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Introduction

Topic of this talk: Sequential learning and shape constraints.

Based on the following joint works:

I Locatelli, Andrea, Maurilio Gutzeit, and Alexandra
Carpentier. ”An optimal algorithm for the thresholding
bandit problem.” ICML 2016.

I Cheshire, James, Pierre Menard, and Alexandra
Carpentier. ”The Influence of Shape Constraints on the
Thresholding Bandit Problem.” COLT, 2020.

I Cheshire, James, Pierre Menard, and Alexandra
Carpentier. ”Problem Dependent View on Structured
Thresholding Bandit Problems.” Working paper, 2020+.
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Sequential learning

Resource optimisation in
face of uncertainty : See

[Thompson (1933)], [Robbins (1952)], [Gittins

(1979)], [Whittle (1988)], [Cappé et al. (2013)],

[Munos (2014)], etc.

I Distributions (νk)k≤K with
unknown means µk

I Limited sampling resources T

I At each time t, choose kt and
collect Xt ∼ νkt

I Objective to fulfil
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Sequential learning

Resource optimisation in
face of uncertainty : See

[Thompson (1933)], [Robbins (1952)], [Gittins

(1979)], [Whittle (1988)], [Cappé et al. (2013)],

[Munos (2014)], etc.

I Distributions (νk)k≤K with
unknown means µk

I Limited sampling resources T

I At each time t, choose kt and
collect Xt ∼ νkt

I Objective to fulfil

This is the thresholding bandit
problem, i.e. given a threshold
τ , and writing µk for the mean
of distribution k, we aim at
predicting

Q = (sign(µk − τ))k .
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Problem setting: K arms, budget T , threshold τ = 0

I Each arm k ∈ [K] corresponds to a distribution N (µk, 1)
with mean µk ∈ [−1, 1] - and we set τ = 0.

I At each round t < T the learner pulls an arm kt ∈ [K] and
observes a sample Xt ∼ N (µkt , 1).

I Upon exhaustion of the budget the learner is required to
output a prediction Q̂ ∈ {−1, 1}K of Q = sign(µk).
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Regret

Two measures of regret:
I Probability of error:

eT := P(Q̂ 6= Q).

I Simple regret:
rT := E max

k:Q̂[k] 6=Q[k]
|µk|.
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Shape constraints
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Unconstrained setting
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Unconstrained setting

I Fixed confidence setting: [Chen et al, 2016], etc

I Fixed budget setting: [Chen et al, 2014], [Locatelli et
al., 2016], [Mukherjee, et al. 2017], [Jie et al, 2017], etc.

In all these papers: problem dependent results.
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Unconstrained setting: problem independent results

Theorem (Cheshire et. al, 2020)

It holds that

inf
algo

sup
problem

rT �
√
K log(K)

T
.

Upper bound trivial (uniform sampling), lower bound somewhat
more tricky than in batch setting.

−1.0

−0.5

0.0

0.5

1.0

0.0 2.5 5.0 7.5 10.0

Arm Index

µ k



TBP: setting Unconstrained setting Monotone setting Concave setting Unimodal setting
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Unconstrained setting: problem dependent results

In what follows: write the gaps

∆i = |µi|,

and M∆ the set of problems with gaps ∆.

Theorem (Locatelli et al., 2016)

For any vector of gaps ∆ it holds that

K log(n) exp(−�T/H) & inf
algo

sup
problem in M∆

eT & exp(−�T/H),

where H =
∑

i ∆−2
i .
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Unconstrained setting: problem dependent results
In what follows: write the gaps

∆i = |µi|,

and M∆ the set of problems with gaps ∆.

Theorem (Locatelli et al., 2016)

For any vector of gaps ∆ it holds that

K log(n) exp(−�T/H) & inf
algo

sup
problem in M∆

eT & exp(−�T/H),

where H =
∑

i ∆−2
i .

APT algorithm: sample at time t

kt ∈ arg min
k

Tk,t|µ̂k,t|2.
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Conclusion

Theorem (Unconstrained setting, (Locatelli et al, 2016),
(Cheshire et al, 2020))

It holds that

inf
algo

sup
problem

rT ≈
√
K logK

T
,

and for T & logK ∨ log log n and any ∆̄

inf
algo

sup
∆̄−problem

log eT � −T/H.
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Summary until now...

Results Unstructured Monotone Concave Unimodal

Pr. indep. rt

√
K logK

T

Pr. dep. log et −T/H
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Monotone setting
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Monotone setting: related literature

I Noisy binary search with corrections: [Feige et.al,
1994], [Nowak et.al, 2009], [Karp et,al, 2007], [Ben et.al,
2008], [Emamjomeh et.al, 2016], etc

I Problem dependent and fixed confidence
(non-explicit): [Garivier et.al, 2017]
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Monotone setting - naive binary search
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Monotone setting - naive binary search
I Unconstrained setting, uniform sampling on K arms

rT .

√
K log(K)

T
,

and
eT . exp(−�T/H).

