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1 The diffusion approximation

In the first lecture we will discuss meanfield methods for networks of spiking
neurons which rely on three main assumptions:

1. Each neuron in the network receives a large number of weakly correlated
inputs.

2. The strength of each individual input is small.

3. The statistics of the input and output spike trains is Poisson.

These three assumptions allow us to develop a self-consistent theory for the
probability distribution of membrane potentials in the network [3, 2]. In a
practical sense this theory allows us to calculate the stationary states of the
network and the linear stability of these states analytically for the so-called
linear (or non-leaky) integrate-and-fire model [9], and leaky integrate-and-
fire (LIF) neuron [5, 4]. Some asymptotic results can be obtained from other
types of model neurons, such as the quadratic integrate-and-fire (QIF) neuron
[6]. Finally we can also solve for the stationary states and linear stability (or
response to weak inputs if stable) very efficiently for any 1D neuron spiking
model [16].

1.1 A single neuron

First we consider a single LIF neuron which receives a large number of exci-
tatory and inhibitory inputs. The membrane potential of the neuron obeys

CV̇ = −gL(V − E) + Ī(t), (S.1)

where [C] ≡ µF is the membrane capacitance, [gL] ≡mS is the leak conduc-
tance and [E] ≡mV is the reset potential. The current then has units of µA.
We say that a spike is generated at a time tspike whenever V (tspike) = Ṽt, after
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which it is reset to V (t+spike) = Ṽr. The membrane potential is held at this
reset potential for a refractory time τr.

For simplicity we will consider a shifted membrane potential so that the
effective rest potential is zero. Also we will divide all terms by the leak
conductance and so write

τ V̇ = −V + I(t), (S.2)

where [τ ] ≡ms is the membrane time constant and I(t) is actually the input
current divided by the the leak conductance, i.e. it has units of mV. The
rescaled threshold and reset voltages are Vt and Vr respectively.

We consider an external current due to the bombardment of inputs from
Ce excitatory and Ci inhibitory synapses. Specifically, we take

I(t) = Je

Ce
∑

j=1

∑

k

δ(t− tkj )− Ji

Ci
∑

j=1

∑

k

δ(t− tkj ), (S.3)

where Je and Ji are the synaptic efficacies and tkj is the time of the kth

spike of input j. The Dirac-delta function indicates that the spike causes a
jump (of amplitude Je or -Ji) in the membrane potential of the post-synaptic
neuron. We assume that the inputs are Poisson processes with rates νe and
νi respectively.

1.1.1 Derivation of the Fokker-Planck Equation

Given that the dynamics of V are stochastic we can consider the evolution of
the probability distribution for V , P (V, t). The following integral expresses
the sum of possible paths from an initial state (V0, t0) to a state after some
brief time interval (V, t+∆t) for a Markov process

P (V, t+∆t|V0, t0) =
∫ ∞

−∞

dV
′

P (V, t+∆t|V ′

, t)P (V
′

, t|V0, t0). (S.4)

We take ∆t small enough so that there are only three possible paths for the
voltage: 1 - there has been no input, 2 - there is one excitatory input or 3 -
there is one inhibitory input. Then we can write

P (V, t+∆t|V ′

, t) = P0 · δ(V − V
′

0 ) +P+ · δ(V − V
′

+) +P− · δ(V − V
′

−), (S.5)

where P0 = 1 − (Ceνe + Ciνi)∆t, P+ = Ceνe∆t and P− = Ciνi∆t. The
physical meaning of V

′

0 is that it is the voltage after a time ∆t when the
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initial voltage is V
′

and there are no inputs. We calculate its value from
Eq.S.2 and do the same for V

′

+ and V
′

−. This yields

V
′

0 = V
′

e−∆t/τ ,

∼ V
′

(1− ∆t

τ
), (S.6)

V
′

+ ∼ V
′

(1− ∆t

τ
) + Je, (S.7)

V
′

− ∼ V
′

(1− ∆t

τ
)− Ji. (S.8)

Plugging Eq.S.5 into Eq.S.4 gives

P (V, t+∆t) = P0

∫ ∞

−∞

dV
′

δ(V − V
′

(1− ∆t

τ
))P (V

′

, t)

+P+

∫ ∞

−∞

dV
′

δ(V − V
′

(1− ∆t

τ
)− Je)P (V

′

, t)

+P−

∫ ∞

−∞

dV
′

δ(V − V
′

(1− ∆t

τ
) + Ji)P (V

′

, t).

For the first integral in Eq.S.9 we define the dummy variable x = V
′

(1− ∆t
τ
)

and for the second and third integrals x = V
′

(1 − ∆t
τ
) + Je and x = V

′

(1 −
∆t
τ
)− Ji respectively. Then, after the change of variables we have

P (V, t+∆t) = P0(1 +
∆t

τ
)

∫ ∞

−∞

dxδ(V − x)P (x(1 +
∆t

τ
), t)

+P+

∫ ∞

−∞

dxδ(V − x)P (x− Je, t)

+P−

∫ ∞

−∞

dxδ(V − x)P (x+ Ji, t) + ϑ(∆t2). (S.9)

By using the definition of the probabilities P0, P+ and P− we can write

P (V, t+∆t) =
(

1− (Ceνe + Ciνi)∆t
)

P (V (1 +
∆t

τ
)) · (1 + ∆t

τ
)

+Ceνe∆tP (V − Je) + Ciνi∆tP (V + Ji, t). (S.10)

Now we expand the probability density in a Taylor series for small ∆t, take
the limit ∆t→ 0 and obtain

∂P

∂t
=

∂

∂V

(V

τ
P
)

+Ceνe

(

P (V −Je)−P (V, t)
)

+Ciνi

(

P (V +Ji, t)−P (V, t)
)

.

(S.11)
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This equation is valid for synaptic inputs of any arbitrary amplitude. In the
diffusion approximation we assume Je ≪ 1 and Ji ≪ 1, expand

P (V − Je) = P (V, t)− Je
∂P

∂V
+
J2
e

2

∂2P

∂V 2
+ ϑ(J3

e ),

and truncate after the second order (diffusive) term. Finally, this leads to
the Fokker-Planck equation

∂P

∂t
=
σ2

2τ

∂2P

∂V 2
+

∂

∂V

(

(V − µ

τ

)

P

)

, (S.12)

where

µ = τ(JeCeνe − JiCiνi), (S.13)

σ2 = τ(J2
eCeνe + J2

i Ciνi). (S.14)

Note that the Fokker-Planck equation can be written in the more general
form of a continuity equation

∂P

∂t
+
∂F

∂V
= 0, (S.15)

where

F = −σ
2

2τ

∂P

∂V
− (V − µ)

τ
P, (S.16)

is the probability flux. The boundary conditions for this Fokker-Planck equa-
tion are the following

1. P (Vt, t) = 0. The probability density is zero for all voltages above
threshold. Therefore it must also go to zero at threshold, otherwise
there would be a jump in the density which would generate an infinite
firing rate.

