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Introduction

- Modern machine learning and statistics deal with the problem
of learning from data:

- given a training dataset (yi , xi ) i ∈ I where

- xi ∈ Rd is the input
- yi ∈ R is the output,

one seeks a function f : Rd 7→ R from a certain function
class F that has good prediction performance on test
data (yt , xt)), t ∈ T , i.e. which has small testing error∑

t∈T
ℓ(yt , f (xt)) (1)
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- This problem is of fundamental significance and finds
applications in numerous scenarios.

- For instance, in image recognition,

- the input x corresponds to the raw image
- the output y is the image category

and the goal is to find a mapping f that can classify new
images with acceptable accuracy.

- Decades of research efforts in statistical machine learning have
been devoted to developing methods to find f efficiently with
provable guarantees.
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- Prominent examples include

- linear classifiers (e.g., linear / logistic regression, linear
discriminant analysis),

- kernel methods (e.g., support vector machines),
- tree-based methods (e.g., decision trees, random forests),
- nonparametric regression (e.g., nearest neighbors, local
kernel smoothing), etc.

- Roughly speaking, each aforementioned method corresponds
to a different function class F from which the final classifier f
is chosen.
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- Deep learning, in its simplest form, consists in looking for
functions of the form

F =

{
f (x , θ) = WL(σL(WL−1(σL−1(· · ·σ2(W1(x)))))

}
.

where σl is a non-linear function which applies componentwise
and Wl is an affine operator, l = 1, . . . , L.
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- Deep learning is able to approximate complicated nonlinear
maps through composing many simple nonlinear functions.

- The motivation for the multilayer architecture is that there are
different levels of features and the layers might be able to
properly account for these different levels independently.

- Here, we sample and visualize weights from a pre-trained
AlexNet model.
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This can be used to generate new images using for instance,
Generative Adversarial Networks or Diffusion models.
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- Evolution of the performances over the last 7 years . . .
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- It is widely acknowledged that two indispensable factors
contribute to the success of deep learning, namely

- huge datasets that often contain millions of samples and

- immense computing power resulting from clusters of
graphics processing units (GPUs).

- Admittedly, these resources are only recently available.
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- However, these two alone are not sufficient to explain the
mystery of deep learning:

- Why is over-parametrization not a problem ?

- overparametrisation should lead to overfitting,
- BUT ... this is not what we always observe in
practice !
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- and

- nonconvexity does not seem to be a problem: even with
the help of GPUs, training deep learning models is still
NP-hard in the worst case due to the highly nonconvex
loss function to minimize.

- Nevertheless, standard incremental algorithms
(Stochastic Gradient Descent, etc) often reach good
minimisers of the Empirical Risk

- A lot remains to be understood ! ...
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Why overparametrise, to begin with ?

- It is often observed that depth helps efficiently extract
features at different scales from the inputs,

- recent studies found that increasing both depth and width in
a shallow model leads to very nice continuous limits, where
PDE tools can be put to work...

- Networks with wide layers (larger than sample size) enjoy
connectivity of the minimisers (Nguyen 2019)

Figure: Connectivity
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What are the bad consequences of overparametrisation ?

- When some of the layers are not wide, over-parametrization
usually entails existence of many local minimisers with
potentially different statistical performance.

- Common practice advises to runs stochastic gradient
descent with random initialization and converges to
parameters with very good practical prediction accuracy.

- Why is this simple approach actually often working ?

- Overfitting should take place in full generality

- Does the optimisation algorithm help find better
networks ?

The goal of current research is to resolve these paradoxes !
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A striking property of stochastic gradient descent : implicit biais
towards least ℓ2 norm solutions



Introduction Gradient descent The case of the linear model New analysis via Neuberger’s theorem The DNN case

Implicit biais of gradient descent

- For minimising a function F (θ), one can use the gradient
method :

θ(l+1) = θ(l) − ηl ∇F (θ(l)) (2)

Figure: Caption
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Implicit biais of gradient descent

- if there is a unique global minimizer θ∗, then the goal of
optimization algorithms is to find this minimizer,

- when there are multiple minimizers (thus for a function which
cannot be strongly convex ), one can easily show that

F (θt)− inf
θ∈Rd

F (θ) (3)

is converging to zero.
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Implicit biais of gradient descent

- With some extra assumptions, we can show that the algorithm
is converging to one of the multiple minimizers of F

- note that when F is convex, this set is also convex.

