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Introduction

Observations : point cloud

X1, . . . ,Xn in a possibly

high-dimensional space RD.

Goal : compute the density of

the underlying distribution at a

given point x0.

Assumption : the data

actually lie on a

low-dimensional, unknown

structure.
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Introduction

When is this structural assumption relevant ?

• when the data naturally lie on a manifold : geodata,

cosmological data, biological data ...

Figure 1: Point cloud obtain using single-molecule localization

microscopy on a COS-7 cell. Figure from [Klein et al., 2014].
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Introduction

When is this structural assumption relevant ?

• when the data is high-dimensional but only a small number

of parameters is expected to governed the dataset.

Figure 2: Images from the COIL-20 dataset [Nene et al., 1996] as

presented in [Sober et al., 2017]. The ambient dimension is very high

(number of pixels) but the data can be parametrized by SO(3,R).
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Introduction

Notations and risk

• Target point x0 ∈ RD;

• Independant data X1, . . . ,Xn ∈ RD with commom law P ;

• P has density fP and support MP ;

• MP has dimension d and x0 ∈MP ;

• Measure the accuracy of f̂(x0) with

EP⊗n[∣f̂(x0) − fP (x0)∣p]1/p.
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Introduction

What has been done so far ?

• Density estimation on abstract manifolds

[Hendriks, 1990, Pelletier, 2005];

• Estimation on embedded manifolds with twice

differentiable density [Ozakin and Gray, 2009];

• Adaptive density estimation on abstract manifolds

[Kerkyacharian et al., 2012, Cleanthous et al., 2018];

• Recent developments : strong uniform consistency of KDE

on embedded manifolds [Wu and Wu, 2020], lower bounds

on Hölder classes for abstract manifolds.

[Ki and Park, 2020].
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on Hölder classes for abstract manifolds.

[Ki and Park, 2020].

6



Introduction

Our contribution :

• Build a model that takes into account the regularity of

both the density and the support;

• Get bounds on the minimax risk for this model;

• Adaptive estimation with respect to the intrinsic dimension

of the support and to the regularity parameters.
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1. A statistical model for

sampling on manifolds



Hölder spaces on manifold

A function g ∶ U ⊂ Rd → Rk is β-Hölder if

• g is m-times differentiable, where m = ⌈β − 1⌉;
• writing δ = β −m ∈ (0,1] we have

sup
u,v∈U

∥dmg(u) − dmg(v)∥op

∥u − v∥δ <∞.

We call the above quantity the β-Hölder coefficient of g. It is

denoted by

∣g∣β.

9



Hölder spaces on manifold

Let M be a submanifold of RD of dimension d and take

g ∶ M → Rk.

The usual way to define the regularity of g is to see g through a

chart φx ∶ (M,x)→ (Rd,0)

g ○ φ−1
x ∶ (Rd,0) → Rk.

→ The magnitude of the Hölder coefficients of g ○ φ−1
x will

strongly depend on the choice of φx

→ We need a canonical choice of chart.
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Hölder spaces on manifold

We choose the exponential map expx ∶ TxM →M [Triebel, 1987]

but other choices are possible

[Aamari and Levrard, 2019, Ki and Park, 2020].
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Hölder spaces on manifold

We let ρ > 0 be a localization parameter.

Definition 1

Let M be a closed submanifold of RD. We say that g ∶M → Rk

is β-Hölder if, for any x ∈M , the map

g ○ expx ∶ B(0, ρ) → Rk

is β-Hölder.

The β-Hölder coefficient of g ∶M → Rk is simply defined as

∣g∣β = sup
x∈M

∣g ○ expx ∣β.

12



Hölder spaces on manifold

This gives us a convenient way to quantify the regularity of a

closed submanifold.

Definition 2

We say that M is α-Hölder if the inclusion

ιM ∶ M → RD

is α-Hölder in the sense defined above. We shall write

∣M ∣α ∶= ∣ιM ∣α.
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Volume measure

For a d-submanifold M ⊂ RD we define its volume measure µM

as

µM(A) =Hd(A ∩M) ∀A ∈ B(RD)

where Hd is the d-dimensionnal Hausdorff measure.

