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Stochastic Block Model

Social network Users are nodes connected by edges
Communities 2 (for simplicity) communities

“high” proba. connexion within communities
“ low” proba. connexion across communities

Objectives Based on connexions graph, recover communities

Example of a SBM. from Abbe et al [2016]
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Spectral Methods

Probas p ∈ [0, 1] within comm. and q across (with p > q)
Balance N users total, N/2 in each comm.

Adjacency Ã of expectation A =

(
P Q
Q P

)
where

P is N/2× N/2 all-coordinates equal p
Same thing for Q

Spectrum A is of rank 2 and
λ1 =

N(p+q)
2 associated to v1 = (1, . . . , 1)/

√
N

λ2 =
N(p−q)

2 ass. v2 = (+1, ..,+1,−1, ..,−1)/
√
N

Spectral Methods: ṽ2 (of Ã) close enough to v2 for recovery
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A motivation for perturbations

Social networks, 2 types of connections between users
1 exogenous similarity. Belong to the same community
2 endogenous similarity. Crossed paths at some point

Look at my own interesting facebook life

1 I belong to the academic/research in ML community
2 I belong to the handball community
3 I randomly met people

Spectral methods recover comm. with (random) perturbations ?

“agnostically” from the perturbation model.
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Perturbations via Geometric Graphs
Model Xi ∈ Rd , connection with proba K (Xi ,Xj) ∈ [0, 1]

Xi ∼ N (0, Id) i.i.d.
d = 2 and K (Xi ,Xj) = exp(−γ‖Xi − Xj‖2)
not observed

Ideas Users are connected if close enough
Generalize easily (heavier computations)

Example of a Geometric Graph. from Mitsche et al [2017]
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Model and Objectives

Model SBM(p, q) perturbed by a geom K (·) = exp(−γ‖ · ‖2)
Xi ∼ Xj w.p. p + κK (Xi ,Xj) within
Xi ∼ Xj w.p. q + κK (Xi ,Xj) across

Objectives Recovery: find v ∈ RN with ‖v‖ = 1 s.t.
Exact |〈v , v2〉| = 1, w.p. → 1, v ∈ {±1/

√
N}N

ε-Weak |〈v , v2〉| ≥ ε, w.p → 1, v ∈ {±1/
√
N}N

ε-Soft |〈v , v2〉| ≥ ε, w.p → 1

Param. Interesting regimes
p ∼ q ∼ p − q and p ∼ f (N)

N
, with f (N)� log(N)

1
γ
∼ p (similar degree in SBM and geom)
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Our results and techniques

Techniques Spectral methods
1 Compute spectrum of geom. graph
2 Compare it with SBM spectrum
3 Conditions s.t. eigenvector ṽ2 correlated to v2

Results Exact/Weal/Soft recovery possible
Small perturbations: exact recovery
λ1 known, weak recovery if p−q

2 ≥
2κ
γ
(1+ ε)

General case, soft recovery if p+q
2 ≥

p−q
2 + κ

2γ

Spectral methods robust/agnostic to geometric perturbations
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Spectrum of Geometric Graphs

G =
(
exp(−γ‖Xi − Xj‖2)

)
i ,j
: expected (cond. to Xi) adjacency

Th. N
2γ ≤ spec_rad(G) ≤ N

2γ (1+ o(1)) with proba → 1

Ideas of proof.
1 Slice Rd into shells

F Xi far from 0 have few connections. Few of them.
F Intermediate Xi have expected degrees of order N

2γ
F Prove this by slicing even more

2 Consequence of concentration inequalities.
F Requires γ →∞ and γ log(N)

N → 0
3 Conclude with Perron Frobenius
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Let’s try to be a bit more precise
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Separations and Recovery

Recovery depends on range of eigenvalues N(p+q)
2 , N(p−q)

2 and Nκ
2γ

Trivial N(p−q)
2 �

√
N(p+q)

2 + Nκ
2γ exact reco. (negligible noise)

Easy Nκ
2γ �

√
N(p+q)

2 standard SBM (negligible perturbations)

Interesting Nκ
2γ ∼

N(p−q)
2 �

√
N(p+q)

2
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p + q is known

Th: ε-Weak reco is possible if N(p−q)
2 ≥ 4Nκ

2γ (1+ ε)

Proof:
David-Kahan sin(θ) to (Sbm− λ1v1v

>
1 ) and (Ã− λ1v1v

>
1 )

I Sbm =

(
P Q
Q P

)
= λ1v1v

>
1 + λ2v2v

>
2

I Ã = Sbm+ κG + E = λ1v1v
>
1 + λ2v2v

>
2 + κG + E

w2 = sign(highest eigenvector of Ã− λ1v1v
>
1 )/
√
N

1
N
dH(v2,w2) ≤ ‖v2 − w2‖2 ≤ 8

λ2
1
‖κG + E‖2 ≤ 8

λ2
1
µ2

1(1+ o(1))

(weak reco: lhs smaller than 1/2)
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p + q is not known

Th: Soft recovery if also N(p+q)
2 ≥ Nκ

2γ + N(p−q)
2

If p−q
2 �

κ
2γ , weak reco (and even exact at limit)

I ṽ>2 v2 = 1− p+q
2p (

√
p+q
p−q − 1)

√
κ
2γ
p−q
2

+O(
κ
2γ
p−q
2
)

Elements of proof
I “Perturbation analysis”
I (at least) 2 eigenvalues separate from spectrum of κG

because λ1ṽ
>
1 v1 6→ 0

I Control the correlation of ṽ2 with v1, then with v2
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Experiment 1/4 (reco for γ ∼ κ
p−q = 66 ?)

Spectrum for γ ∈ {50, 70, 100, 110}, p − q = 1.5%, N = 2.000

12 / 16



Experiment 2/4 (reco for γ ∼ κ
p−q = 33 ?)

Spectrum for γ ∈ {50, 70, 100, 110}, p − q = 3%, N = 2.000
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Experiment 3/4 (reco for γ ∼ κ
p−q = 200 ?)

Spectrum for γ ∈ {50, 70, 100, 110}, p − q = 0.5%, N = 2.000
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Experiment 4/4

Correlation between ṽ2 and v2

Parameters N = 2.000, p = 2.5%, q = 1%, κ = 0.97
Theory Ranges of parameters

Nκ
2γ ∼

N(p−q)
2 for γ ∼ 65

Soft reco as soon as γ ≥ κ
2q = 49
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Conclusions
Spectral methods robust to random perturbations

I as long as two eigenvalues separate from spectrum
I (or λ1 is known)
I happens if λ2 is 4 times bigger than spectral radius of pert.

Algorithm independent of presence/absence/quanttiy of noise
Can be generalized to other perturbations

I Different Kernel, higher dimension, non-Gaussian features
I Compute spectral radiius
I Check that 2 eigenvalues separate

Extend to more than 2 communities (and unbalanced)

Robustess in the sparse regime (p = a
N
, q = b

N
, 1
γ
= c

N
) ?

Robustness of spectral methods for community detection, Stephan and Massoulié, COLT’19
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