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Offline Change-point Analysis

General problem of detecting changes in distribution of a time series
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Beaulieu et al.('12)

Old Problem [Wald, 1945] but still vivid.
See [Niu et al., 2016] and [Truong et al., 2020] for recent surveys.
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(Sub)-Gaussian univariate mean change-point Model

Data : Time series Y ¢ R”

Yi=0;+e;,  where ¢ 2 SG(1)

where we assume that 0 € R™ is piece-wise constant.

We leave aside possible time dependencies
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Definition of the Energy of 7

The Square Energy of 7; is Ei = rkAi

l5 distance between @ and best approximation by a piece-wise constant vector on
—k
TR 2 (Tf,...77;7177;+1,...).
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Two mathematical perspectives on change-point Detection

m Denoising/Estimation : Estimating @ (in I2 norm).
m Clustering : Recover the change-points 7% ; partition of [n] into segments.
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Two mathematical perspectives on change-point Detection

m Denoising/Estimation : Estimating @ (in I2 norm).
m Clustering : Recover the change-points 7% ; partition of [n] into segments.

Denoising perspective :
Minimax-Optimal rates (for K > 2) K[1+]log (%)]

achieved e.g. by penalized least-squares [Birgé and Massart, 2001]

Quadratic computational complexity by dynamic programming.
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Change-point detection as a clustering problem

Several lines of literature :

m At Most One Change-point (AMOC) [K < 1]. Least-square estimator detects
R =1if E; » /loglog(n) and [7 — 77| = O(A7?) [Csorgo and Horvath, 1997].
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K =1if E1 » \/loglog(n) and [71 — 7}| = O(A?) [Csorgo and Horvath, 1997].
m Penalized Least-square Estimator. BIC penalty
[Yao and Au, 1989, Wang et al., 2020].

m Greedy or Aggregation methods
Binary segmentation [Scott and Knott, 1974] = iterative bisection.
Many recent variants [Fryzlewicz, 2014, Fryzlewicz, 2018,
Wang and Samworth, 2018, Wang et al., 2020, Kovécs et al., 2020]

Focus on computational complexity (e.g. O(nlog(n)))

Theorem (Typlcal modern result. sloppy version ;

If ming, E2 2 log(n), then whp K = K and

dg(F,m*) = inf |5 -] 8
H(T,T) k:lmK|Tk Tk ming A7

Surprisingly, the tightest known results [Frick et al., 2014] are a bit older.

4/27



Objectives

Two sub-problems

Change-Point Detection
= Detecting the existence of the
change-point

—>
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Two sub-problems

Change-Point Detection Change-Point Localization
= Detecting the existence of the = small estimation error
change-point dg 1 (F, 7)) = min |7 — 7|
7> <
-
| ‘ Tl
*
T *
* Tk+1 * k Tk+1
=i

some questions

m What is the energy requirement for detection ?
= How is the transition between detection and localization ?
m Is penalized least-square optimal 7 For which penalty ?




Some Impossibility Results
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Gaussian Change-point Detection

Simpler problem : testing 8 = 0 versus
0cO[r,d] = {9 eR™: AT e {n/4,n/d+r,n/4+2r, ..., 3n/4} such that 6; = JILZ-E[T’TH«)} .

Segment
r

>
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0eO[r,d] = {9 eR™: 37 ¢ {n/4,nf4+r,n/4+2r, ..., 3n/4} such that §; = JILZ-E[T’TH«)} .

Segment
r
T | 5= | possible positions
1 For each 7, sufficient statistic
_ N(0,1)
_-1/2 s Tmirly )
Zr=r PR { NG5 1)
Ty, g
Proposition (Segment Detection = [ D

Fix & in (0,1). If 6\/7 <\/2(1 — &) log[n/(2r)], then for all tests T
c’ 2

Po[T = 1] + supgeeps,r) PolT = 0] 2 1~ (L) ¢

k>1;¢>0.

Definition

77 is a (k, q)-high-energy change-point if Ex(0) > & 2log(%) +q .
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Gaussian Change-point Localization

Simplified setting : one change-point; known means ¢ = (u1, u2);
two possible positions for 7 : 7 or 7 + x.

T
>

Sufficient statistic N(0.1)
0,1
_ el 25 Tmre-1¢y - s
Z=x Zz:r (YZ /J'l) { N(.’L’l/2A, 1)
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Gaussian Change-point Localization

Simplified setting : one change-point; known means ¢ = (u1, u2);
two possible positions for 7 : 7 or 7 + x.