For x ∈M , and a smooth function ψ ∶M → R supported on a

small neighborhood of x, we have

µM(ψ) = ∫
TxM

ψ(expx(v))θx(expx(v))dv

where θx ∶ (M,x)→ R+ is the volume density function of M .
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Statistical model

We introduce some parameters

d,α,A and fmin, fmax, β,B

and define the set Σd
α,β of all probability measures P satisfying

Support conditions

• suppP is a compact,

connected d-submanifold

MP of RD, containing x0;

• MP is α-Hölder;

• ∣MP ∣α ≤ A;

Density conditions

• there exists a version of

dP /dµMP
, denoted fP that

satisfies all the below;

• fmin ≤ fP ≤ fmax;

• fP is β-Hölder;

• ∣fP ∣β ≤ B.
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• ∣MP ∣α ≤ A;

Density conditions

• there exists a version of

dP /dµMP
, denoted fP that

satisfies all the below;

• fmin ≤ fP ≤ fmax;

• fP is β-Hölder;
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• ∣MP ∣α ≤ A;

Density conditions

• there exists a version of

dP /dµMP
, denoted fP that

satisfies all the below;

• fmin ≤ fP ≤ fmax;

• fP is β-Hölder;
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Reach condition

Are we happy with this model ?

Not quite.

Theorem 1

For any estimator f̂(x0) we have, for any n ≥ 1

sup
P ∈Σd

α,β

EP⊗n[∣f̂(x0) − fP (x0)∣p]1/p ≳ 1

for whatever value of α, β and d, where Σd
α,β is defined as in

the slide before.
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Reach condition

Proof by drawing.

→ we need to avoid manifolds that are close to self-intersect.
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Reach condition

The reach of M ⊂ RD is defined as [Federer, 1969]

τM = sup{r ≥ 0 ∣ prM is well defined on M⊕r}

→ it prevents M from curving too much;

→ it prevents M from self-intersecting.

A reach condition is most of the time necessary for getting

minimax results in a manifold setting

[Niyogi et al., 2008, Genovese et al., 2012, Divol, 2020].

If needed, one can estimate the reach of the support before

doing further analysis [Aamari et al., 2019, B. et al., 2020].
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Reach condition

τM ≫ 0 τM ≃ 0 τM ≃ 0

A few diagrams of both the local and global constraints

imposed by a reach condition.
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Statistical model

New definition of the model :

for parameters

d, τ,α,A and fmin, fmax, β,B

we define the set Σd
α,β of all probability measures P satisfying

Support conditions

• suppP is a connected,

compact d-submanifold

MP of RD, containing x0;

• τMP
≥ τ ;

• MP is α-Hölder;

• ∣MP ∣α ≤ A;

Density conditions

• there exists a version of

dP /dµMP
, denoted fP that

satisfies all the below;

• fmin ≤ fP ≤ fmax;

• fP is β-Hölder;

• ∣fP ∣β ≤ B.
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2. Main results



Upper bound

Theorem 2

There exists an estimator f̂(x0) depending on d, α and β such

that

sup
P ∈Σd

α,β

EP⊗n[∣f̂(x0) − fP (x0)∣p]1/p ≲ n−
β

2β+d∧
α−1

2(α−1)+d

This is achieved using a simple kernel density estimator

f̂h(x0) =
1

nhd

n

∑
i=1

K (Xi − x0

h
) .
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Upper bound

There are two contributions in the bound

n
−

β
2β+d∧

α−1
2(α−1)+d

→ β
2β+d : classical rate when estimating β-Hölder density.

→ α−1
2(α−1)+d : comes from

• Approximating the intrinsic distance dMP
(Xi, x0) with the

euclidean distance ∥Xi − x0∥;
• Approximating the volume density function θx0 with 1.
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→ α−1
2(α−1)+d : comes from

• Approximating the intrinsic distance dMP
(Xi, x0) with the

euclidean distance ∥Xi − x0∥;
• Approximating the volume density function θx0 with 1.

22



Upper bound

There are two contributions in the bound

n
−

β
2β+d∧

α−1
2(α−1)+d

→ β
2β+d : classical rate when estimating β-Hölder density.
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Upper bound

The kernel K ∶ RD → R we choose only need be

• smooth and compactly supported;

• normalized on all d-dimensional subspace H ⊂ RD

∫
H
K(v)dv = 1.

The estimator f̂(x0) will depend on

• d : through the normalization hd, the choice of the kernel

K and of its order

• α and β : through the choice of the bandwidth h.

23



Upper bound

The kernel K ∶ RD → R we choose only need be

• smooth and compactly supported;

• normalized on all d-dimensional subspace H ⊂ RD

∫
H
K(v)dv = 1.

The estimator f̂(x0) will depend on

• d : through the normalization hd, the choice of the kernel

K and of its order

• α and β : through the choice of the bandwidth h.

23



Adaptation

In practice, d, α and β are not known.

