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@ Introduction



The mixture model

We have at our disposal a sample S = (Xi, ..., X,) of i.i.d. random
variables (X; € RY), having a common density f*.

In an unsupervised classification context, f* can be considered of
the form

K
Fr=>"arp(. — ),
k=1

where ¢ is a known density, ax € [0,1], tx € R and K are
unknown parameters.

Classical statistical issues
® estimation of the sequences (ax)k=1..k and (tx)k=1..k.
® estimation of the component number K (model selection task).



References

[1] F. Bunea, A. B. Tsybakov, M. H. Wegkamp, and A. Barbu. Spades and
mixture models. The Annals of Statistics, 38(4) :2525-2558, 2010.

[2] C. Butucea and P. Vandekerkhove. Semiparametric mixtures of symmetric
distributions. Scand. J. Stat., 41(1) :227-239, 2014.

[3] D. Donoho and J. Jin. Higher Criticism for detecting sparse heterogeneous
mixtures, Annals of Statistics, 32, (2004) 962-994.

[4] P. Heinrich and J. Kahn. Strong identifiability and optimal minimax rates
for finite mixture estimation. The Annals of Statistics, 46 :2844-2870, 2018.

[6] C. Maugis-Rabusseau and B. Michel. A non asymptotic penalized criterion
for Gaussian mixture model selection. ESAIM Probab. Stat., 15 :41-68, 2011.



The super resolution phenomenon
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The super resolution phenomenon

Signal of interest : x = ZJKZI a?étj.

Observation : y = A * x with F[A\] = 1| <.
Considered convex program :
my(in IX[7v st y=AxX.
— perfect recovery provided A = min;4;[t; — tj| > 1/m.

E. J. Candés and C. Fernandez-Granda. Towards a Mathematical Theory of
Super-resolution. Communications on Pure and Applied Mathematics,
67(6) :906-956, 2014.



Mixture as an inverse problem

The estimation of the mixture parameters turns to be a discret
inverse (deconvolution) problem. Indeed,

Xi=U; +¢, ViE{l,...,n},

where ¢; ~ ¢ (error term) and U; are associated to the discrete
measure Lo = Zszl ak6t,. Then,

f*=pxpo and F[f*] = Flp| x Fluo]-

In this context, the 'classical’ deconvolution tools are not available.
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Notation
® The empirical measure
1 n
fn = ; Zl (SXI
=

® The total variation norm. For any p € M(R9 R),

lullh = sup{/ f du: fis p— measurable and\f\gl},
Rd

= / dlul.
]Rd

e Convolution operator Lf = X\ * f, where in this talk, the filter
A is such that ]:[)\](t) = 1{|t|§m}-



A Beurling-Lasso approach

We define i, as

fnearg min  {|ILf— Lo« plf +rllull}
HEM(RYR)

for some regularization parameter k.

Items not discussed in this talk
® Is jin a discrete measure? (yes if d = 1).

® Algorithms to compute [ip,.

L. Chizat. Sparse optimization on measures with over-parameterized gradient
descent. arXiv :1907.10300, 2019.

Q. Denoyelle, V. Duval, G. Peyré, and E. Soubies. The sliding frank-wolfe
algorithm and its application to super-resolution microscopy. Inverse Problems,
2019.
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Theoretical bound

Using simple inequalities, we can prove that if K = p,/| co,m||Z then

E[me(ﬂnauO) 5 . 'OnHPmHZ ,
\/lnf|t|§m | Flel(t)]2

where
D 10) = il = ol = | Prl(n = ).
is the Bregman divergence between fi, and po, (pn)n is such that
E[lLfy — Lo« 1®|?]1 < o V€N,

and Py, is a dual certificate s.t. Py, = ¢ * g m with
Flco,m](t) =0 for any |t| > m.



Theoretical bound

Assume that P,, is such that

Pm(tc) =1 Vke{l,...,K}.

Then,
K
[ Padio =Y = ol
R k=1
and
Dpy(finio) = |lfinlls — Ilprollz — /R Prdin — ),

= il - / Prndfin,
Rd

= / (1_Pm)dﬂﬁ+/ (L+Pm)di, .
R4 R4



Theoretical bound

Hence

E[/ (1—Pm)dﬂf§+/ (1 +Pm)dﬁ;] < Prl[Pumll2
R4 Rd

Vinfle<m | FlRl (D12

In particular, if
Pm(x) >0 VxeRY,

then

Pnl|Pmll2 .
Vinflei<m | FIel(D)2

Bl R <[ [ (14 Py | 5

= Control of the mass handled by the negative part of [i,.



The dual certificate




Far region
For any m € R, define

K
Frn=[{teR, [lt—tl 2
k=1

1.

1

m

Assume that, for some constant 1 > 0,
0<Pu(t)<1—n VteF,.

Then

. ) - PnllPmll2
G ) < | 0P| < N



Near region (spike detection)

Set N, = F¢, and assume that
2 2 L
0 < Pm(t) <1—Cm||t — tg]|© Vts.t. ||t—tk||<E.

Then it is possible to prove that, YA C RY,

P 1
E[a}(A)] = Pol[Prll2 = min min ||t—tk||§ < —=.

e AP kel A m

In some sense, m can be seen as a precision index.
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Theoretical bounds

There exists P, satisfying all the constraints mentioned above
provided

m > VKd32A

Then
. A n Pm
) Bl )] < ——LalPmlz__
Vinfli<m FTOI(D)2
D) Elpn(En)) § LTl
Vinflei<m | Flel(D)2
n m . . 1
i) E[af(A)] > PrllPrmll2 = min m|n||t—1.“k||%§—2
Vinflasm [ FlA(e)2 kelkTeeA m

Behavior of these quantities for some specific cases ?



The Gaussian case

We consider the specific example of Gaussian mixtures (d =1) :

1 e 2

~2 and Flyg|(t)=e 2z VteR.

Then
e po=ElLf— Loxpol? S

m
n

m2

° |tinf Flel(t)=e" 2.

<m

o [Pmll3 <



The Gaussian case

Hence,

m m?/2
Pnl|Pmll2 < 1 2 672 y m € ‘
Vinfla<m IFIAl(0)2 7 VM VooV

Two possible scenarii

® mis constant (parametric rate but poor precision)

1 1

ma(if ) S 7= AnlA) 2 7= = min minlle=tell S

3

r—1

® m~ y/rlog(n) with r < 1. Then max(f}(F,)) Snz and

. 1
(i,(A) = n = = min min ||t — t]|3 < .
Mn( ) ~ kE[IK] tGIA || k||2 ~ |Og(n)
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Conclusion

Possible outcomes
¢ Optimality (and improvement) of these results.
e Algorithms

e Considering heterogeneous mixtures.

Y. de Castro, S. Gadat, C. Marteau and C. Maugis-Rabusseau. SuperMix :
Sparse regularization for mixtures. To appear in Annals of Statistics.