1)
>
A Sufficient statistic v
- T+T— 07 1
Z=a M2y Ty, ) ~ { N(m1(/2A) "
.
Lemma (Lower bound for Localization ~ [ D

Write A = pig — p1. For any  in [1/2,n/2 — 1 - 2A72),

2
inf  sup = Py(rx,p) (7— 7% 2 2A72 4 z) 2 g AT
T t%e{2,..., n}
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Simplified setting : one change-point; known means ¢ = (u1, u2);
two possible positions for 7 : 7 or 7 + x.

1)
>
A Sufficient statistic v
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Z=a M2y Ty, ) ~ { N(m1(/2A) "
.
Lemma (Lower bound for Localization ~ [ D

Write A = pig — p1. For any  in [1/2,n/2 — 1 - 2A72),

2
inf  sup = Py(rx,p) (7— 7% 2 2A72 4 z) 2 g AT
T t%e{2,..., n}

Small A : At best, |7~ 7| x A™2 and has a sub-exponential tail.

Large A : At best, 7=7* with proba higher than 1 ~lemeA?,
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Desiderata for a suitable change-point procedure

Under an event A of high (to be discussed) probability .

(NoSp). No spurious change-point is detected :

|{T} (T" LTk W%]%l,forallkin {2,...,K-1} ;
(7} n [ TI+T2]| ; [{(F)n (TK i ]|31.

0/27



Desiderata for a suitable change-point procedure

Under an event A of high (to be discussed) probability .
(NoSp). No spurious change-point is detected :
|{T} (-rk 1T W%Hsl , forallkin {2,..., K-1} ;

|{T} [ -rl+72]| ;|{T} (-rK 1+-rK ]|S1.

(Detec[~, ¢]). All high-energy change-points are detected.
For all k in [K], if 7 is a (x,q)-high-energy change-point then

[P Sl S log(l\/nA2)+q
d F,orf)<min{ Lk k k1 k .
H,l( k) { 2 2 Az

0/27



Desiderata for a suitable change-point procedure

Under an event A of high (to be discussed) probability .
(NoSp). No spurious change-point is detected :
|{T} (-rk 1T W#Hsl forall kin {2,..., K -1} ;

|{7-} [ Tl+72]| |{7-} (TK 1+-rK ]|£1.

(Detec[~, ¢]). All high-energy change-points are detected.
For all kin [K], if 7} is a (k,q)-high-energy change-point then

[P S S i log(l\/nA2)+q
d F,orf)<min{ Lk Tk kAl k .
H,l( k) { 2 2 Az

(Loc[x, ¢]). High-energy change-points are localized at the optimal rate.
Any (&, q)-high-energy change-point 7, satisfies

]P(dH’l(ATJ,T]:)ILAZCIA;2)§6717 Vez1 .
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Analysis of penalized least-square estimators
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Penalized least-square estimator

7= vector of tentative change-points
+ = projector onto the space of piece-wise constant vectors with changes at =

7= argmin Cro(Y,7) = argmin ||Y - IL- Y||> + L peny(7,q) ,
T T

Multi-scale penalty peny(T,q) = q|T| +2 Z‘];';‘Il log ( e )
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Penalized least-square estimator

7= vector of tentative change-points
+ = projector onto the space of piece-wise constant vectors with changes at =

7= argmin Cro(Y,7) = argmin | Y ~TL, Y |2 + L peng(T,q) ,
T T

Multi-scale penalty peny(T,q) = q|T| +2 Z‘];';‘Il log ( e )

Remarks :

= Additive Penalty ~» dynamic programming (and its
refinements [Killick et al., 2012])

m Over-penalizes small segments.

m Highly differs from complexity penalties peny(7,q) = (|7|+ 1)(1 +log(n/|T|)).

11/27



Connection between CUSUM and Least-square penalty

Definition (CUSUM Statistic)
For t = (t1,t2,t3), C(Y,t) = [Yey,15) ~ Y1ty 1]/ L2212
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Connection between CUSUM and Least-square penalty

Definition (CUSUM Statistic)

For t = (tl,tg,tg), C(Y,t) = [?[tg,tg) 7?[751’752)] \/ %
Lemma (deletion of a change-point)

D = (s, T, )

1Y -T. Y| - |Y - H.,-(—Z>YH2 =—C[Y,(n1,7,711)] -

Cro(Y,7) - Cro(Y, (D) = —C*(Y,(n-1,7,741))
+L [2 log( T — 1) ) + q] .

