Density Estimation on Manifolds

Meeting in Mathematical Statistics, 14^{th} December, 2020

Clément Berenfeld Joint work with Marc Hoffmann.

Université Paris-Dauphine & PSL, CNRS, CEREMADE.

Observations : point cloud X_1, \ldots, X_n in a possibly high-dimensional space \mathbb{R}^D .

Observations : point cloud X_1, \ldots, X_n in a possibly high-dimensional space \mathbb{R}^D .

Goal : compute the density of the underlying distribution at a given point x_0 .

Observations : point cloud X_1, \ldots, X_n in a possibly high-dimensional space \mathbb{R}^D .

Goal : compute the density of the underlying distribution at a given point x_0 .

Assumption : the data actually lie on a low-dimensional, <u>unknown</u> structure.

Observations : point cloud X_1, \ldots, X_n in a possibly high-dimensional space \mathbb{R}^D .

Goal : compute the density of the underlying distribution at a given point x_0 .

Assumption : the data actually lie on a low-dimensional, <u>unknown</u> structure.

When is this structural assumption relevant ?

When is this structural assumption relevant ?

• when the data naturally lie on a manifold : geodata, cosmological data, biological data ...

Figure 1: Point cloud obtain using single-molecule localization microscopy on a COS-7 cell. Figure from [Klein et al., 2014].

When is this structural assumption relevant ?

• when the data is high-dimensional but only a small number of parameters is expected to governed the dataset.

Figure 2: Images from the COIL-20 dataset [Nene et al., 1996] as presented in [Sober et al., 2017]. The ambient dimension is very high (number of pixels) but the data can be parametrized by $SO(3, \mathbb{R})$.

Notations and risk

- Target point $x_0 \in \mathbb{R}^D$;
- Independant data $X_1, \ldots, X_n \in \mathbb{R}^D$ with commom law P;
- P has density f_P and support M_P ;
- M_P has dimension d and $x_0 \in M_P$;
- Measure the accuracy of $\widehat{f}(x_0)$ with

$$\mathbb{E}_{P^{\otimes n}}[|\widehat{f}(x_0) - f_P(x_0)|^p]^{1/p}.$$

• Density estimation on abstract manifolds [Hendriks, 1990, Pelletier, 2005];

- Density estimation on abstract manifolds [Hendriks, 1990, Pelletier, 2005];
- Estimation on embedded manifolds with twice differentiable density [Ozakin and Gray, 2009];

- Density estimation on abstract manifolds [Hendriks, 1990, Pelletier, 2005];
- Estimation on embedded manifolds with twice differentiable density [Ozakin and Gray, 2009];
- Adaptive density estimation on abstract manifolds [Kerkyacharian et al., 2012, Cleanthous et al., 2018];

- Density estimation on abstract manifolds [Hendriks, 1990, Pelletier, 2005];
- Estimation on embedded manifolds with twice differentiable density [Ozakin and Gray, 2009];
- Adaptive density estimation on abstract manifolds [Kerkyacharian et al., 2012, Cleanthous et al., 2018];
- Recent developments : strong uniform consistency of KDE on embedded manifolds [Wu and Wu, 2020], lower bounds on Hölder classes for abstract manifolds. [Ki and Park, 2020].

Our contribution :

- Build a model that takes into account the regularity of both the density and the support;
- Get bounds on the minimax risk for this model;
- Adaptive estimation with respect to the intrinsic dimension of the support and to the regularity parameters.

1. A statistical model for sampling on manifolds

2. Main results

3. Numerical illustrations

1. A statistical model for sampling on manifolds

A function $g:U \subset \mathbb{R}^d \to \mathbb{R}^k$ is $\beta\text{-H\"older}$ if

- g is *m*-times differentiable, where $m = \lceil \beta 1 \rceil$;
- writing $\delta = \beta m \in (0, 1]$ we have

$$\sup_{u,v\in U}\frac{\|\mathrm{d}^m g(u)-\mathrm{d}^m g(v)\|_{\mathrm{op}}}{\|u-v\|^{\delta}}<\infty.$$