2. ν(t) = F (Vt, t). The firing rate is just the probability flux at threshold.
Using the definition of the flux, this leads to a condition for the slope
of the probability density ∂P

∂V
= −2τν(t)

σ2 .

3. ν(t) = lim
ǫ→0

F (Vr + ǫ, t) − F (Vr − ǫ, t). The flux which passes through

threshold gets re-injected at the reset potential. This again leads to a
condition on the jump in the slope of the probability density at reset.

4.
∫ Vt
−∞

dV P (V, t) + τrefν(t) = 1. P (V, t) is a probability density.
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1.1.2 Steady State Distribution

We can integrate Eq.S.12 directly and apply the boundary conditions to find
the steady state solution. Setting the time derivative to zero and integrating
Eq.S.12 once we find

∂P0

∂V
+

2(V − µ)

σ2
P0 = C, (S.17)

where P0(V ) is the stationary distribution and C is a constant of integration.
Applying the jump in the slope across the rest voltage we find that C = 0
for V < Vr and C = −2τν0

σ2 for V ≥ Vr, where ν0 is the steady-state firing
rate. Now we can write

∂P0

∂V
+

2(V − µ)

σ2
P0 = −2τν0

σ2
H(V − Vr), (S.18)

where

H(x) =

{

0, if x < 0

1, if x ≥ 0.
(S.19)

We can integrate Eq.S.18 directly to obtain

P0(V ) =
2τν0
σ

e−
(V −µ)2

σ2

∫
Vt−µ

σ

V −µ

σ

dyey
2

H
(

y − (Vr − µ)

σ

)

. (S.20)

To find the firing rate we use the normalization condition number 4. After
some algebra (hint: you will need to change the order of integration in the
double integral) we find

ν0 = φ(µ, σ2) =

[

τ
√
π

∫
Vt−µ

σ

Vr−µ

σ

dyey
2

erfc(−y) + τref

]−1

. (S.21)

1.1.3 The linear response

Let’s assume that in addition to the background synaptic bombardment the
neuron also receives a time-varying current injection and we want to predict
the firing rate response. In general this is a very hard problem, but we
can make progress by assuming that the time-varying current has a small
amplitude. This allows us to linearize the dynamics around the stationary
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state. In particular we now assume that I(t) = Ibackground(t)+ ǫIext(t), where
Ibackground is the input we have considered in the previous section. In the
linear approximation we can just consider the Fourier decomposition of the
external current injection and solve for each frequency separately. That is, we
need only consider the response of the neuron to I(t) = Ibackground(t)+ǫI1e

iωt

(in the end we take the real part of the response) and then for an arbitrary
input we can just some up modes with the appropriate weights. This input
suggests the following ansatz

P (V, t) = P0(V ) + ǫP1(V )eiωt, (S.22)

ν(t) = ν0 + ǫν1e
iωt. (S.23)

Plugging these formula into Eq.S.12 and the corresponding relevant boundary
conditions yields at order ǫ

iωP1 =
σ2

2τ

∂2P1

∂V 2
+

∂

∂V

(

− I1P0 + (V − µ)P1

)

, (S.24)

p1(Vt) = p1(V
+
r )− p1(V

−
r ) = 0, (S.25)

∂P1(Vt)

∂V
=

∂P1(V
+
r )

∂V
− ∂P1(V

−
r )

∂V
= −2τν1

σ2
. (S.26)

To clean up the equations and make the algebra a bit easier we define
Q1 =

σ2

2τν0
and y = (V − µ)/σ. This leads to the following equations

1

2
Q

′′

1 + yQ
′

1 + (1− iτω)Q1 =
I1
σ
Q

′

0, (S.27)

where Q0 =
σ2

2τν0
P0 and Q

′

= ∂Q
∂y
. The boundary conditions are

Q1(yt) = Q1(y
+
r )−Q1(y

−
r ) = 0, (S.28)

Q
′

1(yt) = Q
′

1(y
+
r )−Q

′

1(y
−
r ) = −ν1

ν0
. (S.29)

Now we are faced with a second-order, non-homogeneous linear differen-
tial equation. The solution consists of a linear combination of two indepen-
dent solutions to the homogeneous equation plus the particular solution. So
we can write

Q1(y) =

{

α+φ1(y) + β+φ2(y) +Qp(y), if y > yr

α−φ1(y) + β−φ2(y) +Qp(y), if y ≤ yr.
(S.30)
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Note also that the stationary solution given this normalization obeys

1

2
Q

′′

0 + yQ
′

0 +Q0 = 0, (S.31)

which can be differentiated to yield

1

2
Q

(k)
0 + yQ

(k−1)
0 + (k − 1)Q

(k−2)
0 , (S.32)

where k > 2. This leads us to propose Qp = CQ
′

0. Plugging this particular
solution into Eq.S.27 reveals C = −I1/σ. The homogeneous solutions are
known functions, called confluent hypergeometric functions, see [1, 5] for
details. These are not the easiest functions to work with but luckily we
will not need to use them directly. If fact, in the end we will solve the
Fokker-Planck equation numerically. In any case, we are free to choose two
linearly independent functions which satisfy the homogeneous equation. We
will take them such that the function φ2 decays rapidly (exponentially) to
zero for y → −∞ while the other does not, therefore we take α− = 0. We
could have chosen the opposite, it is arbitrary at this point.

Now we apply the boundary conditions at threshold yt, which can be
written as

(

φ1(yt) φ2(yt)
φ

′

1(yt) φ
′

2(yt)

)(

α+

β+

)

=

(

−1
2yt

)

I1
σ(1 + iτω)

−
(

0
ν1
ν0

)

(S.33)

This linear system can be solved simply by multiplying both sides by the
inverse matrix of the homogeneous functions evaluated at threshold. In the
end we only need the value of α+, which is

α+ = −(φ
′

2(yt) + 2ytφ2(yt))e
y2t

I1
σ(1 + iτω)

+ φ2(yt)e
y2t
ν1
ν0
. (S.34)

To get the terms that go like ey
2
t we have used the fact that Wr(φ1, φ2)

′

=
−2yWr(φ1, φ2) where the “Wronskian” Wr(φ1, φ2) = φ1φ

′

2 − φ
′

1φ2. Now
we are almost done. In fact, applying the other boundary condition at the
reset voltage yr leads to an identical system of equations to Eq.S.33 with yt
replaced by yr and with α+ replaced by α+ − α− (and the same for the βs).
But, noting that we have chosen the functions such that α− = 0 means the
two conditions, Eq.S.34 and the equivalent one for yr must be equal. This
gives us the linear response as

ν1 = I1A(ω), (S.35)
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where

A(ω) =
1

σ(1 + iτω)

U
′

(yt, ω)− U
′

(yr, ω)

U(yt, ω)− U(yr, ω)
, (S.36)

and U(y, ω) = φ2(y, ω)e
y2 . Oftentimes it is convenient to express the linear

response explicitly in terms of an amplitude and phase response, i.e. A(ω) =
R(ω)eiφ(ω).

