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Introduction

When is this structural assumption relevant ?

e when the data naturally lie on a manifold : geodata,
cosmological data, biological data ...

Figure 1: Point cloud obtain using single-molecule localization
microscopy on a COS-7 cell. Figure from [Klein et al., 2014].



Introduction

When is this structural assumption relevant ?

e when the data is high-dimensional but only a small number

of parameters is expected to governed the dataset.

Figure 2: Images from the COIL-20 dataset [Nene et al., 1996] as
presented in [Sober et al., 2017]. The ambient dimension is very high

(number of pixels) but the data can be parametrized by SO(3,R).



Introduction

Notations and risk

e Target point zg € R”;

Independant data Xi,...,X, € RP with commom law P;

P has density fp and support Mp;

Mp has dimension d and xy € Mp;

Measure the accuracy of f(zg) with

Epon[|F(20) = fp(a0)/"]"?.



Introduction

What has been done so far ?



Introduction

What has been done so far ?

e Density estimation on abstract manifolds
[Hendriks, 1990, Pelletier, 2005];



Introduction

What has been done so far 7
e Density estimation on abstract manifolds
[Hendriks, 1990, Pelletier, 2005];

e Estimation on embedded manifolds with twice
differentiable density [Ozakin and Gray, 2009];



Introduction

What has been done so far 7
e Density estimation on abstract manifolds
[Hendriks, 1990, Pelletier, 2005];

e Estimation on embedded manifolds with twice
differentiable density [Ozakin and Gray, 2009];

e Adaptive density estimation on abstract manifolds
[Kerkyacharian et al., 2012, Cleanthous et al., 2018];



Introduction

What has been done so far ?

e Density estimation on abstract manifolds
[Hendriks, 1990, Pelletier, 2005];

e Estimation on embedded manifolds with twice
differentiable density [Ozakin and Gray, 2009];

e Adaptive density estimation on abstract manifolds
[Kerkyacharian et al., 2012, Cleanthous et al., 2018];

e Recent developments : strong uniform consistency of KDE
on embedded manifolds [Wu and Wu, 2020], lower bounds

on Holder classes for abstract manifolds.
[Ki and Park, 2020].



Introduction

Our contribution :
e Build a model that takes into account the regularity of
both the density and the support;
e Get bounds on the minimax risk for this model;

e Adaptive estimation with respect to the intrinsic dimension

of the support and to the regularity parameters.
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1. A statistical model for

sampling on manifolds




Holder spaces on manifold

A function g: U c R? - R¥ is g-Holder if
e g is m-times differentiable, where m =[5 - 1];

e writing § = 8 —m € (0, 1] we have

|d™g(u) = d™g(v)|lop
sup = <
u,velU ”u - U”

We call the above quantity the S-Holder coefficient of g. It is
denoted by

lgls-
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Holder spaces on manifold

Let M be a submanifold of R of dimension d and take
g: M —RF.

The usual way to define the regularity of g is to see g through a
chart ¢, : (M,z) - (R9,0)

go¢yt + (RL0) - RF.

— The magnitude of the Holder coefficients of g o ¢! will
strongly depend on the choice of ¢,

— We need a canonical choice of chart.
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Holder spaces on manifold

We choose the exponential map exp, : T, M — M [Triebel, 1987]
but other choices are possible
[Aamari and Levrard, 2019, Ki and Park, 2020).
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Holder spaces on manifold

We let p > 0 be a localization parameter.

Definition 1

Let M be a closed submanifold of RP. We say that g : M — RF
1s B-Holder if, for any x € M, the map

goexp, : B(0,p) —R"
is B-Holder.
The S-Hoélder coefficient of ¢ : M — RF is simply defined as

l9|g = sup |g o exp, |3.
xeM

12



Holder spaces on manifold

This gives us a convenient way to quantify the regularity of a
closed submanifold.

Definition 2
We say that M is a-Holder if the inclusion

tpr s M o— RP
1s a-Holder in the sense defined above. We shall write

|M|a = |tas]a-

13



Volume measure

For a d-submanifold M c R” we define its volume measure s
as
par(A) = HU(ANM) VAeB(RP)

where H? is the d-dimensionnal Hausdorff measure.
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Volume measure

For a d-submanifold M c R” we define its volume measure s

par(A) = HU(ANM) VAeB(RP)

where H? is the d-dimensionnal Hausdorff measure.

For x € M, and a smooth function ¢ : M — R supported on a

small neighborhood of z, we have

pn() = [ (expa(0)6a(exp, (v) dv

where 6, : (M, z) - R" is the volume density function of M.

