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Nonparametric inference for Hawkes processes Hawkes processes

Intensity of a point process

Definition (Point process)

A point process N = (Nt)t is a random countable set of points of R or equivalently a
non-decreasing integer-valued process.

Definition (Intensity of a point process)

The intensity λt of N represents the probability to observe a point at the time t
conditionally on the past before t:

λtdt = P(N has a jump ∈ [t, t + dt] conditionally on the past before t)

Example: Poisson processes corre-
spond to the case where (λt)t is not
random. And the Poisson process is
homogeneous if, in addition, λt does
not depend on t.
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Univariate Hawkes processes

λtdt = P(N has a jump ∈ [t, t + dt] conditionally on the past before t)

Definition (univariate Hawkes process)

Let Φ : R 7→ R+ and h : R+ 7→ R such that ‖h‖1 < 1. Then any point process N whose
intensity is

λt = Φ

(∫ t−

−∞
h(t − u)dNu

)
= Φ

( ∑
T∈N,T<t

h(t − T )
)

is called a univariate Hawkes process.

See Hawkes (1971), Hawkes and Oakes (1974), Brémaud and Massoulié (1996, 2001).

Definition (linear univariate Hawkes process)

If Φ(x) = x + ν with ν > 0 and h ≥ 0, the Hawkes process is linear:

λt = ν +

∫ t−

−∞
h(t − u)dNu = ν +

∑
T∈N,T<t

h(t − T )

with ν called the spontaneous rate and h the self-exciting function.

The study of linear Hawkes processes is much easier thanks to the cluster representation
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Cluster representation for linear Hawkes processes

A univariate linear Hawkes process can be viewed as a branching process over an
homogeneous Poisson process. Let ν > 0 and h ≥ 0 supported by R+.

Ancestors: Realizations of a Poisson Process with λt = ν
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Cluster representation for linear Hawkes processes

A univariate linear Hawkes process can be viewed as a branching process over an
homogeneous Poisson process. Let ν > 0 and h ≥ 0 supported by R+.

Ancestors: Realizations of a Poisson Process with λt = ν

Each ancestor can give birth to children according to a P.P. with λt = h(t)

Each child can give birth to children according to a P.P. with λt = h(t)

Extinction if
∫ +∞

0
h(t)dt < 1

Hawkes process = all the points where colors are not distinguished

See Hawkes and Oakes (1974)
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Multivariate Hawkes process: Neurobiological motivations

A neuron is an electrically excitable cell that processes and transmits information
through electrical signals

If upstream signal is strong enough, this cell
produces an action potential (also called spike),
which is a spiky (electric) signal. Then, this sig-
nal is propagated to downstream neurons.

Action potentials can be recorded and the excitations times can be seen as a point
process, each point corresponding to the peak of one action potential of this neuron.

Goal: Using the recorded activity of K neurons, we wish to infer the graph between

them. For this purpose, we use models based on multivariate Hawkes processes.
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Multivariate Hawkes processes

We naturally modify the intensity of a univariate Hawkes process given by

λt = Φ
(
ν +

∫ t−

−∞
h(t − u)dNu

)
= Φ

(
ν +

∑
T∈N,T<t

h(t − T )
)
,

to model interactions between K neurons: For a given neuron k ∈ J1;KK, we model
its activity by a point process N(k) whose intensity is

λ
(k)
t = Φk

(
νk +

K∑
`=1

∫ t−

−∞
h`k(t − u)dN(`)(u)

)

= Φk

(
νk +

K∑
`=1

∑
T`∈N(`),T`<t

h`k(t − T`)
)

We obtain mutually exciting and inhibiting processes:

νk > 0: background rates
h`k : interaction functions
- If h`k ≥ 0: excitation
- If h`k ≤ 0: inhibition
- If h`k is signed: excitation and
inhibition