We call the above quantity the $\beta\text{-H\"older}$ coefficient of g. It is denoted by

 $|g|_{\beta}.$

Let M be a submanifold of \mathbb{R}^D of dimension d and take

$$g: M \to \mathbb{R}^k.$$

The usual way to define the regularity of g is to see g through a chart $\phi_x : (M, x) \to (\mathbb{R}^d, 0)$

$$g \circ \phi_x^{-1} : (\mathbb{R}^d, 0) \to \mathbb{R}^k.$$

Let M be a submanifold of \mathbb{R}^D of dimension d and take

$$g: M \to \mathbb{R}^k.$$

The usual way to define the regularity of g is to see g through a chart $\phi_x : (M, x) \to (\mathbb{R}^d, 0)$

$$g \circ \phi_x^{-1} : (\mathbb{R}^d, 0) \to \mathbb{R}^k.$$

→ The magnitude of the Hölder coefficients of $g \circ \phi_x^{-1}$ will strongly depend on the choice of ϕ_x Let M be a submanifold of \mathbb{R}^D of dimension d and take

$$g: M \to \mathbb{R}^k.$$

The usual way to define the regularity of g is to see g through a chart $\phi_x : (M, x) \to (\mathbb{R}^d, 0)$

$$g \circ \phi_x^{-1} \ : \ (\mathbb{R}^d, 0) \ \rightarrow \ \mathbb{R}^k.$$

→ The magnitude of the Hölder coefficients of $g \circ \phi_x^{-1}$ will strongly depend on the choice of ϕ_x

 \rightarrow We need a canonical choice of chart.

Hölder spaces on manifold

We choose the exponential map $\exp_x:T_xM\to M$ [Triebel, 1987] but other choices are possible

[Aamari and Levrard, 2019, Ki and Park, 2020].

We let $\rho > 0$ be a localization parameter.

Definition 1

Let M be a closed submanifold of \mathbb{R}^D . We say that $g: M \to \mathbb{R}^k$ is β -Hölder if, for any $x \in M$, the map

 $g \circ \exp_x : B(0, \rho) \to \mathbb{R}^k$

is β -Hölder.

The β -Hölder coefficient of $g: M \to \mathbb{R}^k$ is simply defined as

$$|g|_{\beta} = \sup_{x \in M} |g \circ \exp_x|_{\beta}.$$

This gives us a convenient way to quantify the regularity of a closed submanifold.

Definition 2

We say that M is α -Hölder if the inclusion

$$\iota_M: \ M \to \mathbb{R}^D$$

is α -Hölder in the sense defined above. We shall write

 $|M|_{\alpha} \coloneqq |\iota_M|_{\alpha}.$

For a $d\text{-submanifold } M \subset \mathbb{R}^D$ we define its volume measure μ_M as

$$\mu_M(A) = \mathcal{H}^d(A \cap M) \quad \forall A \in \mathcal{B}(\mathbb{R}^D)$$

where \mathcal{H}^d is the *d*-dimensionnal Hausdorff measure.

For a $d\mbox{-submanifold } M \subset \mathbb{R}^D$ we define its volume measure μ_M as

$$\mu_M(A) = \mathcal{H}^d(A \cap M) \quad \forall A \in \mathcal{B}(\mathbb{R}^D)$$

where \mathcal{H}^d is the *d*-dimensionnal Hausdorff measure.

For $x \in M$, and a smooth function $\psi : M \to \mathbb{R}$ supported on a small neighborhood of x, we have

$$\mu_M(\psi) = \int_{T_xM} \psi(\exp_x(v)) \theta_x(\exp_x(v)) \, \mathrm{d}v$$

where $\theta_x : (M, x) \to \mathbb{R}^+$ is the volume density function of M.

 d, α, A and $f_{\min}, f_{\max}, \beta, B$

and define the set $\Sigma^{d}_{\alpha,\beta}$ of all probability measures P satisfying Support conditions Density conditions

 d, α, A and $f_{\min}, f_{\max}, \beta, B$

and define the set $\Sigma^d_{\alpha,\beta}$ of all probability measures P satisfying