I Monotone setting, naive binary search (sampling log(K)
arms)

rT ≤
√

log(K) log (log(K))

T
,

and for T ≥ logK

eT . logK exp(−�T min
k

∆2
k/ logK).
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Monotone setting - lower bound

Theorem (Lower bound, monotone case (Cheshire et al,
2020, 2020+))

For any algorithm, there exists a monotone problem such that:

rT &

√
log(K)

T
,

and a monotone problem such that ∆i = ∆̄i,∀i and such that

eT & exp(−�T min
k

∆̄2
k).

Reminder: naive binary search reaches

rT ≤
√

log(K) log (log(K))

T
, eT . logK exp(−�T min

k
∆2

k/ logK),

(for second one, if T ≥ logK).
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Monotone setting - beyond naive binary search

We can do better! Idea:

I Do a ‘slightly longer’ binary search on a tree - maintain an
‘active segment’

I At each step of the binary search sample arms {l,m, r}
I If an inconsistency is detected, i.e. µ̂l > 0 backtrack

I Good decisions will outweigh bad decisions on
average
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Binary tree
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Binary search with corrections

Sample each arm c T
logK for a

small c > 0

For a given time step define a
good decision as the event,

∀k ∈ {l,m, r}, |µ̂k−µk| ≤
√

log(K)

T

1 : µ̂1 < 0, µ̂3 < 0, µ̂5 > 0
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4 : µ̂1 < 0, µ̂2 < 0, µ̂3 > 0
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Binary search with corrections

Sample each arm c T
logK for a

small c > 0

For a given time step define a
good decision as the event,

∀k ∈ {l,m, r}, |µ̂k−µk| ≤
√

log(K)

T

On average, e.g. four time more good decisions than
bad decisions! → auto-correction.
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Monotone case - upper bounds

Theorem (Upper bounds (Cheshire et. al, 2020,2020+))

The strategy with auto-correction and appropriated choice of
cut-off satisfies on any problem

rT .

√
logK

T
,

and for T & logK

eT . exp(−�T min
k

∆2
k).

Remark: the cut-off has to be taken carefully.
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Conclusion

Theorem (Monotone setting (Cheshire et. al, 2020,2020+))

It holds that

inf
algo

sup
problem

rT �
√

logK

T
,

and for T ≥ logK and any ∆̄

inf
algo

sup
∆̄−problem

log eT � −T min
k

∆̄2
k.
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Summary until now...

Results Unstructured Monotone Concave Unimodal

Pr. indep. rt

√
K logK

T

√
logK
T

Pr. dep. log et −T/H −T mink ∆2
k
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Concave setting
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Concave setting: related literature

I zeroth order noisy convex optimisation: [Nemirovski
and Yudin, 1983], [Wang et al., 2017], [Agarwal et al.,
2011], [Liang et al., 2014], etc

I Estimation of concave functions: [Simchowitz et al,
2018], etc
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Concave setting - adaptation of the naive binary search
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Concave setting - naive binary search
I Monotone setting, naive binary search (sampling log(K)

arms)

rT .

√
log(K) log (log(K))

T
,

and for T & logK

eT . logK exp(−�T min
k

∆2
k/ logK).

I Concave setting, gradient adaptation of naive binary search
(also sampling log(K) arms)

rT .

√
log(K) log (log(K))

T
,

and for T & logK

eT . logK exp(−�T min
k

∆2
k/ logK).
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Concave setting - naive binary search
I Monotone setting, naive binary search (sampling log(K)

arms)

rT .

√
log(K) log (log(K))

T
,

and for T & logK

eT . logK exp(−�T min
k

∆2
k/ logK).

I Concave setting, gradient adaptation of naive binary search
(also sampling log(K) arms)

rT .

√
log(K) log (log(K))

T
,

and for T & logK

eT . logK exp(−�T min
k

∆2
k/ logK).
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Concave setting - corrected binary search
I Monotone setting, corrected binary search (sampling

log(K) arms)

rT .

√
log(K)

T
,

and for T & logK

eT . logK exp(−�T min
k

∆2
k).

I Concave setting, gradient adaptation of corrected binary
search (also sampling log(K) arms)

rT .

√
log(K)

T
,

and for T & logK

eT . logK exp(−�T min
k

∆2
k).
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Concave setting - corrected binary search
I Monotone setting, corrected binary search (sampling

log(K) arms)

rT .

√
log(K)

T
,

and for T & logK

eT . logK exp(−�T min
k

∆2
k).

I Concave setting, gradient adaptation of corrected binary
search (also sampling log(K) arms)

rT .

√
log(K)

T
,

and for T & logK

eT . logK exp(−�T min
k

∆2
k).
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Concave setting - lower bound

Theorem (Lower bound, concave setting (Cheshire et al,
2020, 2020+))

For any algorithm, there exists a concave problem such that:

rT &

√
log log(K)

T
,

and a concave problem such that ∆i ∈ [c∆̄i, C∆̄i], ∀i and such
that eT & exp(−�T min

k
∆̄2

k).
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Concave setting - lower bound

Theorem (Lower bound, concave setting (Cheshire et al,
2020, 2020+))

For any algorithm, there exists a concave problem such that:

rT &

√
log log(K)

T
,

and a concave problem such that ∆i ∈ [c∆̄i, C∆̄i], ∀i and such
that eT & exp(−�T min

k
∆̄2

k).