1.1.4 Solution of steady state and linear response with Laplace
Transforms

For completeness I’m including here an alternative method for solving the
Fokker-Planck (FP) equation. Sometimes it might be easier to work with
the resultant formulas using Laplace transforms. Now we will write the FP
equation in a slightly different form.

∂P

∂t
+
∂F

∂V
= ν(t)

(

δ(V − Vr)− δ(V − Vt)
)

, (S.37)

τF (V, t) = −σ
2

2

∂P

∂V
− (V − µ)P. (S.38)

So the boundary conditions at threshold and reset are now expressed ex-
plicitly in the continuity equation. Again we take I(t) = µ + ǫI1e

iωt and so
P (V, t) = P0(V ) + ǫP1(V )eiωt and ν(t) = ν0 + ǫν1e

iωt. Then, at order ϑ(1)
we have

∂F0

∂V
= ν0

(

δ(V − Vr)− δ(V − Vt)
)

, (S.39)

τF0 = −σ
2

2

∂P0

∂V
− (V − µ)P0. (S.40)

We introduce the generalized Laplace transform Ã(s) =
∫∞

−∞
dV esvA(v). Ap-

plying this operation to all terms in Eqs.S.39-S.40 yields

−sF̃0 = ν0

(

eVrs − eVts
)

, (S.41)

τ F̃0 = s
σ2

2
P̃0 −

dP̃0

ds
+ µP̃0. (S.42)

The advantage of the Laplace transform is it converts the PDE into an ODE,
which we can solve for easily. After just a bit of algebra we find

P̃0(s) = τν0e
µs+σ2s4

4

∫ ∞

s

dx

x
e−(µx+σ2x4

4
)
(

eVtx − eVrx
)

. (S.43)
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Now we can take advantage of the fact that P̃0(s = 0) =
∫∞

−∞
dV P0(V ) = 1

and so find that τν0
∫∞

0
dx
x
e−(µx+σ2x4

4
)
(

eVtx − eVrx
)

. If we make the simple

substitution y = σx/2 then the steady-state firing rate is

ν0 =
[

τ

∫ ∞

0

dy

y
e−y

2
(

e2yty − e2yry
)]−1

, (S.44)

where yt = (Vt − µ)/σ and yr = (Vr − µ)/σ. Compare this with Eq.S.21
without the refractory period (you can always add it here if you want).

At order ϑ(ǫ) we have

iωP1 +
dF1

dV
= ν1

(

δ(V − Vr)− δ(V − Vt)
)

, (S.45)

τF1 = −σ
2

2

dP1

dV
− (V − µ)P1 + I1P0. (S.46)

Once again we can simply integrate the ODE directly. Then we apply the
condition P̃1(s = 0) =

∫∞

−∞
dV P1(V ) = 0 to find ν1 = I1A(ω)

A(ω) =
2ν0

σ(1 + iτω)

B1(ω)

B0(ω)
, (S.47)

where

Bn(ω) =

∫ ∞

0

dy

y
yn+iτωe−y

2
(

eyty − eyry
)

. (S.48)

Compare Eqs.S.47 and S.36.

1.1.5 The low frequency response

In the limit ω → 0 we can extract a simpler formula for the rate response.
We set ω → 0 in Eq.S.27 and write

1

2
Q

′′

1 + yQ
′

1 +Q1 =
I1
σ
Q

′

0, (S.49)

The boundary conditions are

Q1(yt) = Q1(y
+
r )−Q1(y

−
r ) = 0, (S.50)

Q
′

1(yt) = Q
′

1(y
+
r )−Q

′

1(y
−
r ) = −ν1

ν0
, (S.51)

∫ yt

−∞

dyQ1 = 0. (S.52)
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Again the solution to Eq.S.49 requires two independent homogeneous so-
lutions and one particular solution. The particular solution is as before
Qp = −I1Q′

0/σ. The homogeneous solutions are now no longer confluent
hypergeometric functions. Rather, one obvious choice is simply Q0, the sta-
tionary solution. Another independent solution is e−y

2
(this is easy to check).

Therefore we can write

Q1

{

α+Q0 + β+e
−y2 − I1

σ
Q

′

0, if y > yr

α−Q0 + β−e
−y2 − I1

σ
Q

′

0, if y ≤ yr.
(S.53)

i. Q1(yt) = 0
Applying this condition leads to β+ = − I1

σ
ey

2
t .

ii. Q
′

1(yt) = −ν1
ν0

Applying this condition leads to α+ = ν1/ν0.
iii. Q

′

1(y
+
r )−Q

′

1(y
−
r ) = 0

Applying this condition leads to (α+−α−)Q0(yr)+(β+−β−)e−y2r+ I1
σ
= 0.

One solution to this equation is α− = α+ and hence β− = β+ + I1
σ
ey

2
r . This

is not a gratuitous choice, it is actually the only solution which also satisfies
the condition Q

′

1(y
+
r )−Q

′

1(y
−
r ) = −ν1/ν0.

iv.
∫ yt
−∞

dyQ1 = 0
This condition gives the linear response in the low-frequency limit. Namely

ν1 =
τ
√
πν20I1
σ

(

ey
2
t erfc(−yt)− ey

2
rerfc(−yr)

)

. (S.54)

EXERCISE PROBLEM: Show that the linear response in this limit can be
written

ν1 = I1
∂v0
∂µ

. (S.55)

What does this mean? Also, show that the method using Laplace transforms
also gives the same result. That is, show that Eq.S.47 can be reduced to
Eq.S.54 in that limit.

1.1.6 The high frequency limit

Again, we can obtain a simplified formula for the linear response in the limit
ω → ∞. We are looking for a solution to the equation

iτωP1 =
σ2

2

∂2P1

∂V 2
+ (V − µ)

∂P1

∂V
+ P1 − I1

∂P0

∂V
, (S.56)
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where ω ≪ 1. Again we consider a homogeneous and a particular solution,
i.e. P1 = φ + Pp. The particular solution is, to leading order Pp = − I1

iτω
∂P0

∂V
.