• Bandwidth selection via Lepski’s method [Lepski, 1992]

ĥ = max{h ∈ H ∣ ∣f̂h(x0) − f̂η(x0)∣ ≤ ψ(η, h) ∀η ≤ h}

where H is a finite grid of bandwidths and ψ(η, h) acts as a

proxy of the stochastic deviation of ∣f̂h(x0) − f̂η(x0)∣.

• Plug-in of an estimator d̂ of d. There exists a lot of them

with very good performance

[Kégl, 2003, Farahmand et al., 2007, Kim et al., 2016].
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Adaptation

We only ask d̂ to be mildly accurate, meaning

sup
P ∈Σd

α,β

P⊗n(d̂ ≠ d) ≲ n−3p/2.

and let f̂ad(x0) denote the resulting estimator, built on top of a

kernel of order `.

Theorem 3

For any 1 ≤ d ≤D − 1, 0 ≤ β ≤ ` and 2 ≤ α ≤ ` + 1, we have

sup
P ∈Σd

α,β

EP⊗n[∣f̂ad(x0) − fP (x0)∣p]1/p ≲ ( logn

n
)
−

β
2β+d∧

α−1
2(α−1)+d

.
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Lower bound

Is this rate optimal ?

Probably not.

Theorem 4

For any α ≥ 2 and β > 0, we have

inf
f̂(x0)

sup
P ∈Σd

α,β

EP⊗n[∣f̂(x0) − fP (x0)∣p]1/p ≳ n−
β

2β+d∧
2α−2
d

where the infimum is taken on all measurable estimators.

→ we recover the rate β
2β+d

→ new rate 2α−2
d

→ matching rates when α ≥ β + 1.
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The special case of dimension 1

In dimension 1, the rate in the lower-bound simply becomes

β

2β + 1
∧ 2α − 2

1
= β

2β + 1

suggesting that α may not have a limiting effect in this case.

Proposition 1

The volume density function θx0 of a 1-dimensional

submanifold M is identically 1 on M .
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The special case of dimension 1

To estimate the intrinsic distance over the support, we use a

graph-based distance using a neighborhood graph

[Tenenbaum et al., 2000, Arias-Castro and Le Gouic, 2019].

We consider the graph Gε = (V,E) where

V = {x0,X1, . . . ,Xn} and E = {(x, y) ∣ ∥x − y∥ ≤ ε}

and define

dε(x, y) = length of the shortest path in Gε from x to y

where the length of a path is the sum of the size of its edges.
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The special case of dimension 1

→ dε will be ε2 close to dMP
with high probability, for a careful

choice of ε.
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The special case of dimension 1

We introduce

f̂1D
ε,h(x0) =

1

nh

n

∑
i=1

K (dε(Xi, x0)
h

)

where K ∶ R→ R.

Theorem 5

For any β ≥ 0 and any α ≥ 2, we have

sup
P ∈Σ1

α,β

EP⊗n[∣f̂1D
ε,h(x0) − fP (x0)∣p]1/p ≲ n−

β
2β+1

when choosing

h ≃ n−
1

2β+1 and ε ≃ logn

n
.
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3. Numerical illustrations



Numerical illustrations

We implemented the adaptive estimator f̂ad(x0) on two

synthetic dataset of intrinsic dimension d = 1 and d = 2.

Figure 3: One dimensional synthetic dataset.
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Numerical illustrations

Figure 4: Log-log plot of median square error for d = 1. The

underlying density had regularity β = 2. We used from 102 to 104

numbers of observations, and each experiment was repeated 500 times.
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Numerical illustrations

Figure 5: Two dimensional synthetic dataset.
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Numerical illustrations

Figure 6: Log-log plot of median square error for d = 2. The

underlying density had regularity β = 2. We used from 104 to 106

numbers of observations, and each experiment was repeated 500 times.
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4. Conclusion



Conclusion

• When estimating pointwise β-Hölder density on α-Hölder

support, we obtain minimax bounds

n
−

β
2β+d∧

2α−2
d ≲ Rminimax ≲ n

−
β

2β+d∧
α−1

2(α−1)+d .

• The bounds match whenever α ≥ β + 1 (i.e. when the

support is sufficiently smooth with respect to the density).

• In this case, classical KDE is minimax, and we only need to

estimate the intrinsic dimension to compute it.

• In the case d = 1, α does not impede the speed of

estimation, and we can provide a minimax estimator at the

price of learning the intrinsic distance of the support.
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Thank you for your attention.
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Eugeciouglu, Ö. and Srinivasan, A. (2000).

Efficient nonparametric density estimation on the

sphere with applications in fluid mechanics.

SIAM Journal on Scientific Computing, 22(1):152–176.

39



References iv
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