(rir1 —n)(m —71-1)
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Local Optimality and uniform Control of the CUSUM

Consider T such that
0 is constant on [1_1,741)

Goal : show that 7 + 77
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Local Optimality and uniform Control of the CUSUM

Consider 7 such that =1 = T 41
0 is constant on [1_1,7741)

Goal : show that 7 + 77 T Tht1

Cro(Y,7)-Cro(Y, 7)) = —C*(e,(m-1,7,7141))
+L [2 log( Uri —ma) ) + q] .

(riv1 1) (m —7-1)

T+ 7 as long as CQ(e7 (Tl,l,Tl,Tl+1)) small enough.

Local Optimality ~» Uniform bound for the CUSUM

Lemma (Multi-scale chaining; in the spirit of [ D

Aq{|C(e,t)|£2\J 2log(M)+q, Vt(tl,tg,tg)}.

(ts —t2)(t2 —t1)

We have P[Aq] > 1—ce <4,
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First Analysis of Penalized Least-square

Proposition (V. et al. ('20))

For any L and q large enough, under Ay, the penalized least-square estimator T
satisfies

(a) (NoSp) No Spurious Jump is detected.
(b) (Detec[xr,q]) All (x1,q)-high-energy change-points 7}} are detected

[ P S e log (nA2)+q
d Fr) <mind LTk T T Tl k
z1 (%, 7) { 5 5 L A2
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First Analysis of Penalized Least-square

Proposition (V. et al. ('20))

For any L and q large enough, under Ay, the penalized least-square estimator T
satisfies

(a) (NoSp) No Spurious Jump is detected.
(b) (Detec[xr,q]) All (x1,q)-high-energy change-points 7}} are detected

[ P S e log (nA2)+q
d Fr) <mind LTk T T Tl k
z1 (%, 7) { 5 5 L A2

[Frick et al., 2014] require ming |Ag|? ming |71 — Thl 2 log (W)
Discussion :

m We allow arbitrarily low-energy jumps.

m Local condition for high energy.

m Dependency in ¢ is optimal with respect to the probability 1 —ce 't

m Complexity-based penalties are highly suboptimal.
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Localization (Loc) by Penalized Least-squares

Proposition (V. et al. ('20))

Fix any L and q large enough. For any (xr,,q)-high-energy change-point 7,7, we have

P(dH’l(?, T, 2 cmAf) se® vzl .

Remarks :

m Recovers the optimal subexponential rate of order Af for a specific
change-point

m Regional to Local phenomenon :
Detection= High-Energy Localization only depends on Ay !
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Haussdorff and Wasserstein Loss

If |7] = |77,

M=

dw (F,7%) = 3 T =7

k=1

— K
dg(F,7%) = riljlxhk -7

Corollary

Assuming that all change-points have high-energy, we deduce

K A2 1
Z (efc AL A _2) ,
k=1 Ak

E[dg (F,7)14,] s  max (Ke*C"AiA

N

E[dw (F,7* )1 4, ]
logK)
AR

Remark : Haussdorff and Wasserstein rates are minimax optimal.
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A Two-step multiscale CUSUM Algorithm
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First Step : Detection

CUSUM Statistics C[Y, t] higher than \/2log(%) Clea

~» Local test of the null {constant signal over [t1,t3)}
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First Step : Detection

CUSUM Statistics C[Y, t] higher than \/2log(%) Clea
~» Local test of the null {constant signal over [t1,t3)}

Change-point Detection = Aggregation of Multiple Local Tests

2 Caveats :

= Too many tests n®/6 ~ symmetric intervals + smaller grid (nlog(n))

m Tests are not always self consistent
~» Favoring smaller scales= Bottom-up Approach
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CUSUM Statistics C[Y, t] higher than \/2log(%) Clea

~» Local test of the null {constant signal over [t1,t3)}
Change-point Detection = Aggregation of Multiple Local Tests

2 Caveats :
= Too many tests n®/6 ~ symmetric intervals + smaller grid (nlog(n))

m Tests are not always self consistent
~» Favoring smaller scales= Bottom-up Approach