The homogeneous solution satisfies

iτωφ =
σ2

2

∂2φ

∂V 2
+ (V − µ)

∂φ

∂V
+ φ. (S.57)

We consider a solution of the form φ = keX(V )−X(Vt), where k is a constant.
Note that the condition P1(Vt) immediately gives us that k = −2τν0

σ2
I1
iτω

. In
any case, plugging our ansatz for φ into Eq.S.57 yields to leading order that
(∂X
∂V

)2 = 2i τω
σ2 . Finally, we have that

ν1 = F1(Vt) = −σ
2

2τ

∂P1

∂V
(Vt), (S.58)

where
∂P1

∂V
= − I1

iτω

∂2P0

∂V 2
(Vt) + k

∂X

∂V
(Vt). (S.59)

Putting these two equations together gives the linear response as ν1 = I1A(ω)
where

A(ω) = ν0e
iπ/4

√

2

τωσ2
. (S.60)

1.1.7 Numerical Method for the Fokker-Planck Equation

We have seen that it is relatively straightforward to calculate the stationary
state of an LIF neuron in the diffusion limit of many weak synaptic inputs.
We have also seen that something as simple as the linear response is already
a pretty daunting calculation although we can get some intuition by look-
ing at the low and high-frequency responses. So how should we calculate
the response? Should we evaluate the confluent hypergeometric functions
in Eq.S.36 or the integrals in Eq.S.47? You can do this, but it is not easy.
Luckily we have a much simpler alternative, described in detail in [16]. The
crux of the method is to directly integrate the Fokker-Planck equation by
separating the probability density and the probability flux and solving them
independently.
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Stationary Distribution Note that we will be solving for the stationary
solution and the linear response. The stationary problem can be written

dF0

dV
= ν0

(

δ(V − Vr)− δ(V − Vt)
)

, (S.61)

−τF0 =
σ2

2

dP0

dV
+ (V − µ)P0 (S.62)

We now consider the flux and density normalized by the stationary firing
rate, i.e. F0 = ν0f0 and P0 = ν0p0. The normalized functions satisfy

df0
dV

= δ(V − Vr)− δ(V − Vt), (S.63)

−τf0 =
σ2

2

dp0
dV

+ (V − µ)p0. (S.64)

Now the idea is the following. The flux is equal to the firing rate at
threshold. Therefore j0(Vt) = 1. So if we discretize the voltage we can
integrate the flux from threshold down to some lower bound, well below the
reset voltage. At reset there is a downward jump in the flux. Specifically,
the numerical method for the flux is

jk−1
0 = jk0 − δk,kr+1, (S.65)

jN0 = 1, (S.66)

where there are a total of N mesh points, k ∈ [1, N ] on the interval V ∈
[Vlb, Vt] such that Vr also falls on a mesh point and Vlb ≪ Vr.

Integrating Eq.S.64 requires a bit more work. First, we rewrite it as

−dp0
dV

= Gp0 +H, (S.67)

where G = 2
σ2 (V − µ) and H = 2τ

σ2 j0. We integrate this equation over an

interval starting from a mesh point Vk, i.e.
d
dV

(

pe
∫ V

Vk
dxG(x)

)

= −He
∫ V

Vk
dxG(x)

,

which gives

p(V ) = pke
−

∫ V

Vk
dxG(x) − e

−
∫ V

Vk
dxG(x)

∫ V

Vk

duH(u)e
∫ u

Vk
dxG(x)

. (S.68)

Note that p(Vk) = pk. The value of the density at the next mesh point is

pk−1 = pke
∫ Vk
Vk−1

dxG(x)
+

∫ Vk

Vk−1

duH(u)e
∫ u

Vk−1
dxG(x)

. (S.69)
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Because the integrals are over a very small interval in voltage we can as-
sume that the functions G and H are constant, i.e.

∫ Vk
Vk−1

dxG(x) = (Vk −
Vk−1)G(Vk) = ∆·G(Vk), and

∫ Vk
Vk−1

duH(u)e
∫ u

Vk−1
dxG(x)

=
∫ Vk
Vk−1

duH(u)e(u−Vk−1)G(Vk)

= H(Vk)
G(Vk)

(

e∆·G(Vk) − 1
)

. Finally we have

pk−1 = pkAk + 2τjk0B
k, (S.70)

pN = 0, (S.71)

where

Ak = e∆·Gk

, (S.72)

Bk =
1

σ2

(e∆·Gk − 1)

∆ ·Gk
. (S.73)

Also note that if G = 0 we should set Bk = 1
σ2 . So now we just need to

integrate j0 and p0 from Vt down to Vlb. The stationary firing rate

ν0 =
1

N
∑

k=1

∆ · pk0
. (S.74)

Linear Response
Now we consider the linear response. The equations are

iωP1 +
dJ1
dV

= ν1

(

δ(V − Vr)− δ(V − Vt)
)

, (S.75)

−τJ1 =
σ2

2

dP1

dV
+ (V − µ)P1 − I1P0. (S.76)

We consider distinct modulations of the probability density and flux due to
changes in the input and in the firing rate response, respectively. That is,
we write

P1 = ν1Pν + I1PI , (S.77)

J1 = ν1Jν + I1JI . (S.78)

Now we consider the effect of each in turn. (We can do all of the this because
the system is linear, of course.)
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i. ν1 = 1, I1 = 0
The equations are

−dJν
dV

= iωPν − δ(V − Vr) + δ(V − Vt), (S.79)

−dPν
dV

=
2

σ2
(V − µ)Pν +

2τ

σ2
Jν . (S.80)

for which the numerical method is

Jk−1
ν = Jkν +∆ · iωP k

ν − δk,kr+1, (S.81)

P k−1
ν = P k

νA
k +∆ · 2τJkνBk, (S.82)

with the “initial conditions” Jν(Vt) = JNν = 1 and PN
ν = 0.

ii. ν1 = 0, I1 = 1
The equations are

−dJI
dV

= iωPI , (S.83)

−dPI
dV

=
2

σ2
(V − µ)PI +

2τ

σ2
JI −

2

σ2
P0, (S.84)

for which the numerical method is

Jk−1
I = JkI +∆ · iωP k

I , (S.85)

P k−1
I = P k

I A
k +∆ · 2τ

(

JkI − P k
0

)

Bk, (S.86)

with the “initial conditions” JNI = 0 and PN
I = 0. The final step is to realize

that for low enough voltages (Vlb must really be low enough) the probability
flux is zero. That is J1(Vlb) = 0. This conditions yields the linear response

ν1 = −I1
JI(Vlb)

Jν(Vlb)
. (S.87)

So clearly A(ω) = −JI(Vlb)/Jν(Vlb).

1.2 Recurrent Networks

We have spent a lot of time studying the response of a single neuron. As it
turns out, meanfield theory for recurrent networks is precisely the same with
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the twist that the input and output must be made self-consistent. In any case
we will not need to go through all of the theory again, we will just need to
alter the notation a bit. In order to apply the theory we will need to specify
some details regarding the network connectivity, essentially whether or not
it is “all-to-all” or sparsely connected. Also, to model neuronal circuits we
will need excitation and inhibition. So we will have two FP equations etc.,
i.e. there’s double the algebra but conceptually there is nothing new. What
is new is how to calculate the meanfield input itself, namely the mean and
variance of the input.