Support conditions

Density conditions

 supp P is a compact, connected *d*-submanifold M_P of R^D, containing x₀;

 d, α, A and $f_{\min}, f_{\max}, \beta, B$

and define the set $\Sigma^d_{\alpha,\beta}$ of all probability measures P satisfying

Support conditions

- supp P is a compact, connected *d*-submanifold M_P of R^D, containing x₀;
- M_P is α -Hölder;

d, α, A and $f_{\min}, f_{\max}, \beta, B$

and define the set $\Sigma^d_{\alpha,\beta}$ of all probability measures P satisfying

Support conditions

- supp P is a compact, connected *d*-submanifold M_P of R^D, containing x₀;
- M_P is α -Hölder;
- $|M_P|_{\alpha} \leq \mathbf{A};$

 d, α, A and $f_{\min}, f_{\max}, \beta, B$

and define the set $\Sigma^d_{\alpha,\beta}$ of all probability measures P satisfying

Support conditions

 supp P is a compact, connected *d*-submanifold M_P of ℝ^D, containing x₀;

Density conditions

• there exists a version of $dP/d\mu_{M_P}$, denoted f_P that satisfies all the below;

- M_P is α -Hölder;
- $|M_P|_{\alpha} \leq \boldsymbol{A};$

 d, α, A and $f_{\min}, f_{\max}, \beta, B$

and define the set $\Sigma^d_{\alpha,\beta}$ of all probability measures P satisfying

Support conditions

- supp P is a compact, connected *d*-submanifold M_P of R^D, containing x₀;
- M_P is α -Hölder;
- $|M_P|_{\alpha} \leq \mathbf{A};$

- there exists a version of $dP/d\mu_{M_P}$, denoted f_P that satisfies all the below;
- $f_{\min} \leq f_P \leq f_{\max};$

 d, α, A and $f_{\min}, f_{\max}, \beta, B$

and define the set $\Sigma^d_{\alpha,\beta}$ of all probability measures P satisfying

Support conditions

- supp P is a compact, connected *d*-submanifold M_P of R^D, containing x₀;
- M_P is α -Hölder;
- $|M_P|_{\alpha} \leq \mathbf{A};$

- there exists a version of $dP/d\mu_{M_P}$, denoted f_P that satisfies all the below;
- $f_{\min} \leq f_P \leq f_{\max};$
- f_P is β -Hölder;

 d, α, A and $f_{\min}, f_{\max}, \beta, B$

and define the set $\Sigma^d_{\alpha,\beta}$ of all probability measures P satisfying

Support conditions

- supp P is a compact, connected *d*-submanifold M_P of R^D, containing x₀;
- M_P is α -Hölder;
- $|M_P|_{\alpha} \leq \mathbf{A};$

- there exists a version of $dP/d\mu_{M_P}$, denoted f_P that satisfies all the below;
- $f_{\min} \leq f_P \leq f_{\max};$
- f_P is β -Hölder;
- $|f_P|_{\beta} \leq \frac{B}{B}$.

Are we happy with this model ?

Are we happy with this model ? Not quite.
Are we happy with this model ? Not quite.

Theorem 1

For any estimator $\widehat{f}(x_0)$ we have, for any $n \ge 1$

$$\sup_{P \in \Sigma^d_{\alpha,\beta}} \mathbb{E}_{P^{\otimes n}} [|\widehat{f}(x_0) - f_P(x_0)|^p]^{1/p} \gtrsim 1$$

for whatever value of α , β and d, where $\Sigma_{\alpha,\beta}^d$ is defined as in the slide before.

Proof by drawing.

Proof by drawing.

Proof by drawing.

 \rightarrow we need to avoid manifolds that are close to self-intersect.

Reach condition

The **reach** of $M \subset \mathbb{R}^D$ is defined as [Federer, 1969]

 $\tau_M = \sup\left\{r \ge 0 \mid \operatorname{pr}_M \text{ is well defined on } M^{\oplus r}\right\}$

- \rightarrow it prevents M from curving too much;
- \rightarrow it prevents M from self-intersecting.

