SuperMix: Sparse Regularization for Mixtures

Y. De Castro ¹, S. Gadat ², C. Marteau ³ and C. Maugis-Rabusseau ⁴.

Metting in Mathematical Statistics CIRM 2020

^{1.} Ecole Centrale de Lyon - Institut Camille Jordan

^{2.} Université Toulouse I - Toulouse School of Economics

^{3.} Université Lyon I - Institut Camille Jordan

- Introduction
- 2 Estimation procedure
- 3 A first bound
- 4 Example : The Gaussian case
- 6 Discussion

- 1 Introduction
- 2 Estimation procedure
- A first bound
- 4 Example : The Gaussian case
- 5 Discussion

The mixture model

We have at our disposal a sample $S = (X_1, ..., X_n)$ of i.i.d. random variables $(X_i \in \mathbb{R}^d)$, having a common density f^* .

In an unsupervised classification context, f^{\star} can be considered of the form

$$f^{\star} = \sum_{k=1}^{K} a_k \varphi(.-t_k),$$

where φ is a **known** density, $a_k \in [0,1]$, $t_k \in \mathbb{R}^d$ and K are unknown parameters.

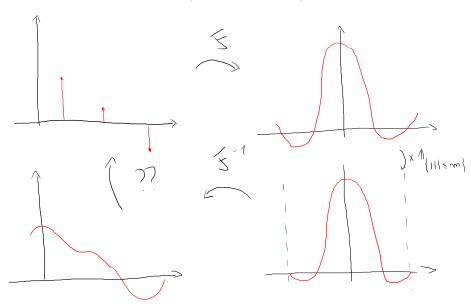
Classical statistical issues

- estimation of the sequences $(a_k)_{k=1...K}$ and $(t_k)_{k=1...K}$,
- estimation of the component number K (model selection task).

References

- [1] F. Bunea, A. B. Tsybakov, M. H. Wegkamp, and A. Barbu. Spades and mixture models. The Annals of Statistics, 38(4):2525–2558, 2010.
- [2] C. Butucea and P. Vandekerkhove. Semiparametric mixtures of symmetric distributions. Scand. J. Stat., 41(1):227–239, 2014.
- [3] D. Donoho and J. Jin. Higher Criticism for detecting sparse heterogeneous mixtures, *Annals of Statistics*, **32**, (2004) 962-994.
- [4] P. Heinrich and J. Kahn. Strong identifiability and optimal minimax rates for finite mixture estimation. The Annals of Statistics, 46:2844–2870, 2018.
- [5] C. Maugis-Rabusseau and B. Michel. A non asymptotic penalized criterion for Gaussian mixture model selection. ESAIM Probab. Stat., 15:41–68, 2011.

The super resolution phenomenon



The super resolution phenomenon

Signal of interest : $x = \sum_{j=1}^{K} a_j^0 \delta_{t_j}$.

Observation : $y = \lambda * x$ with $\mathcal{F}[\lambda] = \mathbf{1}_{|\cdot| \leq m}$.

Considered convex program:

$$\min_{\tilde{x}} \|\tilde{x}\|_{TV}$$
 s.t. $y = \lambda * \tilde{x}$.

 \longrightarrow perfect recovery provided $\Delta = \min_{i \neq j} |t_i - t_j| \geq 1/m$.

E. J. Candès and C. Fernandez-Granda. Towards a Mathematical Theory of Super-resolution. Communications on Pure and Applied Mathematics, 67(6):906–956, 2014.

Mixture as an inverse problem

The estimation of the mixture parameters turns to be a discret inverse (deconvolution) problem. Indeed,

$$X_i = U_i + \epsilon_i, \quad \forall i \in \{1, \ldots, n\},$$

where $\epsilon_i \sim \varphi$ (error term) and U_i are associated to the discrete measure $\mu_0 = \sum_{k=1}^K a_k \delta_{t_k}$. Then,

$$f^* = \varphi * \mu_0$$
 and $\mathcal{F}[f^*] = \mathcal{F}[\varphi] \times \mathcal{F}[\mu_0]$.