14
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Statistical model

We introduce some parameters
d,a, A and

and define the set Ei’ 3 of all probability measures P satisfying

Support conditions

e supp P is a compact, e there exists a version of
connected d-submanifold dP/dypy,, denoted fp that
Mp of RP, containing zo; satisfies all the below;
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Statistical model

We introduce some parameters
d,a, A and

and define the set Ei’ 3 of all probability measures P satisfying

Support conditions

e supp P is a compact, e there exists a version of
connected d-submanifold dP/dypy,, denoted fp that
Mp of RP, containing zo; satisfies all the below;

o <fp< ;

e Mp is a-Holder; e fpis J-Holder;

o [Mplo < A; o Ifpls <
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Reach condition

Are we happy with this model 7 Not quite.

Theorem 1

—

For any estimator f(xg) we have, for any n > 1

sup Epen[|f(z0) - fp(z0)P1'7 2 1
PeEiﬁ

for whatever value of o, 8 and d, where Ei’ﬁ 18 defined as in
the slide before.

16



Reach condition

Proof by drawing.

X
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Reach condition

Proof by drawing.

X

X

X
X »
XXX

Zo

F=1/2

— we need to avoid manifolds that are close to self-intersect. [



Reach condition

The reach of M c R is defined as [Federer, 1969]
v =sup{r >0 | pry, is well defined on M®"}

— it prevents M from curving too much;

— it prevents M from self-intersecting.
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Reach condition

The reach of M c R is defined as [Federer, 1969]
v =sup{r >0 | pry, is well defined on M®"}

— it prevents M from curving too much;
— it prevents M from self-intersecting.

A reach condition is most of the time necessary for getting
minimax results in a manifold setting
[Niyogi et al., 2008, Genovese et al., 2012, Divol, 2020].

If needed, one can estimate the reach of the support before
doing further analysis [Aamari et al., 2019, B. et al., 2020].

18



Reach condition

T >0 v ~0 v ~0

A few diagrams of both the local and global constraints
imposed by a reach condition.

19
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New definition of the model :
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Statistical model

New definition of the model : for parameters
d,7,a, A and
we define the set Ei s of all probability measures P satisfying

Support conditions
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Statistical model

New definition of the model : for parameters
d,7,a, A and

we define the set Zi s of all probability measures P satisfying

Support conditions

e supp P is a connected, e there exists a version of
compact d-submanifold dP/dypy,, denoted fp that
Mp of RP, containing zo; satisfies all the below;

® TAp 2T o <fp< ;

e Mp is a-Holder; e fpis J-Holder;

o |Mpl, < 4; o Ifpls <

20



2. Main results




Theorem 2

There exists an estimator f(xo) depending on d, o and B such
that

— _ B a-1
sup Epen[|f(z0) - fp(x0)|p]1/p < 25+d"\ 2(a-1)rd

d
PeEa’ﬁ
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Theorem 2

There exists an estimator f(xo) depending on d, o and B such
that

— _ B a-1
sup Epen[|f(z0) - fP(x0)|p]1/p < 25+d"\ 2(a-1)rd

d
PeEa’ﬁ

This is achieved using a simple kernel density estimator

Xi—xo)

Fn(zo) = n;d;K( N

21



Upper bound

There are two contributions in the bound

B A_a-1l
n 2B+d" 2(a-1)+d
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Upper bound

There are two contributions in the bound
__B A a-1
n 2B+d" 2(a-1)+d

- : classical rate when estimating S-Holder density.

B
2B3+d

a-1 . .
— yod - comes from

2(a-1
1 )(i—>$0
N Kl|l———
nhdz ( h )

e Approximating the intrinsic distance dys, (X;, o) with the
euclidean distance || X; — z|;
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Upper bound

There are two contributions in the bound
__B A a-1
n 2B+d" 2(a-1)+d

- : classical rate when estimating S-Holder density.

B
2B3+d

a-1 . .
— yod - comes from

2(a-1
1 .XQ — X0
— > K|—— | x1
nhdz ( h )X

e Approximating the intrinsic distance das, (X;, o) with the
euclidean distance || X; — zo|;

e Approximating the volume density function 6., with 1.

22



Upper bound

The kernel K : RP - R we choose only need be

e smooth and compactly supported;

e normalized on all d-dimensional subspace H c R”

fHK(U)dvzl.
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Upper bound

The kernel K : RP - R we choose only need be

e smooth and compactly supported;

e normalized on all d-dimensional subspace H c R”

fHK(U)dvzl.