Φk : link function. Typical examples:
- Ex (linear): Φk(x) = x [ requires h`k ≥ 0 ]
- Ex (nonlinear): Φk(x) = max(x , 0)
- Ex (nonlinear): Φk(x) = exp(x)
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Multivariate Hawkes processes

Definition

A K -dimensional continuous time process N = (Nt)t = (N
(1)
t , . . . ,N

(K)
t )t is a multivariate

nonlinear Hawkes process if

(i) almost surely, for k 6= `, (N
(k)
t )t and (N

(`)
t )t never jump simultaneously

(ii) for all k, the intensity of (N
(k)
t )t is given by

λ
(k)
t = Φk

(
νk +

K∑
`=1

∫ t−

−∞
h`k(t − u)dN(`)(u)

)
.

Theorem (Brémaud and Massoulié (1996))

Existence and uniqueness of a stationary distribution for N:
- if ∀k ∈ J1;KK ‖Φk‖∞ <∞ or
- if ∀k ∈ J1;KK Φk is 1-Lipschitz and the matrix Γ with entries Γ`k = ‖h`k‖1 has a
spectral radius ρ(Γ) < 1.
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Applications of Hawkes processes

Hawkes processes are useful to model many situations where excitation or inhibition
phenomena play a crucial role.

to model earthquakes: Ozaki (1979), Ogata and Akaike (1982), Vere-Jones and
Ozaki (1982) and Zhuang, Ogata and Vere-Jones (2002)

to neuroscience: Chornoboy, Schramm and Karr (1988) combined Hawkes processes
with maximum likelihood in the parametric setting.

to genome analysis: Gusto and Schbath (2005), Carstensen, Sandelin, Winther and
Hansen (2010) and Reynaud-Bouret and Schbath (2010)

to financial data: Embrechts, Liniger and Lin (2011), Bacry and Muzy (2013, 2014)
and Bacry, Delattre, Hoffmann and Muzy (2012)

to study diffusion across social networks: Crane and Sornette (2008) and Yang and
Zha (2013)

to analyze and predict the diffusion of COVID-19: Mengersen, Paraha, R, Rousseau
and Sulem (2020)

etc.
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State of the art in the nonparametric setting

Nonparametric inference for multivariate Hawkes processes:

λ
(k)
t = Φk

(
ν∗k +

K∑
`=1

∫ t−

−∞
h∗`k(t − u)dN(`)(u)

)
.

Statistical Goal: Estimation of f ∗ = (ν∗k , (h
∗
`k)`∈J1;KK)k∈J1;KK based on observations

of N = (N(k))k∈J1;KK on [0,T ] with intensity process (λ(k))k∈J1;KK.

Linear case: Φk(x) = x

- Lasso-type estimation: Hansen, Reynaud-Bouret and R (2015) extended by
Chen, Witten and Shojaie (2017). See also Bacry, Bompaire, Gäıffas and
Muzy (2020)

- Bayesian estimation: Donnet, R and Rousseau (2020)

Nonlinear case:

- Chen, Shojaie, Shea-Brown and Witten (2019) derived bounds on the weak
dependence coefficient for the Hawkes process using the coupling technique of
Dedecker and Prieur (2014), providing an asymptotic analysis of second order
statistics (cross-covariance)

- Estimation of f ∗ in full generality remains an open question (to the best of our
knowledge)
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Our contributions

Vincent Rivoirard (Université Paris-Dauphine) MMS 2020 11 / 22



Nonparametric inference for Hawkes processes Our contribution

Inference for nonlinear Hawkes models

We now consider

λ
(k)
t = Φk

(
ν∗k +

K∑
`=1

∫ t−

−∞
h∗`k(t − u)dN(`)(u)

)
with in mind 3 examples:
- Model 1: Φk(x) = θk + max(x , 0)
- Model 2: Φk(x) = 1[θk ,∞)(x) min(x ,Λk)
- Model 3: Φk(x) = max(x , 0)
with 0 < θk < Λk

Statistical Goals:

1. Estimation of f ∗ = (ν∗k , (h
∗
`k)`∈J1;KK)k∈J1;KK based on observations of

N = (N(k))k∈J1;KK on [0,T ] (with in mind T → +∞). The Φk ’s are known
2. The θk ’s are unknown. With θ = (θk)k∈J1;KK, Estimation of (f ∗, θ). The Λk ’s

are known
3. We consider the Bayesian approach

Assumptions:

1. The h∗`k ’s are bounded and have support [0,A], with A <∞ known
2. The matrix Γ∗ with entries Γ∗`k = ‖h∗`k‖1 has a spectral norm < 1. This implies

existence and uniqueness of a stationary distribution
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Identifiability

Remember

λ
(k)
t = Φk

(
ν∗k +

K∑
`=1

∫ t−

−∞
h∗`k(t − u)dN(`)(u)

)
with 3 possible models:
- Model 1: Φk(x) = θk + max(x , 0)
- Model 2: Φk(x) = 1[θk ,∞)(x) min(x ,Λk)
- Model 3: Φk(x) = max(x , 0)
We set f ∗ = (ν∗k , (h

∗
`k)`∈J1;KK)k∈J1;KK and θ = (θk)k∈J1;KK

Identifiability:

- Models 1, 2 and 3: Estimation of f ∗: we need ∀ (k, `) ∈ J1;KK

‖(h∗`k)−‖∞ <

{
ν∗k (Models 1 and 3)

ν∗k − θk (Model 2)

- Models 1 and 2: Estimation of (f ∗, θ): We also need: ∀k ∃`, (h∗`k)−(0) = 0
and (h∗`k)− is continuous and increasing on [0, v0) for some v0 > 0
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The Bayesian statistical approach

The log-likelihood function of the process observed on the interval [0,T ] is

LT (f ) :=
K∑

k=1

[∫ T

0

log(λ
(k)
t (f ))dN

(m)
t −

∫ T

0

λ
(k)
t (f )dt

]
,

where λ
(k)
t (f ) is the intensity associated with f = (νk , (h`k)`∈J1;KK)k∈J1;KK

We fix a prior Π on the set F1 of parameters f such that (for Models 1 and 3)
- the h`k ’s are bounded and are supported by [0,A]
- the matrix with entries ‖h`k‖1 has a spectral radius < 1
- ∀ (k, `) ∈ J1;KK, ‖(h`k)−‖∞ < νk

We study the posterior distribution Π (·|N), with for any B ⊂ F ,

Π (B|N) =

∫
B

exp(LT (f ))dΠ(f )∫
F exp(LT (f ))dΠ(f )

.

For a distance d , we derive concentration rates: for εT → 0, when T → +∞,

Ef ∗ [Π (d(f ∗, f ) > εT |N)] = o(1).

From the posterior distribution, we can build estimates, credible sets, etc.
1modified in a natural way for Model 2 and for estimating (f ∗, θ)
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Posterior concentration rates for estimating f ∗

For a distance d , posterior concentration means that for εT → 0, when T → +∞,

Ef ∗ [Π (d(f , f ∗) > εT |N)] = o(1).

We study posterior concentration rates for d the classical L1-distance:

d(f , f ∗) := ‖f − f ∗‖1 :=
K∑

k=1

|νk − ν∗k |+
K∑

k=1

K∑
`=1

‖h`k − h∗`k‖1

We apply the standard Ghosal Ghosh and van der Vaart approach and write

Π (B|N) =

∫
B

exp(LT (f ))dΠ(f )∫
F exp(LT (f ))dΠ(f )

=

∫
B

exp(LT (f )− LT (f ∗))dΠ(f )∫
F exp(LT (f )− LT (f ∗))dΠ(f )

=:
NT

DT
.