In this context, the 'classical' deconvolution tools are not available.

- 1 Introduction
- 2 Estimation procedure
- 3 A first bound
- 4 Example : The Gaussian case
- 5 Discussion

Notation

• The empirical measure

$$\hat{f}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}.$$

• The total variation norm. For any $\mu \in \mathcal{M}(\mathbb{R}^d, \mathbb{R})$,

$$\|\mu\|_1 = \sup \left\{ \int_{\mathbb{R}^d} f \ d\mu : f \text{ is } \mu - \text{measurable and } |f| \le 1 \right\},$$

$$= \int_{\mathbb{R}^d} d|\mu|.$$

• Convolution operator $Lf = \lambda * f$, where in this talk, the filter λ is such that $\mathcal{F}[\lambda](t) = \mathbf{1}_{\{|t| < m\}}$.

A Beurling-Lasso approach

We define $\hat{\mu}_n$ as

$$\hat{\mu}_n \in \arg \min_{\mu \in \mathcal{M}(\mathbb{R}^d, \mathbb{R})} \left\{ \|L\hat{f}_n - L\varphi * \mu\|_{\mathbb{L}}^2 + \kappa \|\mu\|_1 \right\},\,$$

for some regularization parameter κ .

Items not discussed in this talk

- Is $\hat{\mu}_n$ a discrete measure? (yes if d=1).
- Algorithms to compute $\hat{\mu}_n$.

L. Chizat. Sparse optimization on measures with over-parameterized gradient descent. arXiv:1907.10300, 2019.

Q. Denoyelle, V. Duval, G. Peyré, and E. Soubies. The sliding frank-wolfe algorithm and its application to super-resolution microscopy. Inverse Problems, 2019.

- 1 Introduction
- 2 Estimation procedure
- 3 A first bound
- 4 Example : The Gaussian case
- 5 Discussion

Theoretical bound

Using simple inequalities, we can prove that if $\kappa = \rho_n/\|c_{0,m}\|_{\mathbb{L}}^2$ then

$$\mathbb{E}[\mathcal{D}_{\mathcal{P}_m}(\hat{\mu}_n, \mu_0)] \lesssim \frac{\rho_n \|\mathcal{P}_m\|_2}{\sqrt{\inf_{|t| \leq m} |\mathcal{F}[\varphi](t)|^2}},$$

where

$$\mathcal{D}_{\mathcal{P}_m}(\hat{\mu}_n, \mu_0) := \|\hat{\mu}_n\|_1 - \|\mu_0\|_1 - \int_{\mathbb{R}^d} \mathcal{P}_m d(\hat{\mu}_n - \mu_0),$$

is the Bregman divergence between $\hat{\mu}_n$ and μ_0 , $(\rho_n)_n$ is such that

$$\mathbb{E}[\|L\hat{f}_n - L\varphi * \mu^0\|^2] \le \rho_n^2 \quad \forall n \in \mathbb{N},$$

and \mathcal{P}_m is a dual certificate s.t. $\mathcal{P}_m = \varphi * c_{0,m}$ with $\mathcal{F}[c_{0,m}](t) = 0$ for any |t| > m.

Theoretical bound

Assume that \mathcal{P}_m is such that

$$\mathcal{P}_m(t_k) = 1 \quad \forall k \in \{1, \dots, K\}.$$

Then,

$$\int_{\mathbb{R}^d} \mathcal{P}_m d\mu_0 = \sum_{k=1}^K a_k = \|\mu_0\|_1,$$

and

$$\mathcal{D}_{\mathcal{P}_{m}}(\hat{\mu}_{n}, \mu_{0}) = \|\hat{\mu}_{n}\|_{1} - \|\mu_{0}\|_{1} - \int_{\mathbb{R}^{d}} \mathcal{P}_{m} d(\hat{\mu}_{n} - \mu_{0}),$$

$$= \|\hat{\mu}_{n}\|_{1} - \int_{\mathbb{R}^{d}} \mathcal{P}_{m} d\hat{\mu}_{n},$$

$$= \int_{\mathbb{R}^{d}} (1 - \mathcal{P}_{m}) d\hat{\mu}_{n}^{+} + \int_{\mathbb{R}^{d}} (1 + \mathcal{P}_{m}) d\hat{\mu}_{n}^{-}.$$