1.2.1 All-to-all Networks

Let’s first consider a networks of all-to-all connected E and I LIF neurons.
The membrane potential of an excitatory neuron i obeys

τE
dV E

i

dt
= −V E

i + τE

(JEE
N

NE
∑

j=1

∑

k

δ(t− tkj −DEE)−
JEI
N

Ni
∑

j=1

∑

k

δ(t− tkj −DEI)
)

+I(t) + σextξi(t). (S.88)

and there is an analogous equation for the inhibitory neurons. A couple of
remarks: the sums of delta functions looks quite similar to the bombardment
of inputs impinging on the single neuron model we considered previously.
Here, however, these inputs come from other neurons in the network. Also,
we assume the spikes arrive with some delay. Let’s again assume that the
input statistics (and hence the output spike trains as well!) are Poisson.
Then the mean input to an excitatory neuron is

µ = τE

(

JEEνE0 − JEIνI0

)

+ I0, (S.89)

where I(t) = IE0 is a constant and νE0 and νI0 are the stationary firing rates
of the excitatory and inhibitory neurons. So we don’t know these values a
priori, we will need to determine them self-consistently. Now, the variance
of the input is

σ2 = τE

(JEE
N

νE0 −
JEI
N

νI0

)

+ σ2
ext. (S.90)

So in the large system-size limit N → ∞ the fluctuations due to recurrent
inputs vanish. Note, however, that these finite-size fluctuations are the same
from cell to cell, they’re not uncorrelated noise sources. That is why, in
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an all-to-all coupled network we need to drive the neurons with an external
source of fluctuations (here a Gaussian white noise term proportional to σext).

Now, the same theory applies as before. Let’s consider the stationary
state and linear response in turn.

BTW, synaptic kinetics are not actually instantaneous, i.e. cells do not
receive a train of Dirac-delta functions. This is merely an idealization which
we assume for simplicity. In the all-to-all network we can consider more
realistic, finite synaptic kinetics and still apply the same theory. For example,
we can model the neuronal dynamics as

τE
dV E

i

dt
= −V E

i + τE

(JEE
N

sE(t)−
JEI
N

sI

)

+I(t) + σextξi(t), (S.91)

τdecayE ṡE = −sE + xE, (S.92)

τ riseE ẋE = −xE +

NE
∑

j=1

∑

k

δ(t− tkj −DEE), (S.93)

τdecayI ṡI = −sI + xI , (S.94)

τ riseI ẋI = −xI +
Ni
∑

j=1

∑

k

δ(t− tkj −DEI), (S.95)

where the x and s variables model the rise and decay phases of the post-
synaptic response. It turns out that the rise and decay time constants
strongly affect the linear stability of the steady state.
Stationary State

The stationary firing rates are given by

νE0 = φE(µ(νE0, νI0), σ
2(νE0, νI0)), (S.96)

νI0 = φI(µ(νE0, νI0), σ
2(νE0, νI0)), (S.97)

where the function φ is given by Eq.S.21. How do we solve this set of nonlin-
ear equations? Basically we will need to make a guess for νE0 and for νI0 and
then evaluate φ using this guess. If the φs gives rates which are close enough
to our guess then we stop, otherwise we should update our guess. We can
evaluate φ using the numerical method we have learned.
Linear Stability

Let’s consider the response of the system to small perturbations in the
network activity. These might be due to external inputs, i.e. the linear
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response, or due to intrinsic fluctuations. In fact, we cannot consider the
linear response of the system if the stationary state is unstable, so first we
need to consider the linear stability. The only difference with the single
neuron is that whereas before the perturbation I1 was external, now IE1 =
τE(JEEνE1−JEIνI1) and II1 = τI(JIEνE1−JIIνI1). This means that Eq.S.35
becomes

νE1 = (JEEνE1 − JEIνI1)AE(ω), (S.98)

νI1 = (JIEνE1 − JIIνI1)AI(ω), (S.99)

the solution of which is

(1− JEEAE(ω))(1 + JIIAI(ω)) + JEIJIEAI(ω)AE(ω) = 0. (S.100)

So you calculate the linear response functions A separately for the excitatory
and inhibitory populations and then search for the zeros of this complex func-
tion to find the eigenvalues. If the real part of the eigenvalue passes through
zero as you vary some parameter then you have found an instability of the
system. Alternatively you can set the real part identically equal to zero (as I
have implicitly done here by writing just ω and then the zeros will give you
the instability line for instabilities with frequency ω. There are oscillatory
(Hopf) instabilities.

EXERCISE PROBLEM: Calculate the condition for a steady (saddle-node)
bifurcation. What does this condition tell us about the synaptic properties
in recurrent networks which favor bistability?

Linear Response
If the stationary state is stable, then one can calculate the linear response

of the network to weak external drive. Specifically, if the external input to
the excitatory cells is IE,ext(t) = IE0+ IE1e

iωt and that to the inhibitory cells
is II,ext(t) = II0 + II1e

iωt, then the linear response is given by solving the
system of equations

(

1− JEEAE(ω) JEIAE(ω)
−JIEAI(ω) 1 + JIIAI(ω)

)(

νE1

νI1

)

=

(

IE1AE(ω)
II1AI(ω)

)

. (S.101)

Now it’s clear mathematically why the stationary state must be stable to
calculate the linear response. At an instability the lefthand matrix is not
invertible!
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1.2.2 Sparse Networks

Real cortical networks are sparse. How “promiscuously” cells couple with one
another depends on the cell type (excitatory versus inhibitory), brain area,
cortical layer, and probably animal species. The sparseness of connections
between layer 2/3 pyramidal cells of mouse visual cortex is on the order of
10% [19] and in other cortical areas the sparseness is comparable. Inhibitory
cells tend to be much close to the all-to-all limit in their connectivity, and be-
tween inhibitory interneurons of the same type one finds strong gap-junction
(direct electrical coupling, a.k.a. a channel) coupling. But we won’t model
that here. Sparse networks pose the problem of how exactly to construct
the network to begin with. The easiest solution, and the one that makes
the fewest assumptions is to make a directed connection between any two
cells independently with a probability p; this is known as the Erdös-Rényi
(ER) network 1. When you do this in a network of N neurons then each cell
receives (and projects) on average C = pN connections. However, the num-
ber of incoming (and outgoing) connections for any given cell will deviate
from this. The distribution of these inputs and outputs, called “degrees”, is
binomial and has variance σ2 = p(1− p)N . This distribution is very close to
Gaussian for large N .

We can use, once again, precisely the same meanfield theory for sparse
networks that we have used up to now. The only difference is once again in
the mean and variance of the inputs. For the sake of simplicity let’s assume
for the meantime that each cell receives exactly C = pN inputs, and we’ll
put the additional quenched variability back in in the next section. Then,
the mean and variance to an excitatory neuron are

µE = τE

(

JEECEEνE0 − JEICEIνI0

)

, (S.102)

σ2
E = τE

(

J2
EECEEνE0 + J2

EICEIνI0

)

. (S.103)

Note now that the fluctuations need not vanish as N → ∞. In particular,
we can keep the number of inputs constant, in which case, e.g. lim

N→∞
pEE =

lim
N→∞

CEE

NE
= 0. This is known as the sparse limit. There another well known

scaling for sparse networks for which, in the large system-size limit, the

1As it turns out real cortical networks are not ER networks [19, 14], but hey, you’ve
got to start somewhere.
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connectivity does not vanish. This is known as the “balanced network” limit,
but we will not address it here [20]

1.3 Variability in Neuronal Networks

This has all been a lot of work just to calculate some fixed points and their
linear stability. Why not use some low-dimensional model of neuronal ac-
tivity, such as the Wilson-Cowan equations [21], which are much easier to
analyze? Surely spiking networks must give us some additional insight into
neuronal activity beyond fixed points and stability to be worth the effort.
Indeed. The great success of the meanfield theory of spiking networks has
been to describe a certain aspect of, in particular, cortical activity, which
cannot be addressed otherwise, namely: variability 2. In-vivo cortical activ-
ity is highly variable, that is one of its starkest features. Here we will focus
on two types of variability: irregular spiking activity and broad firing rate
distributions.