We deal with the numerator by using L1-tests, so we need convenient concentration
inequalities

We deal with the denominator by controlling the Kullback-loss on

B(εT ,R) := {f = (νk , (h`k )`)k ∈ F : |νk − ν∗k | ≤ εT , ‖h`k − h∗`k‖∞ ≤ εT , ‖h`k‖∞ ≤ R ∀`, k}
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Posterior concentration rates for estimating f ∗

Theorem

Assume
lim sup
T→+∞

1

T
Ef ∗

[∫ T

0

1{λ(k)
t (f ∗)>0}

λ
(k)
t (f ∗)

dt

]
< +∞, ∀k ∈ J1;KK.

Let Π be a prior distribution and εT → 0 such that

log3(T ) = O(T ε2
T ).

(i) There exists R > 0 such that
Π (B(εT ,R)) ≥ e−�Tε

2
T

(ii) There exists a subset FT ⊂ F , such that

Π (F c
T )

Π (B(εT ,R))
≤ e−�Tε

2
T

(iii) The metric entropy of the space FT for the L1-norm satisfies

logN (εT ,FT , ‖.‖1) ≤ �T ε2
T

Then, for C a constant large enough,

Ef ∗ [Π (‖f − f ∗‖1 > CεT |N)] = o(1).
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Discussion - Rates for Bayesian estimators

Remember:
λ

(k)
t = Φk

(
ν∗k +

K∑
`=1

∫ t−

−∞
h∗`k(t − u)dN(`)(u)

)
- Model 1: Φk(x) = θk + max(x , 0)
- Model 2: Φk(x) = 1[θk ,∞)(x) min(x ,Λk)
- Model 3: Φk(x) = max(x , 0)
So, the previous condition

lim sup
T→+∞

1

T
Ef ∗

[∫ T

0

1{λ(k)
t (f ∗)>0}

λ
(k)
t (f ∗)

dt

]
< +∞, ∀k ∈ J1;KK

is satisfied for Models 1 and 2. For Model 3, it is satisfied if for instance for any ` h∗`k is
an histogram and for all t, h∗`k(t) ∈ Q.

Corollary

We assume conditions of the previous theorem are satisfied. If∫
‖f ‖1dΠ(f ) < +∞,

then the posterior mean f̂ = Eπ[f |N] is converging to f ∗ at the rate εT : for C a
constant large enough

Pf ∗

(
‖f̂ − f ∗‖1 > CεT

)
= o(1).
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Posterior rates for estimating (f ∗, θ∗) - Prior models

We consider (change notations θk → θ∗k ):
- Model 1: Φk(x) = θ∗k + max(x , 0)
- Model 2: Φk(x) = 1[θ∗

k
,∞)(x) min(x ,Λk)

We estimate θ∗ = (θ∗k )k∈J;KK

Adapting naturally the setting to the problem of estimating (f ∗, θ∗), we obtain:

Ef ∗
[
Π
(
‖θ − θ∗‖1 + ‖f − f ∗‖1 > CεT

∣∣N)] = o(1) (Model 1)

Ef ∗
[
Π
(
‖θ − θ∗‖1 > C

√
εT
∣∣N)+ Π

(
‖f − f ∗‖1 > CεT

∣∣N)] = o(1) (Model 2)

We also derive a Bayesian estimate θ̂ such that under mild assumptions

Pf ∗

(
‖θ̂ − θ∗‖1 > CεT

)
= o(1) (Model 1)

Pf ∗

(
‖θ̂ − θ∗‖1 > C

√
εT
)

= o(1) (Model 2)

Posterior concentration rates are obtained for random histogram priors based on
random partitions. And on Hölder classes H(β, L), with β ≤ 1, we obtain the
posterior concentration rate

εT = (logT )
3β

2β+1 T−
β

2β+1
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Difficulties and technical tools

Since P(dN(k)t = 1|past before t) = λ
(k)
t (f ∗), the first step consists in obtaining

rates for the stochastic loss defined through intensities:

d1,T (f , f ∗) :=
1

T

K∑
k=1

∫ T

0

∣∣λ(k)
t (f )− λ(k)

t (f ∗)
∣∣dt

by using
1. new Bernstein-type concentration inequalities for martingales
2. an ergodic theorem (Reynaud-Bouret and Roy (2003))
3. a sharp control of the number of points falling in intervals