Result: (74), 5
Data: Local test (77,,)
CI=2;,CP=g;
For r ¢ Scales ) ‘
For [e¢Llocationss.t. T}, =1
if ({-r,l+7r)nCZ =g then
CZ<«CZTu(l-rl+r), : =
CP <« CPuU{l}; L
end “ o -
return CP

i

scale j:r=2'




Analysis of the first step

With probability higher than 1 — o, Tagy satisfies

(a) (NoSp) No Spurious Jump is detected.
(b) (Detec[x,cqa]) All (k,ca)-high-energy change-points ;' are detected

I e T o my log(nAR) +ca
dg1(Fag, T ) < min , K
5 g9 'k 2 2 A2
k

Similar to the penalized least-square estimator
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Analysis of the first step

With probability higher than 1 — o, Tagy satisfies

(a) (NoSp) No Spurious Jump is detected.
(b) (Detec[x,cqa]) All (k,ca)-high-energy change-points ;' are detected

I e T o my log(nAR) +ca
dg1(Fag, T ) < min , K
5 g9 'k 2 2 A2
k

Similar to the penalized least-square estimator

but, Tug does not seem to achieve Loc at least in worst-case.
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Second Step : Localization

For each estimated change-point 75, we re-estimate the change-point position :

~ least-square estimator inside a Cl Iz, of size 7 based on data in a larger interval of
size 27y, — 1.
7, e argmin |[Y — IL. Y (Fe:2Te =102
T’EI:Fk
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Second Step : Localization
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For each estimated change-point 75, we re-estimate the change-point position :

~ least-square estimator inside a Cl Iz, of size 7 based on data in a larger interval of
size 27y, — 1.
7, e argmin |[Y — IL. Y (Fe:2Te =102
T’EI:Fk

Proposition

The refitted estimator ¥ satisfies, on an even By, of probability higher than 1 — «,
(NoSp), (Detec), and (Loc).

Remark :
m Similar to penalized least-square estimator.
= Computational complexity O(nlog(n))



Wrap-up
m Regional to Local phenomenon.
m Low-energy change-points are (almost) unharmful.
m Localization errors behave almost independently.
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Wrap-up :
m Regional to Local phenomenon.
m Low-energy change-points are (almost) unharmful.
m Localization errors behave almost independently.

One versus Multiple change-points.
When K =1, log conditions are replaced by loglog conditions.

Possible Extensions/ Open Questions :

m Heavier tail distribution, time dependencies :
~» uniform control of the CUSUM (e.g.[Cho and Kirch, 2019])

m Exact constant for detection ?
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A Recipe for general Change-point Models (e.g. sparse high-dimensional)
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High-Dimensional Setting

Gaussian Multivariate Change-point Model

Y; =80; +¢;, where 8; ¢ RP and ¢; irivd./\/’(O,Ip).

Objective : Detecting times 7', ..., 7} such that GT,: + 97;,1 (with the side
information that the difference GT,: - 97;,1 is possibly sparse)

[Wang and Samworth, 2018, Enikeeva and Harchaoui, 2019, Liu et al., 2019]
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General analysis of the bottom-up algorithm

We are given :
m A grid G of (I,r) (positions, radius) corresponding to (I —r,i+1r).
m A collection of local homogeneity tests 7 = {T} .}
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m A grid G of (I,r) (positions, radius) corresponding to (I —r,i+1r).
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Result: (%k)kgf(
Data: Local test (77,,)
CI=@;,CP=g;
For r ¢ Scales X
For [e¢Llocationss.t. T}, =1 e

if ({-r,l+7r)nCZ =g then f —
CI<CZu(l—rl+r); . =
CP <« CPuU{l}; e
end * ® -
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General analysis of the bottom-up algorithm

We are given :
m A grid G of (I,r) (positions, radius) corresponding to (I —r,i+1r).
m A collection of local homogeneity tests 7 = {T} .}

Result: (%k)kgf(
Data: Local test (77,,)
CI=@;,CP=g;
For r ¢ Scales kK \
For [e¢Llocationss.t. T}, =1 e

if ({-r,l+7r)nCZ =g then f —
CI<CZu(l—rl+r); . =
CP <« CPuU{l}; PRI s
end * ® i
return CP

Proposition

If FWER(T) < «, then Ta4 satisfies (NoSp) with probability higher than 1 — cv.
All change points T, detected by a local test (up to some margin), are detected by
Tag-

Generic Schemes :
= Introducing a sensible notion of energy
m Optimal testing with respect to that energy.
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Energy and Optimal Tests for sparse high-dimensional data

Energy of a Change-Point

HGT; - 97":—1 H2

2
Ek:Tk B}
g

Local Homogeneity Tests on [[—r,[+7)
1st Simplification : two-sample tests over data in [ —r,1) versus [{,]+7).