The **reach** of $M \subset \mathbb{R}^D$ is defined as [Federer, 1969]

 $\tau_M = \sup\left\{r \ge 0 \mid \operatorname{pr}_M \text{ is well defined on } M^{\oplus r}\right\}$

- \rightarrow it prevents *M* from curving too much;
- \rightarrow it prevents M from self-intersecting.

A reach condition is most of the time necessary for getting minimax results in a manifold setting [Niyogi et al., 2008, Genovese et al., 2012, Divol, 2020].

If needed, one can estimate the reach of the support before doing further analysis [Aamari et al., 2019, B. et al., 2020].

Reach condition

A few diagrams of both the local and global constraints imposed by a reach condition. New definition of the model :

New definition of the model : for parameters

d, au, lpha, A and $f_{\min}, f_{\max}, eta, B$

we define the set $\Sigma^d_{\alpha,\beta}$ of all probability measures P satisfying

Support conditions

- supp P is a connected, compact *d*-submanifold M_P of R^D, containing x₀;
- M_P is α -Hölder;
- $|M_P|_{\alpha} \leq \mathbf{A};$

Density conditions

- there exists a version of $dP/d\mu_{M_P}$, denoted f_P that satisfies all the below;
- $f_{\min} \leq f_P \leq f_{\max};$
- f_P is β -Hölder;
- $|f_P|_{\beta} \leq \frac{B}{B}$.

New definition of the model : for parameters

d, au, lpha, A and $f_{\min}, f_{\max}, eta, B$

we define the set $\Sigma^d_{\alpha,\beta}$ of all probability measures P satisfying

Support conditions

- supp P is a connected, compact *d*-submanifold M_P of R^D, containing x₀;
- $\tau_{M_P} \geq \boldsymbol{\tau};$
- M_P is α -Hölder;
- $|M_P|_{\alpha} \leq \mathbf{A};$

Density conditions

- there exists a version of $dP/d\mu_{M_P}$, denoted f_P that satisfies all the below;
- $f_{\min} \leq f_P \leq f_{\max};$
- f_P is β -Hölder;
- $|f_P|_{\beta} \leq \frac{B}{B}$.

2. Main results

Theorem 2

There exists an estimator $\hat{f}(x_0)$ depending on d, α and β such that

$$\sup_{P \in \Sigma_{\alpha,\beta}^d} \mathbb{E}_{P^{\otimes n}} \left[|\widehat{f}(x_0) - f_P(x_0)|^p \right]^{1/p} \lesssim n^{-\frac{\beta}{2\beta+d} \wedge \frac{\alpha-1}{2(\alpha-1)+\alpha}}$$

Theorem 2

There exists an estimator $\hat{f}(x_0)$ depending on d, α and β such that

$$\sup_{P \in \Sigma_{\alpha,\beta}^d} \mathbb{E}_{P^{\otimes n}} \left[|\widehat{f}(x_0) - f_P(x_0)|^p \right]^{1/p} \leq n^{-\frac{\beta}{2\beta+d} \wedge \frac{\alpha-1}{2(\alpha-1)+\alpha}}$$

This is achieved using a simple kernel density estimator

$$\widehat{f}_h(x_0) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{X_i - x_0}{h}\right).$$

There are two contributions in the bound

$$n^{-\frac{\beta}{2\beta+d}\wedge\frac{\alpha-1}{2(\alpha-1)+d}}$$

There are two contributions in the bound

$$n^{-\frac{\beta}{2\beta+d}\wedge\frac{\alpha-1}{2(\alpha-1)+d}}$$

 $\rightarrow \frac{\beta}{2\beta+d}$: classical rate when estimating $\beta\text{-H\"older}$ density.