- But . . . which one ?
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Implicit biais of gradient descent

- This is what is referred to as the implicit regularization
property of certain optimization algorithms, and in particular,
gradient descent and its variants.

- This is interesting in overparametrised machine learning
because there usually are many minimizers

- In a nutshell, gradient descent usually leads to minimum
ℓ2-norm solutions.

- This shows that the chosen empirical risk minimizer is
not arbitrary !
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A simple analysis of the linear case with iid Gaussian design (from
the lecture notes by Francis Bach)
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Linear regression with iid Gaussian design : the smallest
ℓ2-norm estimator

- We have

if d ⩽ n − 2, E[R(θ̂)] = σ2 d
n−d−1

if d ⩾ n + 2, E[R(θ̂)] = σ2n
d−n−1 + ∥θ∗∥22

d−n
d .

This leads to the following picture.
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A slightly more general nonlinear regression setup: ridge functions
(work with Emmanuel Caron, Univ. Avignon, France)
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Mathematical Model

Let Zi = (Xi ,Yi ) in Rd+1 × R, i = 1, . . . , n be observations drawn
from the following model

Yi = f ∗(Xi ) + εi (4)

i = 1, . . . , n, where we assume that

- the vectors Xi , i = 1, . . . , n are random and i.i.d., taking
values in Rd

- the values εi , i = 1, . . . , n are the random observation errors.

The goal is to estimate f ∗ based on the observation Z1, . . . ,Zn.

The estimation of f ∗ will be based on restricting the search to a
subset F of functions of a Banach space B.
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In order to generalise, the estimator should be chosen in the set of
stationary points of the empirical version of the risk R : F → R
defined by

R(f ) = E [ℓ(Y , f (X ))],

where ℓ : R× R → R satisfies

- ℓ(y , y) = 0 for all y ∈ R and

- ℓ(y , ·): R 7→ R is a strictly convex twice continuously
differentiable nonnegative function
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Let R̂n(f ) denote the empirical risk defined by

R̂n(f ) =
1

n

n∑
i=1

ℓ(Yi , f (Xi )). (5)

Then, the Empirical Risk Minimizer f̂ ERM will be a solution to

f̂ ERM ∈ argminf ∈F R̂n(f ). (6)
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Let us start with ridge type functions
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Ridge type functions

We consider a statistical model of the form

E[Yi | Xi ] = f (X t
i θ

∗), i = 1, . . . , n, (7)

where

- θ∗ ∈ Rp

- the function f : R 7→ R is assumed increasing
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- A random variable ξ is called sub-Gaussian if there exists a
number a ∈ [0,∞) such that

E exp{λξ} ≤ exp

{
a2λ2

2

}
for all λ ∈ R.

- The number

∥ξ∥ψ2 = inf

{
a ≥ 0 : E exp{λξ} ≤ exp

{
a2λ2

2

}
, λ ∈ R

}
is called the sub-Gaussian norm of the random variable ξ.

- A random variable ξ is sub-Gaussian if and only if

∥ξ∥ψ2 <∞
.

- A random vector ξ with values in Rp is subGaussian with
subGaussian constant Kξ if

∥⟨w , ξ⟩∥ψ2 ≤ KX (8)

for all w ∈ Rp with ∥w∥2 = 1.
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Ridge type functions

- the data X1, . . . ,Xn will be assumed isotropic and subGaussian

- the matrix

X⊤ =
[
X1, . . . ,Xn

]
(9)

is full rank with probability one.

- for all i = 1, . . . , n, the random vectors Xi are assumed

- to have a second moment matrix E[XiX
t
i ] = Ip,

- to have ℓ2-norm equal1 to
√
p.

- the errors ϵi = Yi − E[Yi ] are independent subGaussian
centered random variables with ψ2-norm upper bounded by
Kϵ.