The estimator f(xzo) will depend on

e d : through the normalization h¢, the choice of the kernel
K and of its order

e « and 3 : through the choice of the bandwidth h.
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Adaptation

In practice, d, a and § are not known.

e Bandwidth selection via Lepski’s method [Lepski, 1992]

h=max{heH | |fi(z0) - fn(zo)| < ¥(n,h) ¥n<h}

where H is a finite grid of bandwidths and ¥ (n, h) acts as a
proxy of the stochastic deviation of |fj,(xo) — ]";,(xo)|
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Adaptation

In practice, d, a and § are not known.

e Bandwidth selection via Lepski’s method [Lepski, 1992]

h= max{h eH ‘ |ﬁ(x0) = ﬁ(w0)| <(n,h) Vn< h}

where H is a finite grid of bandwidths and ¥ (n, h) acts as a
proxy of the stochastic deviation of |fj,(xo) — ]";,(xo)|

e Plug-in of an estimator d of d. There exists a lot of them
with very good performance
[Kégl, 2003, Farahmand et al., 2007, Kim et al., 2016].

24



Adaptation

We only ask d to be mildly accurate, meaning

sup P®"(d#d) s n %P2
Pexd g

and let fad(mo) denote the resulting estimator, built on top of a
kernel of order /.

Theorem 3
Forany1<d<D-1,0<8</l and2<a<l+1, we have

log n \~28+d  2(a-1)7d
sup Epen[|f*(z0) - fP($0)|p]1/p<( ; ) '
Pexd n

25



Is this rate optimal ?
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Is this rate optimal 7 Probably not.

Theorem 4

For any a>2 and >0, we have

i 7 PP > " 3pra N 2
inf sup Epen[|F(20) - fp(ao)P]HP 2 n 7"
f(l“o)PeZJi’B

where the infimum is taken on all measurable estimators.
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Is this rate optimal 7 Probably not.

Theorem 4

For any a>2 and >0, we have

i 7 PP > " 3pra N 2
inf sup Epen[|F(20) - fp(ao)P]HP 2 n 7"
f(l“o)PeZJi’B

where the infimum is taken on all measurable estimators.

— we recover the rate

— new rate %

B
28+d
— matching rates when a > 3+ 1.
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The special case of dimension 1

In dimension 1, the rate in the lower-bound simply becomes

I} A2a—2_ B8
28 +1 1 28+1

suggesting that o may not have a limiting effect in this case.
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The special case of dimension 1

In dimension 1, the rate in the lower-bound simply becomes

I} A2a—2_ B8
28 +1 1 28+1

suggesting that o may not have a limiting effect in this case.

Proposition 1
The volume density function 05, of a 1-dimensional
submanifold M 1is identically 1 on M.

27



The special case of dimension 1

To estimate the intrinsic distance over the support, we use a
graph-based distance using a neighborhood graph
[Tenenbaum et al., 2000, Arias-Castro and Le Gouic, 2019].
We consider the graph G. = (V, E) where

V ={zo, X1,...,Xn} and E={(z,y) | |z-y|<e}
and define
d.(x,y) =length of the shortest path in G. from x to y

where the length of a path is the sum of the size of its edges.

28



The special case of dimension 1

X XX Xi
X
Y
\
X —@oll % X
X .
X X
X x=
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The special case of dimension 1

X XX Xi
X
Y
\
X —@oll % X
X .
X | &
X X
X o

— d. will be £2 close to d Mp With high probability, for a careful
choice of ¢.

29



The special case of dimension 1

We introduce
A 1 & d-(X;,xo)
1D £ 75 L0
=— > K| ———~=
where K : R - R.

Theorem 5

For any 6 >0 and any o > 2, we have

2 5
sup EP®n[|f51,];?($o)—fP(fL’o)|p]1/pSn 2641

1
PGE&,B

when choosing

__1 logn
h~n 261  agnd =~ ) .

30



3. Numerical illustrations




Numerical illustrations

We implemented the adaptive estimator f2d(z) on two

synthetic dataset of intrinsic dimension d =1 and d = 2.

'-A\~*_'., e

Figure 3: One dimensional synthetic dataset.



Numerical illustrations

—— MedSE
------ expected rate
linear regression
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Figure 4: Log-log plot of median square error for d = 1. The

underlying density had regularity 8 = 2. We used from 10? to 10%

numbers of observations, and each experiment was repeated 500 times.
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Numerical illustrations

Figure 5: Two dimensional synthetic dataset.
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Numerical illustrations

—— MedSE
------ expected rate
linear regression
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Figure 6: Log-log plot of median square error for d = 2. The
underlying density had regularity 8 = 2. We used from 10* to 10°

numbers of observations, and each experiment was repeated 500 times.
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4. Conclusion




Conclusion

e When estimating pointwise S-Holder density on a-Holder

support, we obtain minimax bounds

__B 2a-2
n 2B+d d

B A_al
S [ S © 250 AE=DRE,

e The bounds match whenever a > 5+ 1 (i.e. when the
support is sufficiently smooth with respect to the density).

e In this case, classical KDE is minimax, and we only need to
estimate the intrinsic dimension to compute it.

e In the case d = 1, o does not impede the speed of
estimation, and we can provide a minimax estimator at the

price of learning the intrinsic distance of the support.
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Thank you for your attention.
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