There are two contributions in the bound

$$n^{-\frac{\beta}{2\beta+d}\wedge\frac{\alpha-1}{2(\alpha-1)+d}}$$

- $\rightarrow \frac{\beta}{2\beta+d}$: classical rate when estimating $\beta\text{-H\"older}$ density.
- $\rightarrow \frac{\alpha 1}{2(\alpha 1) + d}$: comes from

There are two contributions in the bound

$$n^{-\frac{\beta}{2\beta+d}\wedge\frac{\alpha-1}{2(\alpha-1)+d}}$$

 $\rightarrow \frac{\beta}{2\beta+d}$: classical rate when estimating $\beta\text{-H\"older}$ density.

$$\rightarrow \frac{\alpha - 1}{2(\alpha - 1) + d}$$
 : comes from

$$\frac{1}{nh^d}\sum K\left(\frac{X_i-x_0}{h}\right)$$

• Approximating the intrinsic distance $d_{M_P}(X_i, x_0)$ with the euclidean distance $||X_i - x_0||$;

There are two contributions in the bound

$$n^{-\frac{\beta}{2\beta+d}\wedge\frac{\alpha-1}{2(\alpha-1)+d}}$$

 $\rightarrow \frac{\beta}{2\beta+d}$: classical rate when estimating $\beta\text{-H\"older}$ density.

$$\rightarrow \frac{\alpha - 1}{2(\alpha - 1) + d}$$
: comes from

$$\frac{1}{nh^d}\sum K\left(\frac{X_i-x_0}{h}\right)\times\mathbf{1}$$

- Approximating the intrinsic distance $d_{M_P}(X_i, x_0)$ with the euclidean distance $||X_i x_0||$;
- Approximating the volume density function θ_{x_0} with 1.

The kernel $K : \mathbb{R}^D \to \mathbb{R}$ we choose only need be

- smooth and compactly supported;
- normalized on all *d*-dimensional subspace $H \subset \mathbb{R}^D$

$$\int_H K(v) \, \mathrm{d}v = 1.$$

The kernel $K : \mathbb{R}^D \to \mathbb{R}$ we choose only need be

- smooth and compactly supported;
- normalized on all $d\text{-dimensional subspace } H \subset \mathbb{R}^D$

$$\int_H K(v) \,\mathrm{d}v = 1.$$

The estimator $\widehat{f}(x_0)$ will depend on

- d: through the normalization h^d , the choice of the kernel K and of its order
- α and β : through the choice of the bandwidth h.

In practice, $d,\,\alpha$ and β are not known.

• Bandwidth selection via Lepski's method [Lepski, 1992]

$$\widehat{h} = \max\left\{h \in \mathbb{H} \mid |\widehat{f}_h(x_0) - \widehat{f}_\eta(x_0)| \le \psi(\eta, h) \quad \forall \eta \le h\right\}$$

where \mathbb{H} is a finite grid of bandwidths and $\psi(\eta, h)$ acts as a proxy of the stochastic deviation of $|\widehat{f}_h(x_0) - \widehat{f}_\eta(x_0)|$.

In practice, $d,\,\alpha$ and β are not known.

• Bandwidth selection via Lepski's method [Lepski, 1992]

$$\widehat{h} = \max\left\{h \in \mathbb{H} \mid |\widehat{f}_h(x_0) - \widehat{f}_\eta(x_0)| \le \psi(\eta, h) \quad \forall \eta \le h\right\}$$

where \mathbb{H} is a finite grid of bandwidths and $\psi(\eta, h)$ acts as a proxy of the stochastic deviation of $|\widehat{f}_h(x_0) - \widehat{f}_\eta(x_0)|$.

Plug-in of an estimator d of d. There exists a lot of them with very good performance [Kégl, 2003, Farahmand et al., 2007, Kim et al., 2016].

Adaptation

We only ask \widehat{d} to be mildly accurate, meaning

$$\sup_{P \in \Sigma_{\alpha,\beta}^d} P^{\otimes n}(\widehat{d} \neq d) \lesssim n^{-3p/2}$$

and let $\hat{f}^{\mathrm{ad}}(x_0)$ denote the resulting estimator, built on top of a kernel of order ℓ .

Theorem 3

For any $1 \le d \le D - 1$, $0 \le \beta \le \ell$ and $2 \le \alpha \le \ell + 1$, we have

$$\sup_{P \in \Sigma_{\alpha,\beta}^{d}} \mathbb{E}_{P^{\otimes n}} \left[|\hat{f}^{\mathrm{ad}}(x_0) - f_P(x_0)|^p \right]^{1/p} \lesssim \left(\frac{\log n}{n} \right)^{-\frac{\beta}{2\beta+d} \wedge \frac{\alpha-1}{2(\alpha-1)+d}}$$

Is this rate optimal ?