1notice that this is different from the usual regression model, where the
columns are assumed to be normalised
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Ridge type functions

In order to estimate θ∗, the Empirical Risk Minimizer θ̂ is defined
as a solution to the following optimisation problem

θ̂ ∈ argminθ∈Θ R̂n(θ) (10)

with

R̂n(θ) = argminθ∈Θ
1

n

n∑
i=1

ℓ(Yi − f (X t
i θ)). (11)

Moreover, we assume that ℓ′(0) = 0 and ℓ′′ is upper bounded by a
constant Cℓ′′ > 0.
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Ridge type functions

Theorem

(Overparametrised setting) Let µ > 0, ν > 0 and let β ∈ (0, 1).
Assume that p and n are such that

(α+ CKX
)2 n < p. (12)

Let

r =
12C ′√CCℓ′′Kϵ

√
p

(
√
p − (α+ CKX

)
√
n) δ

. (13)

Assume that f ′(z) ≤ Cf ′ and ℓ and f are such that

ℓ′′(w) f ′(z)2 − ℓ′(w) f ′′(z) ≥ δ

for all z in XB2(θ
∗, r) (Trivial in the linear case).
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Ridge type functions

Theorem

(Overparametrised setting) Then, there exists a first order
stationary point θ̂ to the ERM problem such that, with probability
larger than or equal to

1−

(
2 exp (−cKX

α2n) + exp
(
− n

2

)
+ 2n

(
exp

(
− ν2 log(n)

C 2
ℓ′′K

2
ϵ

)))

we have

∥θ̂ − θ∗∥2 ≤ r . (14)



Introduction Gradient descent The case of the linear model New analysis via Neuberger’s theorem The DNN case

The DNN case

An handy result from Neuberger about the distance of the solution
of a zero finding problem, i.e. consisting in solving

F (f̂ ) = 0,

to the initial guess f ∗.
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The DNN case

Theorem (Neuberger’s theorem)

Suppose that r > 0, that θ∗ ∈ Rp and that the map F is
continuous on Br (θ

∗), with the property that for each θ in Br (θ
∗)

there exists a vector d in Br (0) such that,

lim
t↓0

F (θ + td)− F (θ)

t
= −F (θ∗). (15)

Then there exists u in Br (θ
∗) such that F (u) = 0.
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Ridge type functions

Theorem (Neuberger’s theorem for ERM)

Suppose that r > 0, that θ∗ ∈ Rp and that the Jacobian DR̂n(·) is
a continuous map on B(θ∗, r) with the property that for each θ in
B(θ∗, r) there exists a vector d in B(0, r) such that,

lim
t↓0

DR̂n(θ + td)− DR̂n(θ)

t
= −DR̂n(θ

∗). (16)

Then there exists u in B(θ∗, r) such that DR̂n(u) = 0.
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Ridge type functions

Since the loss is twice differentiable, the empirical risk R̂n is itself
twice differentiable. The Gradient of the empirical risk is given by

∇R̂n(θ) = −1

n

n∑
i=1

ℓ′(Yi − f (X t
i θ)) f

′(X t
i θ)Xi

= −1

n
X tD(ν) l ′(ϵ)

where ℓ′(ϵ) is to be understood componentwise, and

νi = f ′(X t
i θ) (17)

and the Hessian is given by

∇2R̂n(θ) =
1

n

n∑
i=1

(
ℓ′′(Yi − f (X t

i θ)) f
′(X t

i θ)
2

− ℓ′(Yi − f (X t
i θ)) f

′′(X t
i θ)
)
XiX

t
i . (18)
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Ridge type functions

The condition we have to satisfy in order to use Neuberger’s
theorem is

∇2R̂n(θ)d = −∇R̂n(θ
∗) (19)

for all θ ∈ B(θ∗, r). The Hessian matrix can be rewritten as

∇2R̂n(θ) =
1

n
X tD(µ)X (20)

where DY ,X is a diagonal matrix given by

µi =

(
ℓ′′(Yi − f (X t

i θ)) f
′(X t

i θ)
2 − ℓ′(Yi − f (X t

i θ)) f
′′(X t

i θ)

)
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Ridge type functions

We have to solve Neuberger’s equation

1

n
X tD(µ)Xd =

1

n
X tD(ν)ℓ′(ϵ) (21)

which can be solved by finding the least norm solution of the
interpolation problem

D(µ)Xd = D(ν)ℓ′(ϵ). (22)

i.e.

d = X †D(µ)−1D(ν)ℓ′(ϵ). (23)
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Ridge type functions

Given the compact SVD of X = UΣV t , where U ∈ O(n) and
V ∈ Rp×n with orthonormal columns, i.e. V belongs to the Stiefel
manifold, we get

d = VΣ−1UtD(µ−1)D(ν)ℓ′(ϵ). (24)

We then have

∥d∥2 = ∥VΣ−1UtD(µ−1)D(ν)ℓ′(ϵ)∥2 (25)

i.e.