Reminder: corrected gradient adaptation of binary search
reaches

rT .

√
log(K)

T
, eT . logK exp(−�T min

k
∆2

k).

(for second one, if T & logK).
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Concave setting - beyond corrected gradient adaptation
of binary search

We can do better! Idea:

I Use this ”log-scale” idea from the lower bound...

I .... to do a corrected binary search on a log-scale....

I .... but so that log-scale approximation is sufficient, we can
only reduce distance to threshold by a factor.

Algorithm: perform iterative corrected binary search on
log-scale and refine gradually the level set.
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Concave setting - beyond corrected gradient adaptation
of binary search

We can do better! Idea:

I Use this ”log-scale” idea from the lower bound...

I .... to do a corrected binary search on a log-scale....

I .... but so that log-scale approximation is sufficient, we can
only reduce distance to threshold by a factor.

Algorithm: perform iterative corrected binary search on
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Iterative binary search on log-scale

Aim: at iterative step i ≤M ,
obtain a εi = (7/8)i level set
above 0

Cover level set at log-scale and
do binary search giving budget
ε−2
i (M − i) → then refine

iteratively −1.0

−0.5

0.0

0.5

1.0

0 25 50 75 100

Arm Index
µ k

Concave
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Aim: at iterative step i ≤M ,
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‘Rough’ level sets (large εi): minimal amount of budget
used, high probability of refining.
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Iterative binary search on log-scale

Aim: at iterative step i ≤M ,
obtain a εi = (7/8)i level set
above 0

Cover level set at log-scale and
do binary search giving budget
ε−2
i (M − i) → then refine

iteratively −1.0

−0.5

0.0

0.5

1.0

0 25 50 75 100

Arm Index

µ k

Concave

‘Rough’ level sets (large εi): minimal amount of budget
used, high probability of refining.

Last level set: M such that εM �
√

log logK
T and at most K

arms → logK on log-scale. So corrected gradient binary
search on log logK arms with remaining budget of T/2!
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Concave setting - problem independent upper bound

Theorem (Problem independent upper bound (Cheshire et
al, 2020))

The strategy with iterative refinement, doing binary search at
log-scale with auto-correction and appropriated choice of cut-off
satisfies on any problem

rT .

√
log logK

T
.
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Minimax rates in the concave setting

Theorem (Concave setting (Cheshire et al, 2020))

It holds that

inf
algo

sup
problem

rT ≈
√

log logK

T
,

and for T & logK and any ∆̄

inf
algo

sup
∆̄−problem

log eT � −T min
k

∆̄2
k.

Remark: the cut-off has to be taken carefully.
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Summary until now...

Results Unstructured Monotone Concave Unimodal

Pr. indep. rt

√
K logK

T

√
logK
T

√
log logK

T

Pr. dep. log et −T/H −T mink ∆2
k −T mink ∆2

k
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Unimodal?

Results Unstructured Monotone Concave Unimodal

Pr. indep. rt

√
K logK
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logK
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log logK

T

Pr. dep. log et −T/H −T mink ∆2
k −T mink ∆2

k
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Unimodal?

Results Unstructured Monotone Concave Unimodal

Pr. indep. rt

√
K logK

T

√
logK
T

√
log logK

T

√
K
T

Pr. dep. log et −T/H −T mink ∆2
k −T mink ∆2

k
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Unimodal setting: problem independent

Difficulty in unimodal case: find an arm above threshold...
Interestingly we do not pay the additional logK here as in

unconstrained → uniform allocation to find best arm is not the
best!
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Unimodal?

Results Unstructured Monotone Concave Unimodal

Pr. indep. rt

√
K logK

T

√
logK
T

√
log logK

T

√
K
T

Pr. dep. log et −T/H −T mink ∆2
k −T mink ∆2

k ??

Unclear what the right problem dependent class is in this
setting....
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Unimodal setting: problem dependent

Consider µ̄ ∈ R+M , ∆̄min and the class Bu(µ̄, ∆̄min) of problems
such that

I the bump of M arms above threshold corresponds to µ̄

I all arms below threshold are lower than −∆min

In this context:

log eT � (−∆2
minT ) ∨

(
−TD2

)
,

where D2 = M
K

1
M

∑M
i=1 µ̄i)

2.
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Conclusion
We have:

I characterised in many regimes the minimax rate of TBP
under shape constraints.

I (Much) faster than in batch under shape constraints.

I Unlike often in bandits: no conditioning on single arms but
on ‘successful events’.

I Study of the problem independent continuous case (in
(Cheshire et al, 2020)).

What is unclear:

I Right class for unimodal?

I Higher dimension?

I Limiting regimes?

I Concave not in [0, 1], problem independent?

Thank you very much!
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