oscilating normals. $\rightarrow h^*$, $\nabla^2 h^*$ P.D outside of argmin (singleton)

Additional properties:

- h* Lipschitz.
- *h* Legendre compact domain (unit square).
- $\rightarrow (x_k)_{k \in \mathbb{N}}$ does not converge.

Algorithm:
$$x_{k+1} = \nabla h^* (\nabla h(x_k) + c)$$
, set $x_0 = \arg \min_x h(x)$
 $\nabla h(x_k) = \nabla h(x_{k-1}) + c = \nabla h(x_0) + kc = kc$
 $x_k = \nabla h^*(kc)$.

Skeleton for h^* : *h* Legendre bounded domain, h^* , C^k , strictly convex, *Lipschitz*. homothetic polygons, oscilating normals. $\rightarrow h^*$, $\nabla^2 h^*$ P.D outside of argmin (singleton)

Additional properties:

- h* Lipschitz.
- *h* Legendre compact domain (unit square).
- $\rightarrow (x_k)_{k \in \mathbb{N}}$ does not converge.

Remark: Possibly related phenomenon,

 \rightarrow no acceleration à *la* Nesterov (Dragomir et. al. 20)

Conditional gradient / Frank-Wolfe algorithm (with C. Combettes)

Frank-Wolfe algorithm: $\min_{x \in C} f(x)$, C compact convex, f convex, Lipschitz gradient.

Frank-Wolfe algorithm: $\min_{x \in C} f(x)$, C compact convex, f convex, Lipschitz gradient. $x_{k+1} = (1 - \gamma_k)x_k + \gamma_k v_k, \quad v_k \in \arg\min_{v \in C} \langle \nabla f(x_k), v \rangle$ $\gamma_k = \arg\min_{z=(1-\gamma)x_k+\gamma v_k} f(x_k) + \langle \nabla f(x_k), z - x_k \rangle + \frac{L}{2} ||x_k - z||^2$ **Frank-Wolfe algorithm:** $\min_{x \in C} f(x)$, C compact convex, f convex, Lipschitz gradient. $x_{k+1} = (1 - \gamma_k)x_k + \gamma_k v_k$, $v_k \in \arg\min_{v \in C} \langle \nabla f(x_k), v \rangle$ $\gamma_k = \arg\min_{z=(1-\gamma)x_k+\gamma v_k} f(x_k) + \langle \nabla f(x_k), z - x_k \rangle + \frac{L}{2} ||x_k - z||^2$

Frank-Wolfe algorithm: $\min_{x \in C} f(x)$, C compact convex, f convex, Lipschitz gradient. $x_{k+1} = (1 - \gamma_k)x_k + \gamma_k v_k$, $v_k \in \arg \min_{v \in C} \langle \nabla f(x_k), v \rangle$ $\gamma_k = \arg \min_{z=(1-\gamma)x_k+\gamma v_k} f(x_k) + \langle \nabla f(x_k), z - x_k \rangle + \frac{L}{2} ||x_k - z||^2$

- Fixed points = minimizers.
- O(1/k) optimality gap.
- Many step size variants.
- Sequential convergence?

• Conic interpolation: alignment \rightarrow control gradient directions on segments.

- \bullet Conic interpolation: alignment \rightarrow control gradient directions on segments.
- Linear oracle: controled on a significative portion of the trajectory.

- \bullet Conic interpolation: alignment \rightarrow control gradient directions on segments.
- Linear oracle: controled on a significative portion of the trajectory.
- No convergence: if $\gamma_k \rightarrow 0$, $\gamma_k < 1$ for all k, not summable (e.g. L slight over estimation).

- 1. Overview of the convex interpolation problem
- 2. Positive curvature and smooth convex interpolation
- 3. Construction of algorithmic counter examples
- 4. Conclusion
Conclusion

Smooth convex interpolation in \mathbb{R}^2 :

- Sublevel sets with positive curvature.
- Specification using polygonal skeleton.

Not detailed in the presentation:

- Additional counter-examples.
- Subtleties and computational aspects of the construction.

Next steps:

- More counter examples.
- C^{∞} interpolation.
- Relax positive curvature.

Conclusion

Smooth convex interpolation in \mathbb{R}^2 :

- Sublevel sets with positive curvature.
- Specification using polygonal skeleton.

Not detailed in the presentation:

- Additional counter-examples.
- Subtleties and computational aspects of the construction.

Next steps:

- More counter examples.
- C^{∞} interpolation.
- Relax positive curvature.

Thanks

Illustration

2.0

1.5

1.0

0.5

0.0

Bernstein polynomial and approximation of absolute value:

Bernstein polynomial and approximation of absolute value:

 $f \colon [0,1] \mapsto \mathbb{R}$, $d \in \mathbb{N}^{*}$, $m \in \mathbb{N}^{*}$,

$$B_{d,f}: x \mapsto \sum_{k=0}^{d} f\left(\frac{k}{d}\right) {d \choose k} x^{k} (1-x)^{d-k}$$

Bernstein polynomial and approximation of absolute value:

 $f: [0,1] \mapsto \mathbb{R}, \ d \in \mathbb{N}^*, \ m \in \mathbb{N}^*, \ \Delta^1 f(x) = f(x+1/d) - f(x),$ derivative.

$$B_{d,f}: x \mapsto \sum_{k=0}^{d} f\left(\frac{k}{d}\right) \binom{d}{k} x^{k} (1-x)^{d-k}$$
$$B_{d,f}': x \mapsto d \sum_{k=0}^{d-1} \Delta^{1} f\left(\frac{k}{d}\right) \binom{d-1}{k} x^{k} (1-x)^{d-k-1}$$

Bernstein polynomial and approximation of absolute value:

 $f : [0,1] \mapsto \mathbb{R}, \ d \in \mathbb{N}^*, \ m \in \mathbb{N}^*, \ \Delta^1 f(x) = f(x+1/d) - f(x)$, derivative.

$$B_{d,f}: x \mapsto \sum_{k=0}^{d} f\left(\frac{k}{d}\right) \binom{d}{k} x^{k} (1-x)^{d-k}$$
$$B_{d,f}': x \mapsto d \sum_{k=0}^{d-1} \Delta^{1} f\left(\frac{k}{d}\right) \binom{d-1}{k} x^{k} (1-x)^{d-k-1}$$

Linear in f, preserves monotonicity, convexity, control derivatives at endpoints.