1.3.1 Irregular Spiking

If you crank the external noise level up in an all-to-all network you can get
highly irregular spiking activity. However, this is not a particularly satisfying
situation conceptually. Where is all that noise coming from? It turns out
that in a sparsely connected network you get irregularity for free even with
no noise injection, as well as broad firing rate distributions. We can already
see that from Eq.S.103 which gives the noise level. That’s funny, we inject no
noise but the neurons are driven by i.i.d white noise processes. This arises
from the assumption that spiking activity is Poisson and that p is small
enough so that any two neurons only share a very small fraction of inputs.

A measure of the irregularity of the spiking activity in the coefficient of
variation of the inter-spike interval (CV of ISI). Note that the mean ISI is
just the average time it takes for the neuron to make it past threshold. This
is known as the first passage time. For the LIF neuron, which is an Ornstein-
Uhlenbeck process, the moments of the first passage time distribution follow
a recursive relationship

σ2

2

d2µk
dx2

− (x− µ)
dµk
dx

= −kµk−1 (S.104)

2This is not to disparage the contribution of the theory for finding stationary states,
and oscillatory instabilities!
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When using this relation just remember once you integrate that x should
be evaluated from Vr to Vt. The mean ISI itself is just µ1 = 1/(τν0). The
coefficient of variation is

CV =
µ2 − µ2

1

µ1

,

= 2πτ 2ν20

∫
Vt−µ

σ

Vr−µ

σ

dueu
2

∫ u

−∞

dvev
2[

erfc(−v)
]2
. (S.105)

For low firing rates the CV approaches a value of 1, which is precisely what
one would obtain for a Poisson process which was our assumption for the
meanfield theory. For high firing rates the CV approaches 0 which means
very regular activity [4]. Despite this, the theory still works! For other types
of neuron models there is no closed-form expression for the CV.

1.3.2 Distributions of firing rates

We can study the effect of quenched variability in sparse networks in a very
general way and then see how that plays out specifically in the context of
the meanfield theory we have developed so far. In a network in which each
neuron receives a different mean input we can write

Irec(t) = µ+∆zi + σξi(t), (S.106)

where the µ and σ are just the mean and amplitude of temporal fluctuations
from before (ξi(t) is a white-noise process). But now zi is a random variable
with variance ∆2 which does not change in time. This means that for a neuron
with a given value of z, the steady state firing rate will be ν0(z) = φ(z). Let’s
assume that the distribution of z is written f(z). Then the steady state firing
rate distribution of the network as a whole is

P (ν0) =

∫ ∞

−∞

dzf(z)δ(ν0 − φ(z)), (S.107)

where δ(x) is the Dirac delta function. We can evaluate the integral explicitly
with the change of variable w = φ(z), which leads to

P (ν0) =

∫ ∞

0

dw
f(φ−1(w))

φ′(φ−1(w))
δ(ν0 − w),

=
f(φ−1(ν0))

φ′(φ−1(ν0))
. (S.108)
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So we have the firing rate distribution in terms of the steady-state fI curve
and the distribution of quenched variability. If the quenched variability is
Gaussian with mean µ and variance ∆2 we have

P (ν0) =
1√
2π∆

exp
(

− [φ−1(ν0)− µ]2

2∆2

)

[φ
′

(φ−1(ν0))]
−1. (S.109)

Now consider two cases: i. The fI-curve is linear, i.e. φ(µ) = Aµ + B
and ii. The fI-curve is exponential, i.e. φ(µ) = ν̄eγµ. It is straightforward
to show that in the first case the firing rate distribution is Gaussian, while
in the second case it is log-normal. EXERCISE: Show this! In real cortical
networks in-vivo the firing rate distributions are, in fact, close to log-normal
[17]. This means, according to this theory, that the fI curve smut be close to
exponential, and this is the case only when the mean input is below threshold,
hence mean firing rates are low, and spiking occurs due to fluctuations. This
is known as the fluctuation-driven regime, where the CV is close to 1, and is
precisely the operating point of cortical networks. This particular network
mechanism linking the fluctuation-driven regime to broad firing-rate distri-
butions through the skewing of Gaussian input distributions has actually
been convincingly shown to hold in the turtle spinal cord [15].

How do we take this heterogeneity into account in the LIF network? The
variance of the quenched variability in Eq.S.106 for an excitatory neuron in
an EI network is

∆2
E = τ 2E[(1−p)(CE ν̄E2J2

EE+CI ν̄I
2J2

EI)+CE∆ν
2
EJ

2
EE+CI∆ν

2
IJ

2
EI ], (S.110)

where ν̄E and ∆ν2E are the mean and the variance of the excitatory rates
respectively. The first term in Eq.S.110 arises due to the variability in the
number of inputs to each cell (e.g. the variance of the excitatory in-degree is
p(1 − p)NE = (1 − p)CE). It is this variability in inputs which gives rise to
the distribution of firing rates. Once the firing rates broaden, they also, in
turn, add to the variability. This is reflected in the second term in Eq.S.110.
Now, we must calculate the mean and variance of the firing rate distribution
self-consistently. For the excitatory rates this is

ν̄E =
1√
2π

∫ ∞

−∞

dze−z
2/2φE(z), (S.111)

∆ν2E =
1√
2π

∫ ∞

−∞

dze−z
2/2φ2

E(z)− ν̄E
2. (S.112)
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Finally, the full distribution is given by

P (νE) =
1√
2π

∫ ∞

−∞

dze−z
2/2δ(νE − φE(z)). (S.113)

The resulting distribution in the fluctuation-driven regime fits in-vivo cortical
data quite well [17].

2 Networks of heterogeneous Quadratic Integrate-

and-Fire neurons

In this second lecture we will switch gears considerably. The theory for E-
I networks which we reviewed in the previous section was inspired by the
type of activity seen in-vivo in cortical networks. The great success of the
theory is that it not only captures some key macroscopic dynamical features
of cortical circuits, such as oscillatory activity and persistent elevated activity
(bistability), but also the fact that the microscopic states display the types
of variability, such as irregular spiking, and broad firing rate distributions,
which are canonical features of cortical circuits. Nonetheless the mean-field
theory is technically challenging, and can only take us as far as the stationary
states and their linear stability and response to small-amplitude inputs. We
have no dynamical mean-field theory for arbitrary time-varying inputs for
these networks. What is the non-stationary behavior of recurrent networks
of spiking neurons? This is the most relevant dynamical regime because the
brain is constantly subjected to non-stationary sensory inputs.

