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Introduction



The Stochastic Block Model

Figure 1: A graph generated from the stochastic block model with 600 nodes

and 2 communities, scrambled on the left and clustered on the right. Nodes in

this graph connect with probability p = 6/600 within communities and

q = 0.1/600 across communities. Courtesy to [Abbe et al., 2015].
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The Bipartite Stochastic Block Model (BSBM)
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The Bipartite SBM (cont.)
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The Bipartite SBM (cont.)
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Why this model?

• In-network interactions are

not accessible or not

informative.

• Huge amount of out of

network interactions.

• Example: recommendation

systems.
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Statement of the problem



Statement of the problem

• Consider two sets of vertices V1 and V2 of respective sizes

n1 = n1+ + n1− and n2 = n2+ + n2−. We denote by σ(u) ∈ {−1, 1}
the label corresponding to vertex u.

• Let A denote the biadjacency matrix. We say that matrix A is

drawn according to a BSBM model if:

1. Aij ∼ Ber(δp) if σ(i) = σ(j),

2. Aij ∼ Ber((2− δ)p) if σ(i) 6= σ(j),

3. (Aij)i,j are independent,

where 0 < δ < 2, 0 < p < 1/2.

• Define γ1 := |n1+ − n1−|/n1 (resp. γ2 := |n2+ − n2−|/n2) the

imbalance of the set V1 (respectively, V2).

• Interesting case: n2 >> n1.
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Statement of the problem (cont.)

Denote by η1 ∈ {±1}n1 the vector of vertex labels in V1.

An estimator η̂ = η̂(A) is a binary valued estimator:

η̂ = (η̂1, . . . , η̂n1), η̂j ∈ {−1, 1}.

Hamming loss of an estimator η̂ = η̂(A) is

|η̂ − η1| ,
n1∑
j=1

|η̂j − η1j | = 2
n1∑
j=1

1(η̂j 6= η1j).

A more appropriate loss of an estimator η̂ is

r(η̂, η1) := min
ν∈{−1,+1}

|η̂ − νη1| .
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Types of recovery

Definition (weak recovery)
The estimator η̂ achieves weak recovery if there exists α ∈ (0, 1) such

that

lim
n1→∞

sup
BSBM

P
(
r(η1, η̂)

n1
≥ α

)
= 0,

where supBSBM denotes the maximum over all distributions of A drawn

from BSBM(δ, n1+, n1−, n2+, n2−, p).

Weak recovery can be interpreted as the fact that η̂ classifies the vertices

better than chance.
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Types of recovery (cont.)

Definition (almost full recovery)
The estimator η̂ achieves almost full recovery if for all α ∈ (0, 1) we

have

lim
n1→∞

sup
BSBM

P
(
r(η1, η̂)

n1
≥ α

)
= 0.

Almost full recovery means that η̂ correctly classifies the vertices on

average.
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Types of recovery (cont.)

Definition (exact recovery)
The estimator η̂ achieves exact recovery if

lim
n1→∞

inf
BSBM

P
(
r(η1, η̂) = 0

)
= 1.

Exact recovery means that η̂ correctly classifies all the vertices.
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Statistical question

Sufficient conditions on p to achieve exact recovery?

lim
n1→∞

inf
BSBM

P (r(η̂, η1) = 0) = 1.

12



A spiked model

• The biadjacency matrix A can be written as

A = E(A) + W

where A is observed and W is a centered random matrix.

• One can check that

E(A) = p1n11
>
n2 + (δ − 1)pη1η

>
2 .

• the non-informative matrix p1n11
>
n2 can be eliminated by

estimating p by

p̂ =
1

n1n2
1>n1A1n2 (1)

and then considering

Â = A− p̂1n11
>
n2 = (δ − 1)pη1η

>
2 + W + (p − p̂)1n11

>
n2︸ ︷︷ ︸

noise
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Previous de-biasing spectral methods

• Spectral methods are based on classical SVD on the Gram matrix

AA>.

• Why AA> rather than A? Because it reduces the dimension.

• Classical SVD: bias of order

Σ = E
(
WW>

)
that grows with n2.

• Strict improvement: adaptive de-biasing procedure [Royer, 2017]

by considering
1

n1
AA> − Σ̂

where Σ̂ is an estimator of the covariance matrix Σ.

• Σ and Σ̂ are both diagonal matrices.
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Previous de-biasing spectral methods (cont.)

• Idea: diagonal deletion SVD [Florescu & Perkins, 2016]: SVD

applied to matrix

AA> − diag(AA>).