Theoretical bound

Hence

$$\mathbb{E}\left[\int_{\mathbb{R}^d} (1-\mathcal{P}_m) d\hat{\mu}_n^+ + \int_{\mathbb{R}^d} (1+\mathcal{P}_m) d\hat{\mu}_n^-\right] \lesssim \frac{\rho_n \|\mathcal{P}_m\|_2}{\sqrt{\mathsf{inf}_{|t| \leq m} \, |\mathcal{F}[\varphi](t)|^2}}.$$

In particular, if

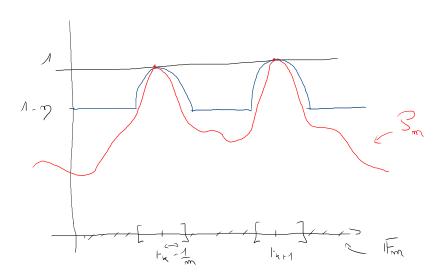
$$\mathcal{P}_m(x) \geq 0 \quad \forall x \in \mathbb{R}^d,$$

then

$$\mathbb{E}[\hat{\mu}_n^-(\mathbb{R}^d)] \leq \mathbb{E}\left[\int_{\mathbb{R}^d} (1+\mathcal{P}_m) d\hat{\mu}_n^-\right] \lesssim \frac{\rho_n \|\mathcal{P}_m\|_2}{\sqrt{\inf_{|t| \leq m} |\mathcal{F}[\varphi](t)|^2}}.$$

 \Rightarrow Control of the mass handled by the negative part of $\hat{\mu}_n$.

The dual certificate



Far region

For any $m \in \mathbb{R}^+$, define

$$\mathbb{F}_m = \bigcap_{k=1}^K \{t \in \mathbb{R}^d, \|t - t_k\| \gtrsim \frac{1}{m}\}.$$

Assume that, for some constant $\eta > 0$,

$$0 \leq \mathcal{P}_m(t) \leq 1 - \eta \quad \forall t \in \mathbb{F}_m.$$

Then

$$\eta \,\, \mathbb{E}[\hat{\mu}_n^+(\mathbb{F}_m)] \leq \mathbb{E}\left[\int (1-\mathcal{P}_m) d\hat{\mu}_n^+
ight] \lesssim rac{
ho_n \|\mathcal{P}_m\|_2}{\sqrt{\inf_{|t| \leq m} |\mathcal{F}[arphi](t)|^2}}.$$

Near region (spike detection)

Set $\mathbb{N}_m = \mathbb{F}_m^c$ and assume that

$$0 \leq \mathcal{P}_m(t) \leq 1 - Cm^2 ||t - t_k||^2 \quad \forall t \ s.t. \ ||t - t_k|| < \frac{1}{m}.$$

Then it is possible to prove that, $\forall A \subset \mathbb{R}^d$,

$$\mathbb{E}[\hat{\mu}_n^+(A)] \gtrsim \frac{\rho_n \|\mathcal{P}_m\|_2}{\sqrt{\inf_{|t| \leq m} |\mathcal{F}[\varphi](t)|^2}} \quad \Rightarrow \quad \min_{k \in [K]} \min_{t \in A} \|t - t_k\|_2^2 \lesssim \frac{1}{m^2}.$$

In some sense, m can be seen as a precision index.