Theorem 4

For any $\alpha \geq 2$ and $\beta > 0$, we have

$$\inf_{\widehat{f}(x_0)} \sup_{P \in \Sigma^d_{\alpha,\beta}} \mathbb{E}_{P^{\otimes n}} \left[|\widehat{f}(x_0) - f_P(x_0)|^p \right]^{1/p} \gtrsim n^{-\frac{\beta}{2\beta+d} \wedge \frac{2\alpha-2}{d}}$$

where the infimum is taken on all measurable estimators.

Theorem 4

For any $\alpha \geq 2$ and $\beta > 0$, we have

$$\inf_{\widehat{f}(x_0)} \sup_{P \in \Sigma^d_{\alpha,\beta}} \mathbb{E}_{P^{\otimes n}} \left[|\widehat{f}(x_0) - f_P(x_0)|^p \right]^{1/p} \gtrsim n^{-\frac{\beta}{2\beta+d} \wedge \frac{2\alpha-2}{d}}$$

where the infimum is taken on all measurable estimators.

 \rightarrow we recover the rate $\frac{\beta}{2\beta+d}$

Theorem 4

For any $\alpha \geq 2$ and $\beta > 0$, we have

$$\inf_{\widehat{f}(x_0)} \sup_{P \in \Sigma_{\alpha,\beta}^d} \mathbb{E}_{P^{\otimes n}} \left[|\widehat{f}(x_0) - f_P(x_0)|^p \right]^{1/p} \gtrsim n^{-\frac{\beta}{2\beta+d} \wedge \frac{2\alpha-2}{d}}$$

where the infimum is taken on all measurable estimators.

→ we recover the rate
$$\frac{\beta}{2\beta+d}$$

→ new rate $\frac{2\alpha-2}{d}$

Theorem 4

For any $\alpha \geq 2$ and $\beta > 0$, we have

$$\inf_{\widehat{f}(x_0)} \sup_{P \in \Sigma_{\alpha,\beta}^d} \mathbb{E}_{P^{\otimes n}} \left[|\widehat{f}(x_0) - f_P(x_0)|^p \right]^{1/p} \gtrsim n^{-\frac{\beta}{2\beta+d} \wedge \frac{2\alpha-2}{d}}$$

where the infimum is taken on all measurable estimators.

- \rightarrow we recover the rate $\frac{\beta}{2\beta+d}$
- \rightarrow new rate $\frac{2\alpha-2}{d}$

 \rightarrow matching rates when $\alpha \geq \beta + 1.$

In dimension 1, the rate in the lower-bound simply becomes

$$\frac{\beta}{2\beta+1} \wedge \frac{2\alpha-2}{1} = \frac{\beta}{2\beta+1}$$

suggesting that α may not have a limiting effect in this case.

In dimension 1, the rate in the lower-bound simply becomes

$$\frac{\beta}{2\beta+1} \wedge \frac{2\alpha-2}{1} = \frac{\beta}{2\beta+1}$$

suggesting that α may not have a limiting effect in this case.

Proposition 1

The volume density function θ_{x_0} of a 1-dimensional submanifold M is identically 1 on M.

To estimate the intrinsic distance over the support, we use a graph-based distance using a neighborhood graph [Tenenbaum et al., 2000, Arias-Castro and Le Gouic, 2019]. We consider the graph $\mathcal{G}_{\varepsilon} = (V, E)$ where

$$V = \{x_0, X_1, \dots, X_n\}$$
 and $E = \{(x, y) \mid ||x - y|| \le \varepsilon\}$

and define

 $d_{\varepsilon}(x,y) = \text{length of the shortest path in } \mathcal{G}_{\varepsilon} \text{ from } x \text{ to } y$ where the length of a path is the sum of the size of its edges.

The special case of dimension 1

The special case of dimension 1

 $\rightarrow d_{\varepsilon}$ will be ε^2 close to d_{M_P} with high probability, for a careful choice of ε .