• Sufficient condition to obtain exact recovery for diagonal deletion

SVD when n2 > n1:

p = Ω

(
log n1√
n1n2

)
.
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Related literature

Reference Results Conditions Algorithm

[Feldman et al., 2015]
Exact

recovery

{
n2 ≥ n1, known p,

p ≥ C (δ − 1)−2 log n1√
n1n2

Subsampled

iterations

[Florescu & Perkins, 2016]
Almost full

recovery

{
n2 ≥ n1 log4 n1, γ1 = γ2 = 0

p ≥ Cδ
log n1√
n1n2

Diagonal

deletion SVD

[Florescu & Perkins, 2016]
Weak

recovery

{
n2 ≥ n1, γ1 = γ2 = 0

p > (δ−1)−2

√
n1n2

SBM

reduction

Table 1: Summary of the results of [Feldman et al., 2015] and [Florescu &

Perkins, 2016].
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State of the art results

Assume that n2 ≥ n1 log n1.

p0 (δ−1)−2

√
n1n2

p∗ (δ−1)−2 log n1√
n1n2

weak recovery

is impossible

exact recovery

is possible

What about the gap ?
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Heuristics on the optimal

condition



The two components Gaussian Mixture Model: analogy with

BSBM
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The two components GMM: analogy with BSBM (cont.)

• [Ndaoud, 2018, Giraud & Verzelen, 2019, Lu & Zhou, 2016]

• GMM:

AGMM = η1θ
> + σW GMM , η1 ∈ {−1, 1}n1 , θ ∈ Rn2 ,

where W GMM
ij ∼ N (0, 1) i.i.d.

• BSBM:

ABSBM = (δ − 1)pη1η
>
2 + W BSBM , η1 ∈ {−1, 1}n1 , η2 ∈ {−1, 1}n2 ,

where W BSBM
ij ∼ Ber(δp) or W BSBM

ij ∼ Ber((2− δ)p).

• Moments matching through:

‖θ‖2 = (δ − 1)2p2n2

and

σ2 ≈ p.
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A sharp phase transition

• In [Ndaoud, 2018], the phase transition happens around

‖θ‖∗2 = σ2(log n1)

(
1 +

√
1 + 2

n2
n1 log n1

)
.

• If n2 >> n1 log n1, this phase transition corresponds, in the BSBM

model, to (δ − 1)2p2n2 = p
√

(n2 log n1)/n1, i.e.

p∗ = (δ − 1)−2
√

log n1
n1n2

.

• Questions: is it possible to achieve exact recovery under the

condition p = Ω
(

(δ − 1)2
√

log n1
n1n2

)
in the BSBM model ? What

about computational issues ?
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Contributions



A new de-biasing technique

Define the linear operator H : Rn×n → Rn×n, such that

∀M ∈ Rn×n, H(M) = M − diag(M).

Recall that Â = A− p̂1n11
>
n2 , then

H(ÂÂ>) = (δ − 1)2p2n2H(η1η
>
1 )︸ ︷︷ ︸

signal

+ · · ·+ H(WW>) + (p − p̂)H(Z )︸ ︷︷ ︸
noise

.

Observe that

‖H(WW>)‖op ≤ 2
∥∥WW> − E

(
WW>

)∥∥
op
,

and

‖H(η1η
>
1 )‖op =

(
1− 1

n1

)
‖η1η>1 ‖op.

=⇒ If you don’t like bias get rid of it!

21



A better spectral estimator

• Consider H(ÂÂ>) rather than H(AA>).

• Define the following spectral estimator:

η01 = sign(v̂), (2)

where v̂ is the eigenvector corresponding to the top eigenvalue of

H(ÂÂ>) and sign(v̂) is the vector of signs of each entry of vector v̂ .
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Almost full recovery through spectral clustering

Theorem 1 [Ndaoud, Sigalla and Tsybakov, 2019]

Let η01 be the estimator given by (2). Let (Cn1) be a sequence of

positive numbers that tends to ∞ as n1 →∞. If
n2 > n1 log n1,

γ1γ2 ≤ 1/Cn1 ,

p ≥ Cn1(δ − 1)−2
√

log n1
n1n2

.

Then η01 achieves almost full recovery of η1.

• Almost full recovery: 1
n1
r(η01 , η1)→ 0 as n1 →∞.

• γ1 =|n1+ − n1−|/n1 and γ2 =|n2+ − n2−|/n2: imbalance

parameters.

• Improves upon the result of [Florescu & Perkins, 2016].
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Towards improved clustering

conditions



A new iterative procedure for bipartite clustering

We introduce the hollowed Lloyd’s algorithm:

• Inspiration: analogy with the Gaussian Mixture Model (GMM),

cf. [Ndaoud, 2018].