2nd Simplification : (possibly-sparse) signal detection test with multivariate CUSUM
statistics

V2r

a

_ _ _ N TS
Cir = [Yem — Yorn ] ~ N[(9[z,z+r) -0_r1y) - Ip]

’
g
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Energy and Optimal Tests for sparse high-dimensional data

Energy of a Change-Point

HGT* 797’*—1 H2
El% =Tk — B B} i
g

Local Homogeneity Tests on [[—r,[+7)
1st Simplification : two-sample tests over data in [ —r,1) versus [{,]+7).

2nd Simplification : (possibly-sparse) signal detection test with multivariate CUSUM
statistics

V2r

a

Gy = [?[z,m«) *?[H«,z)]

’
g

_ T,
~ N|:(9UJ+7‘) - g[lfr,l)) - IP]

Old toy detection Problem : [Donoho and Jin, 2004, Collier et al., 2015]
~ Higher-Criticism 4+ x? type statistics (minimax optimal wrt sparsity s and p)
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Energy and Optimal Tests for sparse high-dimensional data

Energy of a Change-Point

HGT* 797’*—1 H2
El% =Tk — B B} i
g

Local Homogeneity Tests on [[—r,[+7)
1st Simplification : two-sample tests over data in [ —r,1) versus [{,]+7).

2nd Simplification : (possibly-sparse) signal detection test with multivariate CUSUM
statistics

V2r

a

Gy = [?[z,m«) *?[H«,z)]

’
g

_ T,
~ N|:(9UJ+7‘) - g[lfr,l)) - IP]

Old toy detection Problem : [Donoho and Jin, 2004, Collier et al., 2015]
~ Higher-Criticism 4+ x? type statistics (minimax optimal wrt sparsity s and p)

No Sufficient : Q[nlog(n)] tests are considered
~» one also needs optimal dependencies wrt Types | and Il error probabilities :
e.g. variants of HC [Liu et al., 2019] or Pilliat et al.('20).
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Optimal Detection

d¢€(0,1); s sparsity of change-point 7.

High-energy change-point

7 is a high-energy change-point if B2 > et 5, .5 Where

VP n n
B =351 1+ Y4 |1 — ]+ 1 — .
Ys,p,s5.6 = Sk og( o og s og o
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Optimal Detection

d¢€(0,1); s sparsity of change-point 7.

High-energy change-point

7 is a high-energy change-point if B2 > et 5, .5 Where

VP n n
B =351 1+ Y4 |1 — ]+ 1 — .
Ys,p,s5.6 = Sk og( o og s og o

Theorem (Pilliat et al.("20))

With probability higher than 1 -6, T4 achieves (NoSp) and (Detects) all
high-energy change-points 7" with EZ > civ)s p s, -
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Optimal Detection

d¢€(0,1); s sparsity of change-point 7.

High-energy change-point

7 is a high-energy change-point if B2 > et 5, .5 Where

=splo 1+— lo; +lo
ws,p,sk,é k g( g Tk ) g 7']45

Theorem (Pilliat et al.("20))

With probability higher than 1 -4, Tag achieves (NoSp) and (Detects) all
high-energy change-points 7;° with E 2 Cct+Vs,p,sp,6
Conversely, no procedure achieving (NoSp) is able to (Detect) high-energy

change-points (up to a constant) 7" with EZ 2 ¢ s p 5. 5

Remark : For K <1, see [Liu et al., 2019].
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Main Message

Sloppy Conjecture

For general change-points models, optimal detection (almost) amounts to optimal
multiple homogeneity testing
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Sloppy Conjecture

For general change-points models, optimal detection (almost) amounts to optimal
multiple homogeneity testing

Open Questions

Localization rates require model-specific techniques.

For (Sparse) High-dimensional change-points, there seem to exist several phase
transitions from regional to local (work in progress)
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