Robustness of Community Detection to Random Geometric Perturbations

Sandrine Péché

Univ. Paris Diderot

Vianney Perchet

ENSAE Paris Criteo Al Lab

December 2020

Stochastic Block Model

Social network Users are nodes connected by edges Communities 2 (for simplicity) communities

"high" proba. connexion within communities
"low" proba. connexion across communities

Objectives Based on connexions graph, recover communities

Example of a SBM. from Abbe et al [2016]

Spectral Methods

Probas $p \in [0, 1]$ within comm. and q across (with p > q) Balance N users total, N/2 in each comm.

Adjacency \tilde{A} of expectation $A = \begin{pmatrix} P & Q \\ Q & P \end{pmatrix}$ where

P is N/2 × N/2 all-coordinates equal *p*Same thing for *Q*

Spectrum A is of rank 2 and

•
$$\lambda_1 = \frac{N(p+q)}{2}$$
 associated to $v_1 = (1, ..., 1)/\sqrt{N}$
• $\lambda_2 = \frac{N(p-q)}{2}$ ass. $v_2 = (+1, ..., +1, -1, ..., -1)/\sqrt{N}$

Spectral Methods: \tilde{v}_2 (of \tilde{A}) close enough to v_2 for recovery

Social networks, 2 types of connections between users
 exogenous similarity. Belong to the same community
 endogenous similarity. Crossed paths at some point

- Social networks, 2 types of connections between users
 exogenous similarity. Belong to the same community
 endogenous similarity. Crossed paths at some point
- Look at my own interesting facebook life

A pic of my list of friends from academia, Handball, Random

- Social networks, 2 types of connections between users
 exogenous similarity. Belong to the same community
 endogenous similarity. Crossed paths at some point
- Look at my own interesting facebook life
 - I belong to the academic/research in ML community
 - I belong to the handball community
 - I randomly met people

- Social networks, 2 types of connections between users
 exogenous similarity. Belong to the same community
 endogenous similarity. Crossed paths at some point
- Look at my own interesting facebook life
 - I belong to the academic/research in ML community
 - I belong to the handball community
 - I randomly met people

Spectral methods recover comm. with (random) perturbations ?

"agnostically" from the perturbation model.

Perturbations via Geometric Graphs

Model $X_i \in \mathbb{R}^d$, connection with proba $K(X_i, X_j) \in [0, 1]$ • $X_i \sim \mathcal{N}(0, I_d)$ i.i.d. • d = 2 and $K(X_i, X_j) = \exp(-\gamma ||X_i - X_j||^2)$ • not observed

Ideas Users are connected if **close enough** Generalize easily (heavier computations)

Example of a Geometric Graph. from Mitsche et al [2017]

Model and Objectives

Model SBM(p, q) perturbed by a geom $K(\cdot) = \exp(-\gamma \|\cdot\|^2)$ • $X_i \sim X_j$ w.p. $p + \kappa K(X_i, X_j)$ within • $X_i \sim X_j$ w.p. $q + \kappa K(X_i, X_j)$ across

Objectives **Recovery**: find $v \in \mathbb{R}^N$ with ||v|| = 1 s.t.

• Exact $|\langle \mathbf{v}, \mathbf{v}_2 \rangle| = 1$, w.p. $\rightarrow 1$, $\mathbf{v} \in \{\pm 1/\sqrt{N}\}^N$ • ε -Weak $|\langle \mathbf{v}, \mathbf{v}_2 \rangle| \ge \varepsilon$, w.p $\rightarrow 1$, $\mathbf{v} \in \{\pm 1/\sqrt{N}\}^N$ • ε -Soft $|\langle \mathbf{v}, \mathbf{v}_2 \rangle| \ge \varepsilon$, w.p $\rightarrow 1$

Param. Interesting regimes

• $p \sim q \sim p - q$ and $p \sim \frac{f(N)}{N}$, with $f(N) \gg \log(N)$ • $\frac{1}{\gamma} \sim p$ (similar degree in SBM and geom)

Our results and techniques

Techniques Spectral methods

- Compute spectrum of geom. graph
- Compare it with SBM spectrum
- Solutions s.t. eigenvector \tilde{v}_2 correlated to v_2

Results Exact/Weal/Soft recovery possible

- Small perturbations: exact recovery
- λ_1 known, weak recovery if $\frac{p-q}{2} \geq \frac{2\kappa}{\gamma}(1+\varepsilon)$
- General case, soft recovery if $\frac{p+q}{2} \ge \frac{p-q}{2} + \frac{\kappa}{2\gamma}$

Spectral methods robust/agnostic to geometric perturbations

Spectrum of Geometric Graphs

•
$$\mathcal{G} = \left(\exp(-\gamma \|X_i - X_j\|^2)\right)_{i,j}$$
: expected (cond. to X_i) adjacency
Th. $\frac{N}{2\gamma} \leq \operatorname{spec_rad}(\mathcal{G}) \leq \frac{N}{2\gamma}(1 + o(1))$ with proba $\rightarrow 1$