In this section we will consider a very specific type of spiking network: an
all-to-all network of quadratic integrate-and-fire (QIF) neurons with quenched
variability (no noise!). The microscopic state in such networks is not cortical-
like, spiking is not irregular and fluctuation-driven. However, this network
has the distinct advantage that we can derive an exact mean-field model
which is valid for any arbitrary external input. The resulting mean-field
model is a low-dimensional system of ODEs, which is simple and intuitive.
We can bring standard mathematics tools to bear for the analysis of ODEs
which means that stationary states and linear stability are trivial and we can
go well beyond this in principle. Let’s begin!
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2.1 QIF neurons and Theta neurons

The QIF can be written
τ V̇ = V 2 + I. (S.114)

A spike occurs at a time tspike whenever V (tspike) = Vpeak and the voltage
is then reset to V (t+spike) = Vreset. This model can be seen simply as a phe-
nomenological spiking model, but it also has a more rigorous mathematical
pedigree. In fact, most biophysically “realistic” conductance-based spiking
models can be formally reduced to Eq.S.114 close to threshold for spiking [8].
The reason is that the transition to spiking generically occurs via a saddle-
node bifurcation of the voltage rest state, e.g. as the cell is depolarized. Once
the rest state vanishes a large voltage excursion occurs (the spike), but the
spiking currents conspire to reset the voltage and the system therefore once
again finds itself in the vicinity of the threshold to spiking. The spike and
reset, which is a global phenomenon in phase-space, is therefore dominated
by the dynamics near threshold, which can be described locally by the nor-
mal form for a saddle-node bifurcation, Eq.S.114. This bifurcation has been
called the “saddle-node bifurcation on an invariant circle” (SNIC).

Any one-dimensional spiking model can be recast as a phase oscillator.
In the case of the QIF this can be done via the transformation V = tan(θ/2),
where θ ∈ [−π, π), as long as we take Vpeak = ∞ and Vreset = −∞. Taking the
peak spike voltage and reset voltage to infinity is not a problem because the
voltage reaches infinity in finite time in the QIF. Plugging this into Eq.S.114,
and after a bit of algebra one finds

τ θ̇ = I + 1 + (I − 1) cos(θ). (S.115)

This form of the QIF is known as the “theta” model. What is gained by
looking at the dynamics of the QIF in this form? For one, it eliminates the
infinities from the dynamics, so they are now completely smooth; whenever
the phase crosses π there is a spike. But the real advantage is to be had once
we consider a network of coupled neurons. In that case it just turns out that
being able to use periodic basis functions is very convenient.
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2.2 An exact meanfield model for theta neurons [11,
18, 7]

Now we consider a large assembly of theta neurons. The dynamics of neuron
i obeys

τ θ̇i = Ii + 1 + (Ii − 1) cos(θi), (S.116)

so we allow for the input current to be different from neuron to neuron, and
it may depend on the activity of all other neurons as well. However, there
is no noise. The probability of finding an oscillatory in an interval of phases
(θ, θ + dθ) is P (θ, t)dθ where

∂P

∂t
+
∂F

∂θ
= 0, (S.117)

which is just the continuity equation we considered for spiking networks in
the preceding section, and the flux F = θ̇P . As before the firing rate is
r(t) = F (π, t), where I’m using r now instead of ν; this way whenever I use r
you’ll know I’m talking about the network of QIF neurons. The probability
distribution can be expressed as a Fourier series,

P (θ, t) =
1

2π

[

1 +
∞
∑

n=1

zne
inθ +

∞
∑

n=1

z̄ne
−inθ

]

, (S.118)

so that
∫ π

−π
dθP (θ, t) = 1. We can plug this ansatz into Eq.S.117 and project

the dynamics onto each Fourier mode. When you do this, the coefficients
of all the Fourier modes become coupled; to make any progress one must
truncate the Fourier series, which can be done rigorously e.g. if the ampli-
tudes are small. This was the approach taken originally by Kuramoto in his
classical work on collective synchronization [10] (the approach was the same
but the model was not). However, in 2008, Ed Ott and Thomas Antonsen
discovered one could make much more progress by considering a particular
functional form for the different Fourier coefficients zn [13], namely

P (θ, t) =
1

2π

[

1 +
∞
∑

n=1

zneinθ +
∞
∑

n=1

z̄ne−inθ
]

. (S.119)

Now when we plug this ansatz into Eq.S.117 we find that upon project-
ing onto each Fourier mode the coefficients decouple. Specifically, if we
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project onto the kth Fourier mode by integrating the continuity equation
as
∫ π

−π
dθe−ikθ ·

(

...
)

we find that

τ ż = −i(I + 1)z − i

2
(I − 1)(1 + z2), (S.120)

which does not depend on k at all (if k = 0 we get identically zero). There-
fore if the complex variable z, known as the Kuramoto order parameter,
satisfies Eq.S.120, this is an exact solution to the continuity equation. Fur-
thermore, the probability distribution Eq.S.119 can be simplified by noting
that

∑∞
n=1 z

neinθ =
∑∞

n=1 α
n = α

1−α
as long as |α| < 1. Then we have

P (θ, t) =
1

2π

[ 1− |z|2
(1− zeiθ)(1− z̄e−iθ)

]

. (S.121)

This is known as the Poisson kernel. So far, so good. Now we must deal
with the currents in Eq.S.120. We will take them to be of the form Itotal =
Ii + Jτr(t) + Iext(t), so that there is quenched variability, a meanfield input
with weight J and a global external input. Because the inputs are dis-
tributed we must integrate over the probability distribution, which we call
f(I). Therefore we write

τ

∫ ∞

−∞

dxf(x)ż = −i
∫ ∞

−∞

dxf(x)(x+ Jr + Iext + 1)z

− i

2

∫ ∞

−∞

dxf(x)(x+ Jr + Iext − 1)(1 + z2).

This is the full model and can be analyzed via typical methods. It does,
however, simplify if we allow the function f(x) to have a simple pole in the
complex plane. In that case the integrals are all equal to the argument evalu-
ated at the pole by the Cauchy residue theorem. Magic! Unfortunately there
aren’t any “normal” distributions with simple poles but for mathematical
convenience we will take one anyway, the Cauchy or Lorentz distribution,
which looks like f(x) = 1

π
∆

(x−Ī)2+∆2 and has very broad tails. Then, the

macroscopic equations simplify to

τ ż = −i(Ī + Jr + Iext + 1)z − i

2
(Ī + Jr + Iext − 1)(1 + z2). (S.122)

This ODE is really two coupled ODEs because the Kuramoto order parameter
z is a complex variable. It is typical to consider the amplitude and phase of
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z = Reiψ. This makes a lot of sense in studies of coupled oscillators because
oftentimes one is interested in synchronized states for which R = 1. Here we
should also note that the firing rate can be written as

r(t) = F (π, t),

= 2P (π, t)

=
1

πτ

1− |z|2
(1 + z)(1 + z̄)

=
1

πτ

1−R2

1 + 2R cosψ +R2
. (S.123)

Finally we can write

τṘ = −∆R− ∆

2
(1 +R2) cosψ

−
(

Ī +
Jτ

π

1−R2

1 + 2R cosψ +R2

)(1−R2)

2
sinψ, (S.124)

τ ψ̇ = − 1

2R

(

Ī +
Jτ

π

1−R2

1 + 2R cosψ +R2

)

(2 + (1 +R2) cosψ)

+
∆

2R
(1−R2) sinψ. (S.125)

There might be some typos in there, it’s a long formula.