The special case of dimension 1

We introduce

$$\hat{f}_{\varepsilon,h}^{1\mathrm{D}}(x_0) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{d_{\varepsilon}(X_i, x_0)}{h}\right)$$

where $K : \mathbb{R} \to \mathbb{R}$.

Theorem 5

For any $\beta \ge 0$ and any $\alpha \ge 2$, we have

$$\sup_{P \in \Sigma^{1}_{\alpha,\beta}} \mathbb{E}_{P^{\otimes n}} \left[|\hat{f}^{1\mathrm{D}}_{\varepsilon,h}(x_{0}) - f_{P}(x_{0})|^{p} \right]^{1/p} \lesssim n^{-\frac{\beta}{2\beta+1}}$$

when choosing

$$h \simeq n^{-\frac{1}{2\beta+1}}$$
 and $\varepsilon \simeq \frac{\log n}{n}$.

3. Numerical illustrations
We implemented the adaptive estimator $\hat{f}^{ad}(x_0)$ on two synthetic dataset of intrinsic dimension d = 1 and d = 2.

Figure 3: One dimensional synthetic dataset.

Figure 4: Log-log plot of median square error for d = 1. The underlying density had regularity $\beta = 2$. We used from 10^2 to 10^4 numbers of observations, and each experiment was repeated 500 times.

Figure 5: Two dimensional synthetic dataset.

Figure 6: Log-log plot of median square error for d = 2. The underlying density had regularity $\beta = 2$. We used from 10^4 to 10^6 numbers of observations, and each experiment was repeated 500 times.

4. Conclusion

Conclusion

• When estimating pointwise β -Hölder density on α -Hölder support, we obtain minimax bounds

$$n^{-\frac{\beta}{2\beta+d}\wedge\frac{2\alpha-2}{d}} \lesssim R_{\min\max} \lesssim n^{-\frac{\beta}{2\beta+d}\wedge\frac{\alpha-1}{2(\alpha-1)+d}}$$

- The bounds match whenever $\alpha \ge \beta + 1$ (i.e. when the support is sufficiently smooth with respect to the density).
- In this case, classical KDE is minimax, and we only need to estimate the intrinsic dimension to compute it.
- In the case d = 1, α does not impede the speed of estimation, and we can provide a minimax estimator at the price of learning the intrinsic distance of the support.

Thank you for your attention.

References i

Aamari, E., Kim, J., Chazal, F., Michel, B., Rinaldo, A., and Wasserman, L. (2019).
Estimating the reach of a manifold.
Electron. J. Stat., 13(1):1359–1399.

- Aamari, E. and Levrard, C. (2019).
 Nonasymptotic rates for manifold, tangent space and curvature estimation. The Annals of Statistics, 47(1):177-204.
- Arias-Castro, E. and Le Gouic, T. (2019).
 Unconstrained and curvature-constrained shortest-path distances and their approximation.
 Discrete & Computational Geometry, 62(1):1-28.

 Balakrishnan, S., Rinaldo, A., Sheehy, D., Singh, A., and Wasserman, L. (2012).
 Minimax rates for homology inference.
 In Artificial Intelligence and Statistics, pages 64–72.

Berenfeld, C., Harvey, J., Hoffmann, M., and Shankar, K. (2020).

Estimating the reach of a manifold via its convexity defect function.

arXiv preprint arXiv:2001.08006.

References iii

- Cleanthous, G., Georgiadis, A., Kerkyacharian, G., Petrushev, P., and Picard, D. (2018).
 Kernel and wavelet density estimators on manifolds and more general metric spaces. arXiv preprint arXiv:1805.04682.
- Divol, V. (2020).

Minimax adaptive estimation in manifold inference. arXiv preprint arXiv:2001.04896.

Eugeciouglu, Ö. and Srinivasan, A. (2000).
 Efficient nonparametric density estimation on the sphere with applications in fluid mechanics.
 SIAM Journal on Scientific Computing, 22(1):152–176.

References iv

Farahmand, A. M., Szepesvári, C., and Audibert, J.-Y. (2007).