• We define a sequence of iterations (η̂k)k≥0 such that

∀k ≥ 0, η̂k+1 = sign
(

H
(
ÂÂ>

)
η̂k
)
. (3)

with the spectral estimator η̂0 = η01 as initializer.

• Our final estimator: η̂m with m ≥ 3 log n1.

• Difference of (3) from original Lloyd’s iterations: we replace ÂÂ>

by H
(

ÂÂ>
)

.
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Improved clustering conditions

Theorem 2 [Ndaoud, Sigalla and Tsybakov, 2019]

Let (η̂k)k≥0 be the recursion (3) initialized with the spectral estimator

(2) for p̂ given by (1). There exists a constant C > 0 such that if:
n2 > n1 log n1,

γ1γ2 ≤ 1/480,

p ≥ C (δ − 1)−2
√

log n1
n1n2

,

then, the estimator η̂m with m ≥ 3 log n1 achieves exact recovery of

η1.

• γ1 =|n1+ − n1−|/n1 and γ2 =|n2+ − n2−|/n2: imbalance

parameters.

• Improves upon the result of [Feldman et al., 2015].

• Conjecture: in the setting n2 ≥ n1 log n1, the condition

p ≥ C (δ − 1)−2
√

log n1
n1n2

cannot be improved.
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Impossibility for a supervised oracle

We define the following oracle estimator:

η̃1 = sign(H(ÃÃ>)η1)

with Ã = A− p1n11
>
n2 .

Proposition 1 [Ndaoud, Sigalla and Tsybakov, 2019]

Assume that n2 ≥ n1 log n1 and γ1 = γ2 = 0. There exists cδ > 0

depending only on δ such that if p2 = cδ
log n1
n1n2

then for the oracle η̃1 we

have

lim
n1→∞

n1∑
i=1

P(η̃1i 6= η1i ) =∞.

Hence, the condition p = Ω
(√

log n1/(n1n2)
)

is necessary for the

supervised oracle to achieve exact recovery when n2 ≥ n1 log n1.

26



Numerical experiments



Comparison of different estimators

• Comparison of the three methods: SVD, debiased spectral (DS) and

hollowed Lloyd’s (HL), in the general case of imbalance, can be

summarized as follows :

p20 log n1
n1n2

1

n
4/3
1 n

2/3
2

1
n21

failure of

the oracle

failure of DS

success of HL

failure of SVD

success of DS

success

of SVD
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Numerical experiments

• For the sake of readability of plots, we define the parameters a and b

such that

p =
√
a/n1 and b = n1(log n1)/n2.

Figure 2: Empirical probability of success over 1000 runs of the experiment

for: b = 0.1 (left) and b = 5 (right).
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Control of the spectral norm of

the noise



Control of the spectral norm of the hollowed Gram matrix

• Control of the spectral norm of H(WW>) =
∑n2

j=1 H(WjW
>
j ) ?

Theorem 3 Matrix Bernstein inequality - adapted from [Tropp,

2012] - theorem 6.2

Let (Yj)
n
j=1 be a sequence of independent symmetric random matrices

of size d × d , and a,R > 0. Assume that for all j in {1, . . . , n} we have

E(Yj) = 0 and ‖E(Y q
j )‖op ≤

q!

2
Rq−2a2 for q = 2, 3, . . . .

Then, for all t ≥ 0,

P

∥∥∥ n∑
j=1

Yj

∥∥∥
op
≥ t

 ≤ d exp

(
− t2

2σ2 + 2Rt

)
with σ2 = na2.

• Then: apply Theorem 3 with Yj = H(WjW
>
j ), d = n1, n = n2,

R = 3(1 + 2n1p) and a2 = 4p2n1.
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Insight of the proof

• Difficulty: to prove for q = 2, 3, . . . that∥∥E(H(WjW
>
j )q)

∥∥
∞ ≤ 2q!(3(1 + 2n1p))q−2p2n1.

• Case q = 2: simple.

• Case q ≥ 3: requires sophisticated combinatorial arguments.
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Conclusion



Summary

1. Improved sufficient conditions for spectral procedures achieving

almost full recovery.

2. An efficient adaptive procedure that achieves exact recovery under

milder conditions. Outperforms previous algorithms (cf.

simulations).

3. Hint that our conditions are necessary through the study of an

oracle estimator.

4. More general approach with p unknown and imbalance parameters

γ1, γ2.
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Discussion

Discussion:

1. Necessary condition.

2. Recent works [Abbe et al., 2020, Löffler et al., 2019] show that

spectral initialization already achieves exact recovery for SBM and

GMM.

Is it still the case for BSBM in the high-dimensional regime?
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Thank you for your attention.
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