∥d∥2 = ∥Σ−1UtD(µ−1)D(ν)ℓ′(ϵ)∥2 ≤
∥UtD(µ−1)D(ν)ℓ′(ϵ)∥2

smin(X t)
.
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We will need the following maximal inequality.

Theorem

Let X ∈ Rd be a sub-Gaussian random vector with variance proxy
σ2. Then

E
[
max
θ∈B2

θ⊤X

]
= E

[
max
θ∈B2

∣∣∣θ⊤X ∣∣∣] ≤ 4σ
√
d

Moreover, for any δ > 0, with probability 1− δ, it holds

max
θ∈B2

θ⊤X = max
θ∈B2

∣∣∣θ⊤X ∣∣∣ ≤ 4σ
√
d + 2σ

√
2 log(1/δ)
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Ridge functions

After computing the sub-Gaussian constant of the numerator, we
get

∥Ut D(µ)−1D(ν)ℓ′(ϵ)∥2 ≤ 2C ′√CCℓ′′
maxni ′=1 ν

′
i

minni ′=1 µi ′
Kϵ(2

√
p + u)

≤
4C ′√CCℓ′′Cf ′Kϵ(2

√
p + u)

δ
, (26)

with probability

1−
(
exp

(
− u2

2

)
+ 2n

(
exp

(
− t2

C 2
ℓ′′K

2
ϵ

)))
.
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Ridge functions

Taking u =
√
p, equation (26) yields

∥d∥2 =
∥∥∥∇2R̂n(θ)

−1 ∇R̂n(θ
∗)
∥∥∥
2
≤

12C ′√CCℓ′′Cf ′Kϵ
√
p

smin(X )δ
,

with the same probability.
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Ridge type functions

We also have with probability 1− 2 exp (−cKX
α2n)

smin(X
t) ≥

(√
p − (α+ CKX

)
√
n
)
. (27)

Therefore, with probability larger than or equal to

1−

(
2 exp (−cKX

α2n) + exp
(
− n

2

)
+ 2n

(
exp

(
− t2

C 2
ℓ′′K

2
ϵ

)))
,

we have

∥d∥2 ≤
12C ′√CCℓ′′Cf ′Kϵ

√
p

(
√
p − (α+ CKX

)
√
n) δ

.

Finally replace η with ν
√

log(n) and t with υ
√

log(n) and the
proof is completed.
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What about the smallest ℓ2-norm estimator ?
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Ridge type functions

Theorem

Let θ̂◦ denote the minimum norm stationary point of the empirical
risk R̂n under the constraint that Xθ = X θ̂, i.e.

argminθ ∥θ∥2 subject to Xθ = X θ̂. (28)

Under the same assumptions as before, we have

|f (X⊤
n+1θ̂

♯)− f (Xn+1θ̂
∗)| ≤ t

C KXKϵ(
√
n + 1)(

(1 + α)
√
p − CKX

√
n
)

+ tKϵ + t
6
√
CCℓ′′Cf ′Kϵ

√
n

δ(r)((1− α)
√
p − CKX

√
n)
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Ridge type functions

Theorem

with probability at least

1− 2 exp (−cKX
α2p)− exp

(
− n

2

)
− exp(−cKX

p)− 3 exp(−t2/2).

where r is a solution of

r =
Cℓ′′,f ′,ε

√
n

δ(r)
(
(1− α)

√
p − CKX

√
n
) . (29)
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Ridge type functions: proof

Recall that θ̂◦ denote the minimum norm solution to the ERM, i.e.

argminθ ∥θ∥2 subject to Xθ = X θ̂.