Manifold-adaptive dimension estimation.

In Proceedings of the 24th international conference on Machine learning, pages 265–272. ACM.

Federer, H. (1959).

Curvature measures.

Transactions of the American Mathematical Society, 93(3):418–491.

Federer, H. (1969).

Geometric measure theory. Springer.

References v

Gallot, S., Hulin, D., and Lafontaine, J. (2004). *Riemannian geometry*, volume 3. Springer.

Genovese, C., Perone-Pacifico, M., Verdinelli, I., and Wasserman, L. (2012).

Minimax manifold estimation.

Journal of machine learning research, 13(May):1263–1291.

 Hall, P., Watson, G., and Cabrera, J. (1987).
 Kernel density estimation with spherical data. Biometrika, 74(4):751–762.

Hendriks, H. (1990).

Nonparametric estimation of a probability density on a riemannian manifold using fourier expansions. *The Annals of Statistics*, pages 832–849.

Kégl, B. (2003).

Intrinsic dimension estimation using packing numbers.

In Advances in neural information processing systems, pages 697–704.

References vii

- Kerkyacharian, G., Nickl, R., and Picard, D. (2012).
 Concentration inequalities and confidence bands for needlet density estimators on compact homogeneous manifolds.
 Probability Theory and Related Fields, 153(1-2):363-404.
- Ki, D. and Park, B. U. (2020).
 Intrinsic hölder classes of density functions on riemannian manifolds and lower bounds to convergence rates.
 Statistics & Probability Letters, 169:108959.

References viii

Kim, J., Rinaldo, A., and Wasserman, L. (2016).
 Minimax rates for estimating the dimension of a manifold.

arXiv preprint arXiv:1605.01011.

 Kim, P. T., Koo, J.-Y., and Luo, Z.-M. (2009).
 Weyl eigenvalue asymptotics and sharp adaptation on vector bundles.

J. Multivariate Anal., 100(9):1962–1978.

 Klein, T., Proppert, S., and Sauer, M. (2014).
 Eight years of single-molecule localization microscopy.

Histochemistry and cell biology, 141(6):561–575.

References ix

Lee, J. M. (2006).

Riemannian manifolds: an introduction to curvature, volume 176.

Springer Science & Business Media.

Lepskii, O. (1992).

Asymptotically minimax adaptive estimation. i: Upper bounds. optimally adaptive estimates. Theory of Probability & Its Applications, 36(4):682–697.

Nene, S., Nayar, S., Murase, H., et al. (1996).
 Columbia object image library (coil-20), 1996.
 Dept. Comput. Sci., Columbia Univ, New York.

References x

- Niyogi, P., Smale, S., and Weinberger, S. (2008).
 Finding the homology of submanifolds with high confidence from random samples.
 Discrete & Computational Geometry, 39(1-3):419-441.
- Ozakin, A. and Gray, A. G. (2009).
 Submanifold density estimation.
 In Advances in Neural Information Processing Systems, pages 1375–1382.
- Pelletier, B. (2005).

Kernel density estimation on Riemannian manifolds.

Statistics & probability letters, 73(3):297–304.

References xi

- Sober, B., Aizenbud, Y., and Levin, D. (2017).
 Approximation of functions over manifolds: A moving least-squares approach.
 arXiv preprint arXiv:1711.00765.
- Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000).
 A global geometric framework for nonlinear dimensionality reduction.
 science, 290(5500):2319–2323.
- Triebel, H. (1987).

Characterizations of function spaces on a complete Riemannian manifold with bounded geometry. *Mathematische Nachrichten*, 130(1):321–346.

References xii

```
    Tsybakov, A. (2008).
    Introduction to Nonparametric Estimation.
    Springer Series in Statistics. Springer New York.
```

Wu, H.-T. and Wu, N. (2020).
 Strong uniform consistency with rates for kernel density estimators with general kernels on manifolds.

arXiv preprint arXiv:2007.06408.

Yu, B. (1997).

Assouad, Fano, and Le Cam.

In Festschrift for Lucien Le Cam, pages 423–435. Springer.