- Ideas of proof.
 - $\bullet Slice <math>\mathbb{R}^d$ into shells
 - * X_i far from 0 have few connections. Few of them.
 - * Intermediate X_i have expected degrees of order $\frac{N}{2\gamma}$
 - ★ Prove this by slicing even more
 - Onsequence of concentration inequalities.
 - * Requires $\gamma \to \infty$ and $\gamma \frac{\log(N)}{N} \to 0$
 - Onclude with Perron Frobenius

Separations and Recovery

Recovery depends on range of eigenvalues $\frac{N(p+q)}{2}$, $\frac{N(p-q)}{2}$ and $\frac{N\kappa}{2\gamma}$ Trivial $\frac{N(p-q)}{2} \gg \sqrt{\frac{N(p+q)}{2}} + \frac{N\kappa}{2\gamma}$ exact reco. (negligible noise) Easy $\frac{N\kappa}{2\gamma} \ll \sqrt{\frac{N(p+q)}{2}}$ standard SBM (negligible perturbations) Interesting $\frac{N\kappa}{2\gamma} \sim \frac{N(p-q)}{2} \gg \sqrt{\frac{N(p+q)}{2}}$

p + q is known

Th:
$$\varepsilon$$
-Weak reco is possible if $\frac{N(p-q)}{2} \ge 4\frac{N\kappa}{2\gamma}(1+\varepsilon)$

Proof:

• David-Kahan
$$\sin(\theta)$$
 to $(\operatorname{Sbm} - \lambda_1 v_1 v_1^{\top})$ and $(\widetilde{A} - \lambda_1 v_1 v_1^{\top})$
• $\operatorname{Sbm} = \begin{pmatrix} P & Q \\ Q & P \end{pmatrix} = \lambda_1 v_1 v_1^{\top} + \lambda_2 v_2 v_2^{\top}$
• $\widetilde{A} = \operatorname{Sbm} + \kappa \mathcal{G} + \mathcal{E} = \lambda_1 v_1 v_1^{\top} + \lambda_2 v_2 v_2^{\top} + \kappa \mathcal{G} + \mathcal{E}$
• $w_2 = \operatorname{sign}(\operatorname{highest} \operatorname{eigenvector} \operatorname{of} \ \widetilde{A} - \lambda_1 v_1 v_1^{\top}) / \sqrt{N}$
 $\frac{1}{N} d_H(v_2, w_2) \le ||v_2 - w_2||^2 \le \frac{8}{\lambda_1^2} ||\kappa \mathcal{G} + \mathcal{E}||^2 \le \frac{8}{\lambda_1^2} \mu_1^2(1 + o(1))$

(weak reco: lhs smaller than 1/2)

p + q is not known

Th: Soft recovery if also
$$\frac{N(p+q)}{2} \ge \frac{N\kappa}{2\gamma} + \frac{N(p-q)}{2}$$

• If $\frac{p-q}{2}\gg \frac{\kappa}{2\gamma}$, weak reco (and even exact at limit)

•
$$\widetilde{v}_2^\top v_2 = 1 - \frac{p+q}{2p} (\sqrt{\frac{p+q}{p-q}} - 1) \sqrt{\frac{\frac{\kappa}{2\gamma}}{\frac{p-q}{2}}} + \mathcal{O}(\frac{\frac{\kappa}{2\gamma}}{\frac{p-q}{2}})$$

- Elements of proof
 - "Perturbation analysis"
 - ► (at least) 2 eigenvalues separate from spectrum of $\kappa \mathcal{G}$ because $\lambda_1 \tilde{v}_1^\top v_1 \not\rightarrow 0$
 - Control the correlation of \tilde{v}_2 with v_1 , then with v_2

Spectrum for $\gamma \in \{50, 70, 100, 110\}$, p - q = 1.5%, N = 2.000

Spectrum for $\gamma \in \{50, 70, 100, 110\}$, p - q = 3%, N = 2.000

Spectrum for $\gamma \in \{50, 70, 100, 110\}$, p - q = 0.5%, N = 2.000

Experiment 4/4

Parameters N = 2.000, p = 2.5%, q = 1%, $\kappa = 0.97$ Theory Ranges of parameters • $\frac{N\kappa}{2\gamma} \sim \frac{N(p-q)}{2}$ for $\gamma \sim 65$ • Soft reco as soon as $\gamma \geq \frac{\kappa}{2q} = 49$

Conclusions

- Spectral methods robust to random perturbations
 - as long as two eigenvalues separate from spectrum
 - (or λ₁ is known)
 - happens if λ_2 is 4 times bigger than spectral radius of pert.
- Algorithm independent of presence/absence/quantity of noise
- Can be generalized to other perturbations
 - Different Kernel, higher dimension, non-Gaussian features
 - Compute spectral radiius
 - Check that 2 eigenvalues separate
- Extend to more than 2 communities (and unbalanced)

Robustess in the sparse regime
$$(p = \frac{a}{N}, q = \frac{b}{N}, \frac{1}{\gamma} = \frac{c}{N})$$
?

Robustness of spectral methods for community detection, Stephan and Massoulié, COLT'19