- 1 Introduction
- 2 Estimation procedure
- 3 A first bound
- 4 Example : The Gaussian case
- 5 Discussion

Theoretical bounds

There exists \mathcal{P}_m satisfying all the constraints mentioned above provided

$$m \ge \sqrt{K} d^{3/2} \Delta^{-1}$$
.

Then

i)
$$\mathbb{E}[\hat{\mu}_n^-(\mathbb{R}^d)] \leq \frac{\rho_n \|\mathcal{P}_m\|_2}{\sqrt{\inf_{|t| \leq m} |\mathcal{F}[\varphi](t)|^2}}.$$

$$ii) \quad \mathbb{E}[\hat{\mu}_n(\mathbb{F}_m)] \lesssim \frac{\rho_n \|\mathcal{P}_m\|_2}{\sqrt{\inf_{|t| \leq m} |\mathcal{F}[\varphi](t)|^2}}.$$

$$\textit{iii}) \quad \mathbb{E}[\hat{\mu}_n^+(A)] \gtrsim \frac{\rho_n \|\mathcal{P}_m\|_2}{\sqrt{\inf_{|t| \leq m} |\mathcal{F}[\varphi](t)|^2}} \ \Rightarrow \ \min_{k \in [K]} \min_{t \in A} \|t - t_k\|_2^2 \lesssim \frac{1}{m^2}$$

Behavior of these quantities for some specific cases?

The Gaussian case

We consider the specific example of Gaussian mixtures (d = 1):

$$arphi(t) = rac{1}{\sqrt{2\pi}} e^{-rac{t^2}{2}} \quad ext{and} \quad \mathcal{F}[arphi](t) = e^{-rac{t^2}{2}} \quad orall t \in \mathbb{R}.$$

Then

•
$$\rho_n = \mathbb{E} \|L\hat{f}_n - L\varphi * \mu_0\|_{\mathbb{L}}^2 \lesssim \frac{m}{n}$$
.

•
$$\inf_{|t| \le m} \mathcal{F}[\varphi](t) = e^{-\frac{m^2}{2}}$$
.

•
$$\|\mathcal{P}_m\|_2^2 \leq \frac{1}{m}$$
.

The Gaussian case

Hence,

$$\frac{\rho_n \|\mathcal{P}_m\|_2}{\sqrt{\inf_{|t| \leq m} |\mathcal{F}[\varphi](t)|^2}} \lesssim \frac{1}{\sqrt{m}} \times e^{\frac{m^2}{2}} \times \sqrt{\frac{m}{n}} \sim \frac{e^{m^2/2}}{\sqrt{n}}.$$

Two possible scenarii

• *m* is constant (parametric rate but poor precision)

$$\max(\hat{\mu}_n^+(\mathbb{F}_m)) \lesssim \frac{1}{\sqrt{n}} \qquad \hat{\mu}_n(A) \gtrsim \frac{1}{\sqrt{n}} \Rightarrow \min_{k \in [K]} \min_{t \in A} \|t - t_k\|_2 \lesssim \frac{1}{m}.$$

• $m \sim \sqrt{r \log(n)}$ with r < 1. Then $\max(\hat{\mu}_n^+(\mathbb{F}_m)) \lesssim n^{\frac{r-1}{2}}$ and

$$\hat{\mu}_n(A) \gtrsim n^{\frac{r-1}{2}} \Rightarrow \min_{k \in [K]} \min_{t \in A} \|t - t_k\|_2^2 \lesssim \frac{1}{\log(n)}.$$

- 1 Introduction
- 2 Estimation procedure
- A first bound
- 4 Example : The Gaussian case
- 6 Discussion

Conclusion

Possible outcomes

- Optimality (and improvement) of these results.
- Algorithms
- Considering heterogeneous mixtures.

Y. de Castro, S. Gadat, C. Marteau and C. Maugis-Rabusseau. SuperMix : Sparse regularization for mixtures. To appear in Annals of Statistics.