2.3 An exact meanfield model for QIF neurons

Of course, Eqs.S.124-S.125 are an exact meanfield model for QIF neurons
since theta neurons are just QIF neurons transformed. But how do I re-
late R and ψ to firing rates and voltages? Do I just use the relationship
V = tan θ/2 somehow? No, that’s for single cells, here I’m talking about
transforming some macroscopic variable to some other macroscopic variables.
The answer is not obvious [12]. The solution is to realize that the firing rate
(which is what we care about) can be written as the real part of a com-
plex variable which is a particular transformation of the Kuramoto order
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parameter. Specifically, consider the variable w, where

w =
1− z

1 + z
,

=
1− |z|2

(1 + z)(1 + z̄)
− z − z̄

(1 + z)(1 + z̄)
,

= πτr(t) + iy, (S.126)

where we don’t yet know what y is, but we can find out! Now that we have
the relationship between w and z and between θ and V we can transform the
Poisson kernel Eq.S.121 to find

P (V, t) =
τr(t)

(V − y)2 + π2τ 2r2(t)
, (S.127)

which we can all the “Lorentz” kernel. It’s now clear that y is the mean
(actually the mid-point or mean in the Cauchy Principal Value sense) of the
distribution of voltages. So w = πτr(t) + iv(t). We can transform Eq.S.120
to find

τẇ = i(I − w2). (S.128)

And finally, using the same trick of taking the distributed inputs from a
Lorenz distribution we can write Eq.S.128 as two coupled ODEs

τ ṙ =
∆

τπ
+ 2rv, (S.129)

τ v̇ = v2 + Ī + Jτr + Iext − π2τ 2r2. (S.130)

Let me emphasize that Eqs.S.129-S.130 and Eqs.S.124-S.125 describe iden-

tical dynamics. Nonetheless it is my opinion that Eqs.S.129-S.130 are much
more helpful and intuitive when investigating neuronal activity as I will illus-
trate in the next section. They certainly are simpler! BTW, what does the
transformation w = (1− z)/(1 + z) mean? It is a conformal mapping which
maps the unit circle (amplitude and phase) onto the half plane (voltage and
firing rate).

2.3.1 Alternative derivation of the meanfield model for QIF neu-
rons

Let’s analyze the continuity equation for a networks of QIF neurons directly.

∂P

∂t
+
∂F

∂V
= 0, (S.131)
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where F = P (V, t) (V
2+I)
τ

. Now, the steady state distribution is given by
F0(V ) = C where C is a constant. There can only be the case if P0(V ) =
C

V 2+I
. This is a Lorentz distribution with C =

√
I/π. Note also that the

steady state firing rate

r0 = lim
V→∞

F0(V ) =

√
I

πτ
. (S.132)

This means we can write

P0(V ) =
τr0

(V − v0)2 + π2τ 2r20
, (S.133)

where v0 = 0 is the “mean” membrane potential. This really is the stationary
distribution of voltages. However, it suggests that we might want to take it
as an ansatz for the full, time-dependent solution with r(t) and v(t) as time-
varying parameters. In hindsight we know that this is the correct solution.
We can plug this ansatz into the continuity equation, which will lead to two
coupled ODEs, Eqs.S.129-S.130.

2.3.2 Analysis of the meanfield model for QIF

You may be familiar with so-called firing rate models (or Wilson-Cowan
equations) or neural mass models. These generally have the form

τ ṙ = −r + φ(I), (S.134)

where the steady state is given by r0 = φ(I). Note that this is precisely the
form of the steady state from the meanfield theory of spiking networks. So
such heuristic firing rate models assume some simple first order relaxation
to a steady state which can be made to match the true steady state of any
given spiking network. What about Eqs.S.129-S.130 (I’ll call this the QIF
meanfield)? They look quite different from Eq.S.134. But this is actually
just a consequence of the explicit dependence on the subthreshold variable
v. In fact, if we solve for the fixed points in the QIF meanfield, we find that

v0 = − ∆

2πτr0
, (S.135)

r0 = φ(I), (S.136)

where φ(I) = 1√
2π

√

I +
√
I2 +∆2, and I = Ī + Jτr0 + Iext,0. This φ looks

similar to typical choices for fI curves: it has an expansive nonlinearity for
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low rates and a compressive one for high rates. But note that as opposed
to your typical firing rate model for a single neuronal population, the QIF
meanfield model has two independent dynamical variables. So while the fixed
point structure is similar the dynamics need not be.

One advantage of the simplicity of the QIF meanfield model is that we
can gain some insight into the dynamics just by looking at the equations. For
example, imagine that a large depolarizing current arrives all at once to the
whole network. This means Iext is increasing suddenly. This will drive up v,
to positive values if the input is large enough. Once v is positive, we see from
Eq.S.129 that the term 2rv will be positive and so the mean rate will also
grow rapidly. However, once r is large enough, the negative feedback term
in Eq.S.130, proportional to r2 will drive v back down. Once v is negative
r will go down once again, allowing v to increase...This is a mechanism for
generating oscillations. Also note that the key terms in the QIF meanfield
model are the quadratic ones, the ones related to spike generation and reset.
This means that spike generation mechanism in the networks of QIF neurons
will result in oscillatory behavior in response to a sudden depolarizing input:
these oscillations reflect an underlying network-wide spike synchrony. This
is what makes the QIF meanfield model so different from other meanfield
models, namely it captures spike synchrony.

Let’s back up this intuition with some mathematics. We can study the
linear stability of the fixed point solution by taking the ansatz (r, v) =
(r0, v0) + (δr, δv)eλt, where δr, δv ≪ 1. Plugging this into Eqs.S.129-S.130
yields

(

τλ− 2v0 −2r0
−Jτ + 2π2τ 2r0 τλ− 2v0

)(

δr
δv

)

= 0. (S.137)

This system has a solution if and only if

τλ = −2|v0| ±
√

2τr0(2π2τr0 − J). (S.138)

Note that for strong enough coupling J > 2π2r0 this becomes

τλ = −2|v0| ± i
√

2τr0(J − 2π2τr0). (S.139)

and so the fixed point is a stable focus. The damped oscillations that occur
when this focus is perturbed are precisely those we described heuristically in
the preceding paragraph.
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2.3.3 Variants

I will not go into any details in these notes, I just wanted to mention that
this methodology works for several populations of neurons, e.g. E and I, in
the continuum limit, e.g. neural fields, for conductances as synaptic inputs
and for gap junctions. Also, we can distribute the synaptic weights instead
of the input currents.
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