For points 2 and 3, the cluster representation is the main tool. In particular:
Lemma: Assume ‖Γ‖ < 1 and consider ζ such that 0 ≤ ζ ≤ 1−‖Γ‖

2
√

M
log
(

1+‖Γ‖
2‖Γ‖

)
. Then, for any

ancestor of type `, if W ` the number of points in its cluster,

E[exp(ζW `)] ≤
1 + ‖Γ‖

2‖Γ‖
.

Crucial assumption: Φk(x) = x and the h`k ’s non negative

See Hansen, Reynaud-Bouret and R (2015)
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Difficulties and technical tools

Second step: To move from rates on intensities to rates on parameters: based on
controls (with large probability) of the stochastic distance by the deterministic one:

λ
(k)
t (f1) := ν1k +

K∑
`=1

∫ t−

−∞
h1`k (t − u)dN(`)(u) λ

(k)
t (f2) := ν2k +

K∑
`=1

∫ t−

−∞
h2`k (t − u)dN(`)(u)

d1,T (f1, f2) :=
1

T

K∑
k=1

∫ T

0

∣∣λ(k)
t (f1)− λ(k)

t (f2)
∣∣dt . ‖f1 − f2‖1 :=

K∑
k=1

|ν1k − ν2k |+
K∑

k=1

K∑
`=1

‖g1`k − h2`k‖1

With JT → +∞ well chosen (in particular JT = o(T )) and

Zk,m :=

∫ (2m+1)T
2JT

2mT
2JT

∣∣λ(k)
t (f1)− λ(k)

t (f2)
∣∣dt =

∫ (2m+1)T
2JT

2mT
2JT

∣∣∣∣∣ν1k − ν2k +
M∑
`=1

∫ t−

t−A

(g1`k − g2`k )(t − s)dNk
s

∣∣∣∣∣ dt
The Zk,m’s only depend on points of the process of the interval Im,T :=

[
2mT
2JT
− A; (2m+1)T

2JT

]
, so they

are ”almost independent” (cluster representation), since max(Im,T )� min(Im+1,T )

Td1,T (f , f ∗) ≥ max
1≤k≤K


JT−1∑
m=1

E[Zk,m] +

JT−1∑
m=1

[
Zk,m − E[Zk,m]

]
& T‖f1 − f2‖1 + max

1≤k≤K


JT−1∑
m=1

[
Z̃k,m − E[Z̃k,m]

] & T‖f1 − f2‖1

Crucial assumption: Φk(x) = x and the h`k ’s non negative

See Donnet, R and Rousseau (2020)
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New probabilistic tools

We cannot rely on the cluster representation anymore, which allows the Hawkes
process N to be represented as a sum of independent processes,

But Costa, Graham, Marsalle and Tran (2018) have studied Hawkes processes with
signed reproduction functions by using renewal techniques: By setting

Xt := N|(t−A,t]

and the regeneration times

τj =

{
0 if j = 0

inf{t ∈ (τj−1,T ] : Xt− 6= ∅,Xt = ∅} if j ≥ 1
,

we have:
1 the point measure (Xt)t is a strong Markov process with positive recurrent

state the null measure
2 almost surely, the variables (τj)j are finite stopping times for N
3 if we set, τJT +1 = T , the intervals ((τj , τj+1])j=0,...,JT form a partition of (0,T ].
4 the random measures (N|[τj ,τj+1])j≥1 are i.i.d. (called excursion)
5 Moments properties: for some α > 0,

E
[
eα(τ2−τ1)

]
<∞

6 An ergodic theorem and exponential concentration inequalities were established
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Thank you for your attention.
Questions and remarks are welcomed!

Reference:

Sulem D., Rivoirard V. and Rousseau J. (2020) Bayesian estimation of nonlinear
Hawkes processes. In preparation
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