Let θ̂♯ solves

argminθ ∥θ∥2 subject to

[
X

X⊤
n+1

]
θ =

[
X

X⊤
n+1

]
θ̂,

where θ̂ is the solution to the ERM problem which is close to θ∗.
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Ridge type functions: proof

Then,

|X⊤
n+1(θ̂

◦ − θ∗)| ≤ |X⊤
n+1(θ̂

◦ − θ̂♯)|+ |X⊤
n+1(θ̂

♯ − θ̂)︸ ︷︷ ︸
=0 by definition

|+ |X⊤
n+1(θ̂ − θ∗)|,

≤ |X⊤
n+1(θ̂

◦ − θ̂♯)|+ |X⊤
n+1(θ̂ − θ∗)|.
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Ridge type functions: proof

Then,

|X⊤
n+1(θ̂

◦ − θ∗)| ≤ |X⊤
n+1(θ̂

◦ − θ̂♯)|+ |X⊤
n+1(θ̂

♯ − θ̂)︸ ︷︷ ︸
=0 by definition

|+ |X⊤
n+1(θ̂ − θ∗)|,

≤ |X⊤
n+1( θ̂◦ − θ̂♯︸ ︷︷ ︸

we have formulas

)|+ |X⊤
n+1( θ̂ − θ∗︸ ︷︷ ︸

we know a bound

)|.

The remainder of the proof is a sequence of standard
computations.
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The DNN case

The Deep Neural Network case
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The DNN case

Assumption

The sample satisfies the following separation

n
min
i ,i ′=1

∥Xi − Xi ′∥2 ≥ cn−1/ν (30)

with probability larger than or equal to 1− δ, for some positive
constants c , ν and for δ ∈ (0, 1).

The Holder exponent ν is usually interpreted as a surrogate for the
intrinsic dimension of the data manifold. E.g., this intrinsic
dimension was estimated to be less than 20 for the MNIST dataset
.

Figure: Caption
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The DNN case

Here is a Banach space version of the Neuberger theorem.

Theorem (Neuberger’s theorem)

Suppose that B, J , and K are three Banach spaces and that B is
compactly embedded in J .
Suppose that F : B → K is continuous with respect to the
topologies of J and K.
Suppose that f ∈ B, that r > 0, and that for each g in Br (f ),
there is an h in B̄r (0) such that

lim
t→0+

1

t
(F (g + th)− F (g)) = −F (f ).

Then there is f̂ in B̄r (f ) such that F (f̂ ) = 0.

For r > 0 and u in B, Br (u) and B̄r (u) will denote the open and
closed balls in B, respectively, with center u and radius r .



Introduction Gradient descent The case of the linear model New analysis via Neuberger’s theorem The DNN case

The DNN case

We recall that f ∈ F , and d ′ ∈ B such that F ⊂ B. Let us
compute the directional derivative of R̂n

DR̂n(f ) · h′ = lim
t→0

R̂n(f + th′)− R̂n(f )

t

= lim
t→0

1
n

∑n
i=1 ℓ(Yi , f (Xi ) + t h′(Xi ))− ℓ(Yi , f (Xi ))

t

= lim
t→0

1
n

∑n
i=1 ∂2 ℓ(Yi , f (Xi )) t h′(Xi ) + c ∂22 ℓ(Yi , f (Xi )) t

2 h′
2
(Xi )

t

with c ∈ [0, 1], and thus

DR̂n(f ) · h′ =
1

n

n∑
i=1

∂2ℓ(Yi , f (Xi ))h
′(Xi ).
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The DNN case

In the same spirit, we get

D2R̂n(f ) · (h′, h) =
1

n

n∑
i=1

∂22 ℓ(Yi , f (Xi )) h
′(Xi )h(Xi ).
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The DNN case

Based on these computations, Neuberger’s theorem resorts to
obtaining a bound on the norm of an appropriate solution h to the
following linear system

1

n

n∑
i=1

∂22 ℓ(Yi , f (Xi )) h
′(Xi )h(Xi ) = −1

n

n∑
i=1

∂2ℓ(Yi , f
∗(Xi ))h

′(Xi )

for all f ∈ Br (f
∗) and for all h′ ∈ B.
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The DNN case

Let ψ denote the bump function

ψ(x) =


exp

(
1− 1

1−∥x∥22

)
if ∥x∥22 ≤ 1,

0 otherwise

(31)

and let ψσ = ψ(·/σ).

Let ψσ = ψ(·/σ).
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The DNN case

Theorem

Suppose that f ∗ ∈ Cκ
(
[0, 1]d

)
with κ ∈ N+ satisfies

∥∂αf ∥L∞([0,1]d) < 1 for any α ∈ Nd with |α| ≤ κ.
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The DNN case

Theorem

Suppose that f ∗ ∈ Cκ
(
[0, 1]d

)
with κ ∈ N+ satisfies

∥∂αf ∥L∞([0,1]d) < 1 for any α ∈ Nd with |α| ≤ κ.

Let f̂ denote any estimator of f ∗.
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The DNN case

Theorem

Suppose that f ∗ ∈ Cκ
(
[0, 1]d

)
with κ ∈ N+ satisfies

∥∂αf ∥L∞([0,1]d) < 1 for any α ∈ Nd with |α| ≤ κ.

Let f̂ denote any estimator of f ∗.

Then there exists a neural network fŴ which (nearly) minimizes
the empirical risk such that

∥fŴ − f̂ ∥W k,p(D) ≤ 3(κ+ 1)d 8κ−kβwidth
−2(κ−k)/dβdepth

−2(κ−k)/d

·
(
1 + n

k
ν max
|α|≤K

∥∂αψ∥L∞([0,1]d)

)
+ 6

(c
2

)d/p−k
Kϵ n

(1+ k−d/p
ν

)∥ψ∥W k,p(Rd )

+ ∥f̂ − f ∗∥W k,p(D).
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The DNN case

Theorem

Suppose that f ∗ ∈ Cκ
(
[0, 1]d

)
with κ ∈ N+ satisfies

∥∂αf ∥L∞([0,1]d) < 1 for any α ∈ Nd with |α| ≤ κ.

Let f̂ denote any estimator of f ∗.

The neural network fŴ can be chosen with

width
16κd+1d(βwidth + 2) log2(8βwidth)

and depth
27κ2(βdepth + 2) log2(4βwidth).
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The DNN case

Sketch of the proof
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The DNN case

We can decouple the problem and

- first solve it in a Sobolev space, and then

- approximate the solution by a deep neural network

Figure: Caption
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The DNN case

Notice that for all f ∈ Bs(fW ∗), we have

1

n

n∑
i=1

∂ℓ

∂2
(Yi , f (Xi )) h

′(Xi ) = −1

n

n∑
i=1

(Yi − f (Xi )) h′(Xi ),

and that

1

n

n∑
i=1

∂2ℓ

∂22
(Yi , f (Xi )) h

′(Xi )h(Xi ) =
1

n

n∑
i=1

h′(Xi )h(Xi ).

Then, using the fact that ℓ is the ℓ22 loss, Neuberger’s condition
reads

1

n

n∑
i=1

h′(Xi )h(Xi ) =
1

n

n∑
i=1

h′(Xi ) (Yi − fW ∗(Xi )).
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The DNN case

One possible solution can be obtained by setting

h(Xi ) = Yi − fW ∗(Xi ) = εi

i = 1, . . . , n, i.e. using a noise interpolating solution.

One simple option is to take

h(x) =
n∑

i=1

ϵi ψ

(
x − Xi

σ

)
where ψ : Rp → R is a kernel function and σ > 0 is a bandwidth.
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The DNN case

- Let

ψσ = ψ (·/σ) .

Now, observe that, based on Assumption 1, the functions
ψ((x − Xi )/σ), and their successive derivatives up to k ,
i = 1, . . . , n, have disjoint supports for with probability larger
than or equal to 1− δ as long as σ ≤ cn−1/ν .

- We thus obtain that

∥h∥B ≤ ∥ϵ∥1 ∥ψσ∥B

- Moreover, as is well known for subGaussian vectors, the norm
is controlled by

∥ϵ∥2 ≤ 6Kϵ
√
n.

with probability at least 1− exp(−n).
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The DNN case

The proof for the deep neural network case is completed by using
the approximation result of Hon and Wang.
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- The number of layers may have to increase logarithmically
with the number of samples

- The total number of parameters blows up polynomially in the
number of samples and exponentially in the dimension of the
problem
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Conclusion and perspectives
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Conclusion and perspectives

- This simple exercice in using quantitative zero finding
theorems such as Neuberger’s theorem shows that we can
easily prove results that do not blow up with the number of
layers with interpolating networks

- We can easily study local minimisers as well using the same
technique

- We would need to explore approximation theory in
unusual/non standard directions:

- improve the Hon and Wang theorem by introducing the
constraint that the network be a flat minimiser

- This would explain that Stochastic Gradient
methods can find the correct approximation with
large probability (?)
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